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ABSTRACT

Motivation: Genetic interactions between genes reflect functional
relationships caused by a wide range of molecular mechanisms.
Large-scale genetic interaction assays lead to a wealth of information
about the functional relations between genes. However, the vast
number of observed interactions, along with experimental noise,
makes the interpretation of such assays a major challenge.
Results: Here, we introduce a computational approach to organize
genetic interactions and show that the bulk of observed interactions
can be organized in a hierarchy of modules. Revealing this orga-
nization enables insights into the function of cellular machineries
and highlights global properties of interaction maps. To gain further
insight into the nature of these interactions, we integrated data from
genetic screens under a wide range of conditions to reveal that
more than a third of observed aggravating (i.e. synthetic sick/lethal)
interactions are unidirectional, where one gene can buffer the
effects of perturbing another gene but not vice versa. Furthermore,
most modules of genes that have multiple aggravating interactions
were found to be involved in such unidirectional interactions. We
demonstrate that the identification of external stimuli that mimic the
effect of specific gene knockouts provides insights into the role of
individual modules in maintaining cellular integrity.

Availability: We designed a freely accessible web tool that includes
all our findings, and is specifically intended to allow effective
browsing of our results (http://compbio.cs.huji.ac.il/GlAnalysis).
Contact: maya.schuldiner@weizmann.ac.il;
hanahm@ekmd.huiji.ac.il; nir@cs.huji.ac.il

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

A major goal in biology is to understand how thousands of genes act
together to create a functional cellular environment. An emerging
powerful strategy for investigating functional relations between
genes involves high-throughput genetic interaction maps (Butland
et al., 2008; Byrne et al., 2007; Collins et al., 2007a; Fiedler et al.,
2009; Makhnevych et al., 2009; Pan et al., 2006; Roguev et al.,
2008; Schuldiner et al., 2005; Segre et al., 2005; Tong et al., 2001;
Wilmes et al., 2008), which measure the extent by which a mutation
in one gene modifies the phenotype of a mutation in another. The
interactions in these maps can be divided to alleviating interactions,
where the defect of the double mutant is less than expected from
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two independent effects, and aggravating interactions, where the
defect of the double mutant is greater than expected from the single-
gene perturbations. Such systematic mapping typically uncovers a
large number of observed genetic interactions, which confounds
straightforward interpretation. Despite the large number of published
maps, a systematic methodology for extracting biological insights
remains a major challenge.

Previous analyses of genetic interaction data have primarily
focused on hierarchical clustering, resulting in many new
discoveries in key cellular processes (Collins ez al., 2007a; Pan et al.,
2006; Schuldiner et al., 2005). Nonetheless, hierarchical clustering
has two major drawbacks: first, the similarity score between genes
is based on their entire interaction profile (with all other genes)
allowing large fraction of background interactions to dominate
the similarity. Second, it does not directly extract meaningful
groups of genes or interactions between such groups, preventing
a system-level view of the interaction map. Both challenges were
addressed by several methods. For example, the PRISM algorithm
(Segre et al., 2005) uses monochromatic interactions (i.e. solely
aggravating or solely alleviating) within and between groups of
genes to define pathways (Fig. 1A). However, this algorithm,
which was evaluated on simulated interaction maps, fails on actual
data from large-scale maps due to the added complexity in real
cellular systems and assay noise (data not shown). Biclustering is
another approach that was suggested as an alternative to hierarchical
clustering, aiming to identify local signatures of functional modules
in the genetic interaction maps (Pu er al., 2008). While this
approach identifies many modules of genes, it does not eliminate
their overlap, hampering the generation of one coherent network
structure describing both the intra- and inter-modular interactions.
One possible way to overcome these drawbacks is by adding
different types of data or additional constraints. For example,
methods that combine physical protein—protein interactions in the
analysis of genetic interaction data identify functional modules with
high precision (Bandyopadhyay et al., 2008; Kelley and Ideker,
2005; Ulitsky et al., 2008). However, the requirement for physical
interaction data limits such approaches to protein sets and organisms
where such data exist, and may miss many functional pathways that
are not mediated by protein complexes (e.g. metabolic pathways).

Here, we introduce an automated approach that builds a concise
representation of large-scale genetic interaction maps. Toward
this goal, we relied on previous observations that complexes and
pathways induce signatures in the form of monochromatic cliques
and bi-cliques (Fig. 1A; Beyer et al., 2007; Boone et al., 2007;
Segre et al., 2005). Our method seeks to find an organization that
is globally coherent, in the sense that genes are organized into
a hierarchy of modules. Moreover, our method requires that the
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Fig. 1. Modularity of genetic interactions. (A) Pathway architecture (left)
leads to expected patterns of genetic interactions between genes (right).
Each row/column represents the genetic interactions of a specific gene with
all other genes. Among these there are subsets of interactions that can be
represented as monochromatic cliques and bicliques. (B) Monochromatic
interactions can be captured by edges within and between modules (grey
boxes) organized in a hierarchical structure.

interactions between these modules will account for a large portion
of the data. We show how the resulting representation facilitates
better understanding of the underlying cellular phenomena. In turn,
we use these insights to shed light on the function of concrete
cellular pathways and also to provide information on the overall
organization of the network. We demonstrate how integration of data
from genetic screens for reduced fitness under various conditions
results in automatic creation of biological insights into the functional
role of gene modules.

2 HIERARCHY OF INTERACTING MODULES

Our basic premise is that a good hierarchical organization is defined
by a trade-off between succinct description of the network on one
hand, and capturing as much of the interactions in the map on the
other hand. To capture this quality, we devised a score based on the
minimum description length (MDL) principle (Rissanen, 1983) and
devised an iterative procedure that optimizes this score.

2.1 Hierarchical representation

The hierarchical representation consists of two parts. The first
is a hierarchy of modules. Briefly, a hierarchy is a set M of
modules, such that each module m is associated with a subset
of genes Genes(m) and a parent module Parent(m)e MU /{e},
where € represents a null module (i.e. the module is a root). We
say that a module m’ is an ancestor of m if m’ =Parent*(m)
for some k>1. The hierarchy is legal if for every m,m’ e M
such that m’ =Parent(m), we have that Genes(m)C Genes(n?'),
and moreover Genes(m)NGenes(m')#@ if and only if m is an
ancestor of m’ or vice versa. In the hierarchy of Figure 1B, we
have four modules, so that Genes(m1)={G1, Gy, G3}, Genes(my)=
{G5,Gg}, Genes(mz)={G4,Gs5,Gg}, and Genes(my)={G7,Gg}.
In this example, Parent(m)=Parent(msz)=Parent(my)=¢€, and
Parent(mp)=m3.

The second component of the hierarchy describes a set £ of edges
between modules. An edge can be of two types, alleviating (denoted
in yellow in our figures) or aggravating (denoted in blue). Each
edge represents a type of genetic interactions that is common for
the members of the modules linked by the edge. Formally, an edge
m| <> my, represent the set Int(m| <> my)= Genes(m|) x Genes(my)
of genetic interactions. Edges in the hierarchy can be self-edges,

in which case they induce a clique of interactions, or between
two different modules in which case they induce a bi-clique of
interactions. In the example of Figure 1B, we have the alleviating
edges m| <>my, m3<>m3, my<>my, and the aggravating edges
my<>m3 and mp<>my. These edges represent the interactions
described in the interaction matrix of Figure 1A.

2.2 Minimal description length score

We use the MDL principle (Rissanen, 1983) to score the quality of
module hierarchy as a guide for lossless encoding of the genetic
interaction map. Conceptually, imagine that we need to transmit the
genetic interaction map over a channel and search for the encoding
that would require the fewest bits. Under this principle, the length
of the transmission is a proxy for the quality of the representation,
with a shorter encoding denoting a better representation.

The application of this principle involves deciding how we encode
the interactions in the map. When we do not have any organization
of the map, we use the same codebook for each interaction. Since
weak interactions are much more abundant than strong ones, their
code words will be shorter (Cover and Thomas, 2001). Thus, we
will incur a penalty for strong interactions. When we have a module
hierarchy, we can use a different codebook for each edge in the
hierarchy and an additional codebook for background interactions.
This allows us to exploit a group of monochromatic interactions for
efficient encoding by a codebook that assigns strong interactions
of the appropriate short codewords. The benefit from covering a
large portion of the map with coherent edges is offset by the cost
of transmitting the codebooks themselves, which involves coding
the hierarchical organization and the edges with their signs. Thus,
when evaluating a possible organization of the genetic interaction
map there is a trade-off between the coverage of interactions and
the number of modules and edges.

Formally, if we denote the genetic interaction map by D and the
hierarchical organization by (M, &) then the MDL score consists of
two main terms:

S(D; M, E)=DL(M, E)+DL(D|M, E)

where DL(M, &) is the description length of the hierarchical
organization and DL(D|M,&) is the description length of the
interactions, given that we already encoded the hierarchy. We
start with the first term, DL(M, ). Here, we need to encode the
module hierarchy (which module is the parent of each module),
the assignment of genes to modules and the list of edges. This is a
relatively straightforward encoding using standard MDL practices.

The second term represents how to describe the genetic interaction
map once we know the modular organization. Standard results
in information theory (Cover and Thomas, 2001) show that if
the frequency of each word is p(w), then the optimal codebook
is one where encoding a word w is of length —log,p(w). Thus,
in each codebook we use the distribution of the strengths of
interactions covered by an edge to build an efficient codebook.
We assume that the different values are distributed according to
a Gaussian distribution. Thus, the encoding length is the minus log-
probability (or likelihood) of the data given the parameters of each
Gaussian codebook (i.e. the closer the distribution is to its parametric
description, the score is higher). To this length, we add the number
of bits needed to encode the parameters of each distribution. To
calculate the encoding length, for each edge ¢ € £ we estimate the
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maximum likelihood parameters, (ie,0¢). In addition, we estimate
the background distribution (1p,0p). We then define

DLDIM.E) = =) ) logp(lijle.oe)
ee& (i,j)elnt(e)

— > logoplijlip,op)
(i.))eBg

+Y _log,|Int(e)| +log, |Bg|
ec&

where p(/;, j|,u,0) is the likelihood of the genetic interaction score
1; j according to the Gaussian N (i, o), Bg is the set of interactions
that do not belong to any edge in £, and log, (|Int(e)|) is the encoding
length of the parameters for the edge. Thus, we score interactions in
their specific context (either inside an edge or in the background).

For practical concerns, we restrict the network to include only
coherent edges. Thus, we require that an edge satisfies |ue| — o > o,
where « is a strictness parameter (which we set to 1 in the results
below). If this is not the case, the network receives a large penalty
which effectively excludes it from consideration.

2.3 Constructing module hierarchy

Given a genetic interaction map D, we want to find the module
hierarchy that minimizes the MDL score. This problem is non-trivial
as the search space is huge. To address this we combine two ideas.
First, we use hierarchical clustering to get a good initial guess for
our hierarchical organization. Second, once we have a reasonable
initial candidate, a heuristic search procedure can perform ‘local’
improvements to find a much better one. Our procedure implements
these ideas by performing the following steps.

Clustering: we cluster the genetic interaction map using hierarchical
clustering with uncentered Pearson correlation (Eisen et al., 1998).
This results in a dendrogram, which in our terminology is a detailed
hierarchy, where each internal node defines a group of genes that
correspond to the leaves in its sub-tree and each pair of such internal
nodes defines a rectangle in the clustered matrix (Fig. 2a).

Identifying edges: treating the dendogram as an initial hierarchy of
modules, the procedure traverses overall pairs of internal nodes in
the dendrogram and in a greedy fashion adds modules and edges
as long as they increase the MDL score. At this stage, we have a
very large number of modules and some number of edges. We then
prune modules that do not participate in edges (while maintaining the
ancestral relationships between the remaining modules). This results
in a hierarchy that summarizes the initial clustering (Fig. 2b).

Greedy improvements: to re-evaluate and refine the modular
structure, the procedure performs a heuristic search by evaluating
local changes to the modular organization. These local changes
include: addition/removal of a gene to/from an existing module,
merging a module with its parent, transferring an edge from a module
to its parent (or vice-versa) and addition/removal of an edge. Each
of these local changes is evaluated and based on their score the
procedure decide which one to apply. We use a best-first-search
heuristic combined with a TABU list (Glover et al., 1993) to avoid
revisiting explored networks and thus escape local maxima. This
search leads to a refined model (Fig. 2c).

Large-scale
genetic
intaraction
maps

Fig. 2. Outline of our iterative algorithm. After clustering the interactions
(left) our procedure identifies modules of genes in the clustering hierarchy
that define monochromatic on-diagonal squares (e;) and off-diagonal
rectangles (e ), resulting in a hierarchical organization of genes into modules
(middle). Next, the module graph is refined by a series of local changes (e.g.
moving one gene from my to my; right). At the end of each iteration (bottom
arrow), we re-cluster the genetic interaction matrix while maintaining the
identified modules. These steps are iterated until convergence.

Reiterations: to find structures that might elude local search steps,
the procedure iterates by returning to the first step. In each re-
iteration, we re-cluster the genetic interaction map while conserving
the module hierarchy from the previous step. That is, we allow only
agglomerative steps that do not break existing modules into separate
subunits. This constraint forces the resulting clustering to maintain
the found structure, but it can identify new sub-modules as well
as new modules of genes that are not assigned to a module. These
iterations are repeated until convergence (in score) (Fig. 2d).

2.4 Application to genetic interaction maps in
Saccharomyces cerevisiae

We applied our methodology to two large-scale genetic interaction
maps in the budding yeast S. cerevisiae. The first contains genes
localized to the Early Secretory Pathway (ESP; Schuldiner ez al.,
2005) and the other comprises genes involved in Chromosome
Biology (CB; Collins et al., 2007b). This procedure automatically
constructed a hierarchical organization of modules in both: in the
ESP map it identified 113 modules covering 264 genes (out of
424) and in the CB map it identified 242 modules covering 487
genes (out of 743). Most of these modules represent functionally
coherent groups of genes (ESP: 76/113, CB: 193/242; Appendix A
in the Supplementary website), such as physical complexes (e.g.
Mediator subunits, HIR complex, SAS complex) and functional
pathways (e.g.N-linked glycosylation, chromatid cohesion). Inter-
and intra-module interactions correspond to a large fraction of the
interactions in the original maps, particularly the high confidence
ones (Fig. 3A and B). In addition, the edges we capture are also
coherent in the sense that most interactions covered by alleviating
edges have positive interaction scores and most interactions covered
by aggravating edges have negative scores (Fig. 3C and D). Thus, the
modular organization of the genetic interactions faithfully captures
a large portion of these maps.

The hierarchical nature of the network allows the definition of
large modules with more general functions that contain sub-modules
with more specific functions, which are distinguished by sets of
unique interactions. For example, module ESP-98 comprises eight
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Fig. 3. Edges capture most interactions. (A) Coverage of aggravating
interactions by our network (y-axis) as a function of threshold for EMAP
score (x-axis). Magenta solid lines and green dashed lines show results for CB
and ESP networks, respectively. (B) Coverage of alleviating interactions. (C)
Coherence of aggravating and alleviating edges in the CB network. Shown
is a histogram (y-axis) of EMAP scores (x-axis) for interactions covered by
aggravating and alleviating edges in blue and yellow, respectively. Histogram
for the entire data is show in grey. (D) Coherence of edges in our ESP
network.

genes that take part in the maturation of glycoproteins within the
ER lumen (Fig. 4). Specifically, these genes encode the sequential
enzymes adding on sugar moieties to a synthesized polysaccharide
chain. Our analysis identified two sub-modules that correspond to
two distinct stages in this process: one module (ESP-97) involves
genes encoding proteins that transfer mannose residues to the
nascent chain, and the second module (ESP-96) involves genes that
subsequently transfer glucose residues to the nascent chain (Helenius
and Aebi, 2004). This division was obtained automatically, based on
interactions that are specific to each of these sub-modules (Fig. 4).
Notably, the protein products of genes in these two modules do
not form physical complexes, and thus could not be identified by
methods that use protein—protein interactions to define the modules.
In addition, this subdivision was not obtained by solely applying
hierarchical clustering methods (Schuldiner ez al., 2005).

2.5 Comparison to other methods

Comparing our method to previous methods for analysing genetic
interaction maps is difficult due to the different focus of the various
methods. A common theme to most methods is the determination
of gene modules. Although this is only one aspect of our analysis,
we compared our module list to modules found by other studies
of the CB map (Bandyopadhyay et al., 2008; Pu et al., 2008;
Ulitsky et al., 2008). Comparing to the methods of Bandyopadhyay
et al. (2008) and Ulitsky er al. (2008, Fig. 5A and B), we find
many more modules (242 modules compared with 91 and 62,
respectively), covering more genes (487 genes compared with 374
and 313, respectively).! In addition, many of these modules are

"When comparing to Bandyopadhyay et al. (2008) we considered only
modules with more than one gene.
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Fig. 4. Hierarchical organization of modules represents functional hierarchy.
(A) Modules are denoted by grey boxes (red labels denote functional
assignment based on annotations; black labels denote the name of each
module and in parentheses the number of genes included in it). Blue edges
between modules indicate that these modules create aggravating bicliques.
Module ESP-98 contains eight genes related to N-linked glycosylation. It is
further divided into two sub-modules (ESP-96 and ESP-97), each identified
by different interactions, which have more specific functions. (B) Schematic
view of the N-linked glycosylation pathway (adapted from Helenius and
Aebi, 2004). Inside the ER lumen, four mannose residues (green circles)
are added to Man5GIcNAc2 by Alg3, Alg9 and Algl2 (comprising module
ESP-97). In turn, three glucose residues (red triangles) are added by Alg5,
Alg6, Alg8 and Alg10 (comprising module ESP-96).
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not enriched with physical protein—protein interactions, yet have
a coherent function. Furthermore, our approach is also applicable
to other systems, in which the protein—protein interaction data is
very sparse (such as in the ESP dataset) or in organisms in which
it does not exist. When comparing our results to those of Pu et al.
(2008) who finds 298 overlapping modules covering 181 genes, we
see that we find similar numbers of modules organized in a global
hierarchy and covering more genes. However, these advantages
come at the price of lower precision (Fig. 5C). Yet, as the larger
modules at the top of the hierarchy might correspond to more global
functions, their enrichment in more general GO terms is reasonable.
We conclude that each of the methods strikes a different trade off
between precision, sensitivity and global coherence.

3 UNCOVERING UNIDIRECTIONAL
COMPENSATION

Strikingly, a relatively large number of the gene pairs exhibit
genetic interactions, especially aggravating ones. We find that
aggravating interactions play a major role in the definition
of many modules (e.g. 150 of the 242 modules in the CB
network are defined solely based on aggravating interactions).
Aggravating interactions are commonly interpreted as an indication
of bidirectional compensation, where each gene can compensate for
the absence of the other by performing a similar function. However,
in many cases this explanation cannot account for the observed
patterns of aggravating interactions and the large number of such
interactions between genes with distantly related functions.

An alternative explanation (Boone et al., 2007; Pan ef al., 2006)
is that one gene is crucial for functions that compensate for the
abnormal cellular state resulting from the loss of the other gene. In
this scenario, termed unidirectional compensation, the relationship
between the genes is asymmetric in the sense that one gene can
compensate for the loss of the other but not vice versa. We refer to
the gene whose knockout causes the perturbation as the upstream
gene and to the compensating gene as the downstream gene. While
examples for this type of interpretation have been shown on existing
data (Pan er al., 2006), no systematic test was carried out to
identify the aggravating interactions that can be explained by such
unidirectional interpretation and to assess their fraction within the
observed aggravating interactions.

3.1 Identifying unidirectional compensation

Our premise is that we can identify unidirectional compensation
by comparing the perturbation of a putative upstream gene with
perturbations caused by external stimuli. We say that an external
stimulus (e.g. a drug or an environmental insult) phenocopies a
gene deletion if the genes required for coping with the stimulus
are the same ones required to compensate for the perturbation of
the upstream gene. Stated in terms of available data, this definition
implies a significant overlap between the genes whose knockout
lead to sensitivity to the stimulus and these that have aggravating
interactions with the upstream gene. Moreover, genes in this overlap
are downstream to the specific upstream gene. By establishing such
phenocopy relations, we implicate unidirectional interactions from
the upstream genes and their matching downstream genes.

For example, deletion of the CHL1 gene leads to abnormal
chromosome segregation similar to the damage caused by external

A Overtapping function (CTFID—(BUBT) Unidrectionsl B drug phenocopy
‘T T‘ compensation St R
a7 @HLD g @i (Benamyt )
Ganetic Interactions 1 l
GUBH—i s
CHL1 —CTF19 CHL1-2=BUB3 Benomyl — BUB3

Fig. 6. Identifying unidirectional interactions. (A) An example of
aggravating interactions (middle) that might be due to different mechanisms.
Both CHL1 and CTF19 genes (red ellipses) have functions related to sister
chromatid pairing during the S-phase. Thus, their aggravating interaction
(denoted by a blue line) might be a result of their overlapping functions
(left). However, the aggravating interactions of CHL1 and BUB3, which is
part of the spindle assembly checkpoint, is more likely the result of a different
mechanistic reason (denoted by a directed red arrow; right), where the lack of
a gene (i.e. chll A) induces abnormal chromosome segregation, that requires
the activation of the spindle assembly checkpoint including BUB3. (B) Yeast
cells exposed to benomyl (denoted by a green diamond) show the same
sensitivity to BUB3 perturbation as the chll A strain, suggesting that chil A
background causes a stress similar to exposure to benomyl.

microtubule depolymerizing agents (e.g. benomyl). In turn, the
deletion strain of bub3A shows growth retardation under benomyl.
Thus, we interpret the aggravating interaction between CHL1 and
BUBS3 as resulting from unidirectional compensation, where CHL1
is the upstream gene and BUB3 is the downstream gene (Fig. 6).
Indeed, this interpretation is conceivable, as Chll is involved in
sister chromatid pairing during the S phase, and Bub3 is part of
the spindle assembly checkpoint, in charge of delaying anaphase in
cases of abnormal spindle assembly.

When elaborating this reasoning we have to be careful not to
confuse unidirectional compensation with dosage effect: if a gene
phenocopies a stimulus, we might expect to see that its deletion
amplifies the effect of this stimulus, showing higher sensitivity to
its application (loosely stated, higher dosage of the stimulus). In
such cases, we might mistakenly implicate an upstream gene to
be downstream to another gene that also phenocopies the same
stimulus. However, in such situations we will, by definition, identify
bidirectional interactions where one gene is both upstream and
downstream to another gene. Thus, we can detect these situations,
and distinguish them from a proper unidirectional compensations.”

The reasoning we outline here (and apply below) detects,
up to usual concerns about experimental or statistical noise,
asymmetries of aggravating interactions with respect to phenotypes
of external stimuli. This is a well-defined and clear criterion. A more
ambitious step is to deduce from this asymmetry directionality in
the underlying biological mechanisms. In our example of CHL1
and BUB3, we have strong intuitions about the causal direction
(as sister chromatid pairing precedes spindle assembly). In other
cases, the underlying causality is much murkier. Moreover, we can
imagine external perturbations that will lead to opposite asymmetry.
For example, if a certain drug targets in a specific manner the
spindle assembly checkpoint, we would detect asymmetric behavior
of CHL1 and BUBS3 to it, but in the opposite direction. This
thought exercise implies that we need to be careful about deducing

2We estimate that up to five percent of unidirectional interactions are actually
caused by dosage effect but were not identifed as such since not all the genes
were tested in all the screens (data not shown).
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directionality in the underlying biology. However, we believe it is
reasonable to assume that in most cases external perturbations are
ones that causes cellular imbalances or stress conditions rather than
disable mechanisms that cope with such situations.

3.2 Application to genetic interaction maps in
S.cerevisiae

To systematically detect unidirectional compensation, we collected
data from genetic screens that measured growth of yeast deletion
strains under various external conditions and insults compared to
YPD conditions (Bennett ez al., 2001; Dudley et al., 2005; Giaever
et al., 2002; Hillenmeyer et al., 2008; Parsons et al., 2004, 2006).
We considered deletion strains from both homozygote diploid and
haploid deletions. We converted all measurements into a binary
score, by defining genes with growth defects as those that passed
the threshold defined by the authors of each study (for a detailed
description of how we handled each dataset see Appendix B in the
Supplementary website).

This process resulted in listing for each external stimulus the
repertoire of deletion strains that display a growth defect in its
presence. In a similar manner, each gene deletion defines a list
of genes that are sensitive to its deletion, i.e. display aggravating
interactions with it (using the same threshold, —2.5, as Collins et al.,
2007a; Schuldiner et al., 2005). We then define a unidirectional
compensation between genes X and Y (associated with external
perturbation P) if (i) there exists an aggravating interaction between
X and Y; (ii) the perturbation of Y leads to sensitivity to the
external perturbation P; (iii) X has aggravating interactions with
a significant number of genes whose perturbations cause sensitivity
to the perturbation P (using hyper-geometric test with FDR of 0.1);
and (iv) at least one of the conditions 2 or 3 do not hold on the
opposite direction (when switching the roles of X and Y).?

We applied this procedure to the CB and ESP genetic interaction
maps and found 348 gene deletions that are phenocopied by at least
one external stimulus. These stimuli include a wide range of external
perturbations that match the nature of the specific data set analyzed.
For example, many external stimuli corresponding to gene deletions
in the CB map include agents causing DNA damage and microtubule
depolymerization, while the stimuli related to the ESP map mostly
include agents causing protein synthesis and glycosylation inhibition
(see Supplementary website). To our surprise, more than one-third
of the aggravating genetic interactions (CB: 4659/11539; ESP:
1036/2718) could be explained by unidirectional compensation.

4 ELUCIDATING THE FUNCTION OF CELLULAR
PATHWAYS

We next asked whether unidirectional compensation can also be
assigned within the modular hierarchy in terms of upstream and
downstream modules. Toward this end, we incorporated these
unidirectional interactions into our hierarchical organization of
interacting modules. We annotated an aggravating edge between two
modules as caused by unidirectional compensation if the majority

3To measure the statistical significance of the interactions we found, we
created a random permutation of the names of the genes in the genetic
interaction screen, and repeated the procedure described above. In 10 repeats,
no significant overlaps between genes and external stimuli were found, thus
no unidirectional interactions were identified.
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Fig. 7. Inter-module unidirectional interactions. (A) Systematic
identification of unidirectional interactions: a systematic search discovers
cases of statistically significant overlap between patterns of gene sensitivities
under specific external stimuli (green lines) and the aggravating partners of
specific genes (blue lines). We annotate these aggravating interactions as
unidirectional, and denote them by red arrows directed from the upstream
gene (whose deletion causes the cell perturbation) to the downstream genes
(which deal with the particular cell perturbation). (B) All inter-module
aggravating edges were scanned and searched for potential unidirectional
edges. If the majority of the interactions involved in an inter-module
aggravating edge are marked as consistent unidirectional interactions
(corresponding to the same external stimulus and in the same direction),
this edge was annotated as a unidirectional edge with respect to the specific
external stimulus (green diamond).

of interactions between these modules are unidirectional and share
the same context (i.e. have the same directionality and are related
to the same external stimulus; Fig. 7A; Supplementary website). By
requiring consistent unidirectional interactions between modules,
this incorporation also removes potential errors in the annotation
of unidirectional interactions (Supplementary website). We find
that this designation elucidates the cellular role of modules and
their interactions. Coming back to our previous example, we find
that perturbations of modules CB-119 and CB-187 lead to stress
conditions similar to those caused by microtubule de-polymerizing
agent benomyl (Fig. 7B). Our analysis identified module CB-183
as downstream to benomyl-like stress caused by mutations of
genes in CB-119 and CB-187. Indeed, the protein products of the
genes in CB-119 and CB-187 are components of the machinery
responsible for the correct distribution of chromosomes during
cell division (Hanna et al., 2001; Measday et al., 2002). By de-
polymerizing microtubules that create the spindle fibres, benomyl
attacks a crucial component of this process. Finally, the genes in
module CB-183 participate in the spindle assembly checkpoint that
delays the onset of anaphase in cells with defects in mitotic spindle
assembly (Nasmyth, 2005). This example demonstrates the power
of our approach in automatically providing biological insights into
the function of the genes in various modules.

The concise representation of the observed genetic interactions as
edges within and between modules, in combination with the specific
interpretation of many aggravating edges as caused by unidirectional
compensations, pinpoints novel functions of modules that are not
readily apparent from clustering of genetic interactions alone. The
results of our automatic search provide an elaborate network of
such inter- and intra-module edges, thus, we constructed a web-
tool providing a user-friendly interface to browse our results in an
effective manner (Supplementary website).

For example, examining unidirectional edges related to DNA
damage agents, such as hydroxyurea and camptothecin, we find
multiple upstream and downstream modules (Fig. 8A). A notable
downstream module (CB-137) comprises three sub-modules; of
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these, both CB-136, that contains the Holiday junction complex,
and CB-134 that comprises genes of the Rad51 pathway and MRX
complex are established mechanisms of DNA damage repair. The
third sub-module (CB-132) comprises five genes whose protein
products were recently characterized as involved in the acetylation
of histone H3 lysine 56 (H3K56Ac) pathway (Collins et al., 2007a).
In addition, we find an alleviating interaction between the H3K56Ac
module and S-phase-related module (CB-194), suggesting that the
function of H3K56Ac pathway is S-phase-related. This example
illustrates the power of the combination between the hierarchical
structure of modules and the annotation of unidirectional edges.
Our method identifies one parent module with a general DNA
repair annotation that contains three sub-modules with different
interactions that imply different specific functions. For example,
the alleviating interaction of CB-132 with CB-194 suggests that
the H3K56Ac pathway is involved in relieving DNA damage in
the S - phase. Indeed, loss of H3K56 acetylation results in higher
sensitivity to exposure to DNA damaging agents during S -phase
(Masumoto et al., 2005) and this pathway was proposed as a DNA
integrity check point following replication (Collins et al., 2007a).
Another example regards the unidirectional edges related to TSA,
a histone deacetylation inhibitor that affects class I and II histone
deacetylases (Furumai et al., 2001; Fig. 8B). We find two modules
whose perturbation is phenocopied by TSA: Set3 complex (CB-
82) and Thpl-Sac3 complex (CB-92). Set3 complex is a histone
deacetylation complex, and thus it is plausible that TSA phenocopies
its perturbation. However, the relation of the Thpl-Sac3 complex,
comprising mRNA export factors associated with the nuclear pore,
to deacetylation is less obvious. Clues to this puzzle can be found
when examining the downstream modules with respect to this
external stimulus. Most of these downstream modules are related
to chromosome segregation (CB-121 and CB-183) and the Swrl
complex (CB-218), a chromatin modifier with genome integrity
phenotype (van Attikum et al., 2007). This suggests that TSA
damages chromosome integrity, and that perturbations of Thpl—
Sac3 complex and Set3 complex lead to similar damage. Indeed,
previous studies showed that Thpl—-Sac3 complex has a role in
transcription elongation, and that its perturbation affects genome
stability (Gonzdlez-Aguilera et al., 2008). Previous works suggested

that histone deacetylation by Set3 is also associated with active
transcription (Kim and Buratowski, 2009; Wang et al., 2002),
leading us to hypothesize that perturbations of these complexes
interfere with transcription elongation, resulting in chromosome
instability. Interestingly, we observe a directed interaction from
Set3 to the Rpd3 complex (CB-40), also a histone deacetylase. This
asymmetry is consistent with the wider range of functions of Rpd3
(Suka et al., 2001) in contrast to the specificity of Set3 targets (Wang
et al., 2002), explaining why Rpd3 can (partially) compensate for
defects in Set3 and not vice versa.

5 DISCUSSION

From maps to networks: our methodology takes a step forward
towards automating the extraction of biological knowledge from
large-scale genetic interaction maps. A crucial step in dealing
with the large quantities of interaction data is summarizing the
observations in a representation that identifies patterns in the
data. Previous works mainly used local signatures to capture
interactions between pairs of modules (Bandyopadhyay er al.,
2008; Pu et al., 2008) or learn a network of disjoint modules
that are coherent in terms of physical and genetic interactions
(Ulitsky et al., 2008). Here, we focus on finding a global
representation that captures the bulk of the genetic interactions,
without requiring additional information, and employ a module
hierarchy to capture functional specialization of different sub-
modules. Our representation facilitates inspection of the large-scale
results, by presenting each module along with all its interacting
partners as well as its hierarchical context. This representation
defines the modules within their biological context, minimizing
the requirements for expert knowledge for inference of testable
biological hypotheses from genetic interaction data.

Our empirical results on two very different genetic interaction
maps show that this representation captures much of the patterns
of interactions in the data. Although our representation captures
many interactions, it does not include all the interactions. Some
of the missed interactions may be false positives, and thus at this
front our analysis would serve to purge such data from the genetic
interaction maps. There are, however, various reasons for missing
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true interactions. For example, some interactions are excluded since
we restrict the module size to at least two genes, so that noisy
measurements for a specific deletion will not dominate the results.
This implies that our procedure may miss a consistent set of
interactions between a single gene and a module. Also, the constraint
of a strict hierarchy may lead to situations where a gene with multiple
functions has to choose which module to belong to and thus to
miss some of its interactions (Pu et al., 2008). A natural extension
of our method, which can partially resolve this issue, is to allow
an extended hierarchy, where a module can be the child of more
than one parent. As demonstrated by the success of GO ontology
in capturing functional annotations (Ashburner et al., 2000), such
hierarchical graphs are natural in the context of functional gene
organization.

Striving for mechanisms: one goal of the analysis of genetic
interaction maps is to decipher the causal explanation underlying
the observed interactions. Automating this aspect of the analysis
provides a significant advance toward interpretation of genetic
interaction maps. Earlier studies mostly focused on interpretations
that involve complexes and pathways (alleviating interactions
among members of the complex/pathway, and a similar spectrum
of interactions with other genes) and redundant functions of
such complexes/pathways (parallel pathways may have aggravating
interactions between genes involved in these pathways). Although
other explanations were acknowledged (Boone et al., 2007; Pan
et al., 2006) and implicitly used in interpreting the results,
these were not reflected in automated analyses. Here, we
introduce a novel automated analysis to systematically detect
unidirectional interactions where a downstream gene buffers or
compensates for the effect of the perturbation of an upstream
gene.

Using our automated analysis, we find that a large portion of the
observed aggravating genetic interactions (at least a third) can be
attributed to such unidirectional interactions. This finding partially
accounts for the large number of aggravating interactions between
genes of distantly related functions. Moreover, the analysis annotates
interactions by the type of damage caused by the perturbation of
the upstream genes, providing informative clues for interpreting the
results. Finally, we combine this analysis with the modular hierarchy
representation to understand the relations between modules. When
looking at the types of external stimuli phenocopied by gene
deletions in our analysis, we find that many of them can cause
major stress conditions in the cell such as DNA damage (e.g. by UV,
hydroxyurea, camptothecin and MMS) and translation inhibition
(e.g. cycloheximide and hygromycin B). In this case, we can
interpret unidirectional compensations as connecting between a
module whose perturbation causes stress and a module that has
a part in relieving this stress. Indeed, many of the downstream
modules associated with such stress conditions are known to be
central players in the cellular response to various stress conditions,
for example the DNA damage repair module (CB-137) and spindle
assembly checkpoint (CB-183).

Global examination of the resulting network shows that many
highly connected modules have a high percentage of their
aggravating partners related through unidirectional edges related
with major stress conditions (Fig. 9). Moreover, highly connected
modules tend to be either upstream (i.e. their removal causes
stress conditions) or downstream (i.e. stress relieving), but not
both (Supplementary website). These observations suggest that
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Fig. 9. Many hubs of genetic interactions are related to unidirectional
compensation. A histogram of the fraction of unidirectional edges (y-axis)
for modules with different degree of aggravating edges (x-axis). Each bar
shows the portion of unidirectional edges out of all edges that are connected
to modules with this degree.

unidirectional compensation plays a pivotal role in forming
interaction hubs in genetic interaction maps. Furthermore, they
suggest that responses of cellular integrity mechanisms to genetic
perturbations are a major factor in shaping genetic interaction maps.

Toward organizational principles of genetic interaction maps: the
methodology we present here puts forward two major contributions
toward understanding the organization of genetic interaction maps.
First, the hierarchy of modules is automatically built independent
of additional data sources, allowing its application to various
existing genetic interaction maps and also to less studied organisms.
Moreover, the creation of a visual platform to study these
results should boost the usability of these datasets, many of
which are currently only used to find single interactions between
genes of interest. Second, we elucidate some of the mechanisms
underlying the interactions between modules. By integrating an
additional data source we enabled the distinction between uni-
and bi-directional aggravating interactions, and provided more
functionally coherent interpretations to the genetic interaction maps.
Our results demonstrate that searching for a causal explanation
for the genetic interactions highlights specific insights into the
cellular roles of genes and pathways as well as elucidates global
features of the genetic interaction map. With the increasing
availability of genetic interaction maps in yeast and as they
become available for a large number of organisms, many of
them with sparser annotation (Butland et al., 2008; Byrne et al.,
2007; Roguev et al., 2008), we believe that these methods
can be generalized and will prove valuable in the automated
highlighting of both the functional structure of the network as
well as specific biological phenomena. This should allow us to
make the first steps necessary to turn high-throughput maps into
a true understanding of cellular complexity by interpreting how
such maps relate to the underlying landscape of interacting cellular
pathways.
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