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ABSTRACT

Motivation: Genomes in higher eukaryotic organisms contain a
substantial amount of repeated sequences. Tandem Repeats (TRs)
constitute a large class of repetitive sequences that are originated
via phenomena such as replication slippage and are characterized
by close spatial contiguity. They play an important role in several
molecular regulatory mechanisms, and also in several diseases
(e.g. in the group of trinucleotide repeat disorders). While for TRs
with a low or medium level of divergence the current methods are
rather effective, the problem of detecting TRs with higher divergence
(fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic
to enriching our view of their role in regulatory mechanisms and
diseases. Fuzzy TRs are also important as tools to shed light on
the evolutionary history of the genome, where higher divergence
correlates with more remote duplication events.
Results: We have developed an algorithm (christened TRStalker)
with the aim of detecting efficiently TRs that are hard to detect
because of their inherent fuzziness, due to high levels of base
substitutions, insertions and deletions. To attain this goal, we
developed heuristics to solve a Steiner version of the problem for
which the fuzziness is measured with respect to a motif string
not necessarily present in the input string. This problem is akin to
the ‘generalized median string’ that is known to be an NP-hard
problem. Experiments with both synthetic and biological sequences
demonstrate that our method performs better than current state of
the art for fuzzy TRs and that the fuzzy TRs of the type we detect are
indeed present in important biological sequences.
Availability: TRStalker will be integrated in the web-based TRs
Discovery Service (TReaDS) at bioalgo.iit.cnr.it.
Contact: marco.pellegrini@iit.cnr.it
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Tandem Repeats (TRs) are multiple (two or more) duplications of
substrings in the DNA that occur contiguously, and may involve
some base mutations (such as substitutions, insertions and deletions).
TRs of several forms (satellites, microsatellites, minisatellites and
others) have been studied extensively because of their role in several
biological processes. In fact, TRs are privileged targets in activities
such as fingerprinting or tracing the evolution of populations (Kelkar
et al., 2008; Vogler et al., 2006). Several diseases, disorders
and addictive behaviors are linked to specific TR loci (Wooster
et al., 1994). The role of TRs has been studied also within
coding regions (O’Dushlaine et al., 2005) and in relation to gene
functions (Legendre et al., 2007). Large scale comparative studies
on TRs of the human genome are described in Ames et al. (2008)
and Warburton et al. (2008). Data Bases of repetitive elements
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such as RepBase (Jurka et al., 2005) and Tandem Repeats Database
(TRDB) (Gelfand et al., 2007) are now available; and the detection
of repetitive elements via library-based similarity matching, for
example by using the tool Repeatmasker (Smit et al., 2004), is a
popular practice. However, tools for ab initio detection of repetitive
elements that are not based on prior knowledge accumulated in data
bases are still important in order to extend our comprehension of the
role of TRs in biological mechanisms. Existing ab initio tools are
successful when the TR exhibits a moderate amount of divergence
and when the TR is easily validated. However, there is an emerging
need for new tools that are able to cope with higher levels of
sequence divergence and/or TR computationally more difficult to
validate. For example, Boeva et al. (2006) study so called Fuzzy
TRs and their role in gene expression. The technique in Boeva et al.
(2006) works well for the Hamming metric (only substitutions and
no insertions/deletions allowed) and for short repeat units (from 3
to 24 bp) that are common in micro- and mini-satellite families.

Some of the most successful ab initio tools, such as TRF (Benson,
1999) and ATRHunter (Wexler et al., 2005), are based on a multi-
stage filtering approach [see also (Peterlongo et al., 2009)]. In the
first stage the input sequence is analyzed to detect, via statistical
criteria, likely position and length of candidate subsequences. The
final stage is the validation one in which a more expensive test
is applied to candidate substrings passing the first stages, so to
determine an output that matches the implicit definition of TR and
the user-defined filtering parameters.

1.1 Our contribution
Our contribution is a novel multi-stage filtering algorithm, called
TRStalker, for finding long fuzzy TRs under the edit distance, that
introduces new techniques (w.r.t. previous TR finding algorithms)
in all stages. For the first stage, where over-represented distances
between probes are sought, we employ gapped q-grams (Burkhardt
and Kärkkäinen, 2003) in place of the standard ungapped q-grams
in order to collect evidence on the candidate substrings. Gapped q-
grams have been used before in the context of textual and biological
database searching, but less so in the area of TRs detection [with
the exception of the system TEIRESIAS (Stolovitzky et al., 1999)].
Because of errors due to insertion/deletions, the period of a TR is
subject to fluctuations, thus we employ a weighting scheme with
exponential decay so to reinforce the signal even in presence of
this smearing effect. Finally, we use ranking instead of thresholds
when deciding the substrings to pass to the next phases, in order to
concentrate the computational effort on the zones with candidates
with higher weight. For the final validation stage we employ an
NP-complete definition of TR involving the concept of generalized
median string under edit distance (de la Higuera and Casacuberta,
2000; Sim and Park, 2003), together with an efficient heuristic for
computing an approximation of such median string (Jiang et al.,
2003) previously not used in a biological context.
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By extensive experimental comparisons of TRStalker with two
state-of-the-art tools, namely TRF and ATRHunter, we did find out
that TRStalker has consistently better performance for a large range
of error and length parameters for the class of fuzzy TRs under edit
distance, with a recall ranging from 100 to 60%. Thus TRStalker
improves the capability of TR detection for classes of TRs for which
existing methods do not perform well. Tests performed on standard
evolutionary TRs definitions (verifiable in polynomial time) also
show recall performance close to 100%. Incidentally, this result
confirms of the power of the new techniques developed for the initial
filtering phase.

1.2 State of the art
We will briefly survey the state of the art in finding tandem
repeats. First we will describe methods that for a given definition
of TR are able to find all maximal substrings in the input that
match the definition (exhaustive algorithms). Often exhaustive
algorithms may not be available, or when available they may
be too slow in practice. Thus, several heuristic algorithms have
been developed which are shown experimentally to be able
to detect a large fraction of TRs efficiently. Note that the
time/precision trade-off is severely influenced by the allowed error
thresholds. Performance often degrades quickly with increasing
error levels.

1.2.1 Exhaustive algorithms When we allow no error, it is
possible to find all maximal exact TRs in a string of length n in time
O(n) (Gusfield and Stoye, 2004; Kolpakov and Kucherov, 1999).
When we allow two consecutive repeats to differ by an amount
at most k (either in Hamming or in edit distance) Landau et al.
(2001) give exhaustive algorithms running in time O(nk log(n/k))
for Hamming distance, and O(nk logk log(n/k)) for edit distance.
A simpler algorithm with the same asymptotic complexity for the
edit distance is proposed by Sokol et al. (2007). Kolpakov and
Kucherov (2003) improved the bound for the Hamming distance to
O(nk logk+s) where s is the number of TRs found. For the Hamming
distance, Krishnan and Tang (2004) give an exhaustive method
running sequentially in time O(n3), that can be easily implemented
onto a parallel architecture, since every possible pattern length is
searched independently.

1.2.2 Heuristic algorithms The algorithmic techniques in
Kolpakov and Kucherov (1999, 2003) have been extended in the tool
mreps (Kolpakov et al., 2003) so to be able to handle approximate
TRs (ATRs) under edit distance, with some additional heuristic
filtering steps.

The tool TRF (Tandem Repeat Finder) developed by Benson
(1998, 1999), based on statistical filtering of zones of DNA likely
to contain TRs, is currently one of the standard heuristic methods.
ATRHunter by Wexler et al. (2004) is also based on a statistical
filtering approach, placing greater emphasis in techniques for
designing thresholds for the quantities of interest. Other proposed
heuristics for finding TRs are REPuter (Kurtz and Schleiermacher,
1999; Kurtz et al., 2001), STRING (Parisi et al., 2003), TEIRESIAS
(Stolovitzky et al., 1999) and TandemSWAN (Boeva et al., 2006).
A class of papers (see e.g. Brodzik, 2007; Buchner and Janjarasjitt,
2003; Gupta et al., 2007; Sharma et al., 2004) tackle the problem of
finding TRs as a problem in signal processing theory and usually
map the input string into a time-signal in a suitable numerical

domain for which several spectral techniques can be used, such as the
Periodicity Transform or the Fourier Transform. Other methods use
data compression techniques to detect repetitive elements (Rivals
et al., 1997).

The methods cited above are rather general since they aim at
treating efficiently TRs in a wide range of length values. There is
also a large class of methods that are aimed at handling particular or
special classes of TRs such as: microsatellites [e.g. IMEx (Mudunuri
and Nagarajaram, 2007)], palindromic repeats [e.g. CRISPFinder
(Grissa et al., 2007)], Variable Length TRs (VLTR) and Multi-period
TRs (MPTR) (Hauth and Joseph, 2002) and Variable Number TRs
(VNTR) (Sammeth and Stoye, 2006). Since the focus of our research
on TRs at present is on the more classical forms of TRs, we do not
dwell longer on them. However, we just note that often methods for
MPTR, VNTR, VLTR use standard TR finding as a subroutine, thus
our proposed algorithm can increase also the ability to detect such
higher order structures.

Systematic comparison among TR finding tools and algorithms
operating ab initio, that is without support of specific biological
data bases has been tackled in recent years (Leclercq et al.,
2007; Saha et al., 2008). A survey of problems on TRs in the
context of evolutionary mechanisms, such as the construction of TR
Evolutionary Trees, is proposed in Rivals (2004); see also Elemento
and Gascuel (2002).

1.3 Organization of the article
The article is organized as follows: in Section 2 we describe at a high
level the principles guiding the different phases of the TRStalker
algorithm. Section 3 gives a more technical description of key
ingredients of TRStalker and discusses the formal definition of
fuzzy TR employed. Section 4 describes the experiments devised
to demonstrate the capacity of TRStalker in detecting fuzzy TRs,
and a few interesting fuzzy TRs found in sequences of biological
significance.

2 APPROACH
An example: To focus on the main ideas, let us consider the very
simple case of Exact TR. Consider an alphabet �={A,C,G,T} of
four symbols, and a string X =x1x2 ...xt formed by the concatenation
of t strings xi, embedded in a random string Y , where xi =x1 for all
i and |x1|=k, thus all replicas of x1 are of the same length. An
ungapped q-gram is a string of q symbols from � that appears as a
consecutive sequence of q symbols in Y . We aim at discovering k just
by looking at the distances between occurrences of homologous (i.e.
identical) q-grams in Y . For q-grams in X, the period k will appear
at least (k−q+1)(t−1) times as the distance between homologous
probes. More generally the distance hk, an integer multiple of k, will
appear at least (k−q+1)(t−h) times for each value h=1...t−1.
A gapped q-gram is a sequence of q characters from � with
additional ‘don’t care’ symbols, also called ‘gaps’, that appears as
a consecutive sequence in Y . For gapped q-grams similar formulae
hold. For values of k and t large enough, the period k and its integer
multiples will occur more frequently than the expected number of
occurrences of any distance of homologous q-grams in a random
string, thus the empirical number of occurrences of the value k
and its multiples will tend to be in the higher part of a ranking
by frequency. This observation holds true as long as the length
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of the super-string Y is sufficiently limited so that the frequencies
generated by the random portion of Y do not overrun the frequencies
generated by X . An exact characterization of such a distribution
in terms of the parameters k, t, q and |Y | is complex since it can
be characterized as the sum of non-independent random variables
each with a negative binomial distribution. However we avoid the
issue of characterizing exactly such a distribution by: (i) splitting
the input string into blocks of predefined length and limiting the
analysis to each block separately, providing mechanisms to deal with
TRs stranded across the block boundaries; (ii) ranking the periods
by weighted frequency and exploring only the top L positions (for
L=50 in our experiments). Note that in most cases the top ranking
periods not corresponding to TRs will be discarded quickly when
the positional density is considered, thus we can be very slack
in choosing L without incurring in a computational burden. The
choice of block length could be critical too, but experimental results
showed that blocks of length within a factor of up to 40 of the
length of the TR do work well. For long input, string occurrences
of the same q-gram that are too distant are unlikely to be related
to a TR, thus we limit the number of pairs of homologous q-grams
considered. While scanning each block of the input Y we record
for each occurrence of a gapped q-gram in Y its distance to the
five preceding and the five following homologous occurrences (10
in total). The high-level pseudocode of TRStalker is shown in the
Supplementary Materials while we expose next the key algorithmic
choices.

Gapped q-grams: The presence of substitutions/insertions/
deletions in X has the effect that many instances of q-grams will
be affected by error and a match will be missed, thus reducing the
frequency counts for the period k. To cope with this effect, we use
gapped q-grams (Burkhardt and Kärkkäinen, 2002, 2003) that are
more resilient to the presence of substitutions/insertions/deletions.
As suggested by experiments in Burkhardt and Kärkkäinen (2002),
just few gaps are sufficient to be effective, thus we will use the
family of all gapped q-grams with three alphabet symbols and at
most two gaps.

Anti-smear weighting: If q1 and q2 are occurrences of
homologous q-grams in X at distance k, before the implant of
mutations, the effect of insertion and deletions on the positions of
the string X between q1 and q2 is to alter their distance so that
a different period k′ is detected. The difference k−k′ is equal to
the algebraic sum of number of insertions and deletions in the
positions between q1 and q2. Assuming that any such position
can be an insertion or a deletion independently with the same
probability, the random variable k−k′ is distributed as a sum of
independent random variables with values in {+1,−1,0} with mean
value 0, thus, by a Chernoff bound argument, its tail distribution
decays exponentially (Motwani and Raghavan, 1995; Mulmuley,
1993). Also near-by probes in X have small variations in the
value of the shift k−k′. Inspired by the above observation, we
devise a weighting scheme that increments the total weight of
period k if another period of value k̄ is discovered in a near-
by position, with weights that decay exponentially with |k− k̄|.
The final weight w0(k) for a given period k is the sum of
the individual anti-smear weights computed above for probes at
distance k.

Multiplicity weighting: Let w0(k) be the weight of the period k
as assigned by the anti-smear weighting procedure. As observed
before, for a TR with a large number of copies we will find also

integer multiples of k with a relatively high frequency. We take
advantage of this fact and compute new weights:

w1(k)=
∑

h≥1

w0(hk).

The candidate periods are then sorted by the weight w1(.), and
processed in decreasing order.

Positional density: We further exploit the property of TRs that the
same period is detected by probes in near-by positions. We define
a notion of positional k-density, that is the density of probes that
contribute to the counter for the candidate period k. We search for
position in Y of high k-density as candidates for the starting point
of a TR.

Validation: In the third phase we take each candidate pair (p,i)
and we test explicitly whether there is a TR of period p starting in
position i according to the definition (Section 3). In particular when
using the definition of a Steiner-STR (Section 3.2) we use a double
filtering. The fist filter uses a wraparound dynamic programming
technique (WDP; Fischetti et al., 1993). The second filter computes
an approximation to the generalized media string [inspired by an
algorithm proposed in Jiang et al. (2003)]. In this phase, besides
validating the TRs, we discover the (fractional) repetition number
of the TRs eventually extracted.

Post-processing: As a post-processing, we check for inclusion
the TRs found and we filter out those TRs completely enclosed in
another one. For TRs in the same position and length but different
period we report the TR with shorter period. Finally we align the
approximate generalized median string with the TR units so to give
a graphical compact output of the TR.

3 METHODS

3.1 Basic definitions
A TR in a DNA sequence is the repetition of two or more contiguous exact
or approximate copies of a substring (called the motif) of the TR.

3.1.1 Exact TR Formally, given an alphabet �, and a set of strings xi ∈�∗,
consider the concatenation X =x1x2 ...xt . The string X is an exact TR (ETR)
of period k and repeat number t, when |xi|=k and xi =x1, for each i∈[1...t].
In general we may suppose there is a longer string Y of which X is a substring.
The string x1 that is repeated exactly is called the motif of the ETR. A TR X
is called maximal if it cannot be extended in Y while still being a TR.

3.1.2 ATR ETRs are sometimes found in biological sequences, but they
tell us only part of the story, thus several notions of an ATR have been
developed. Denote with DH (a,b) the hamming distance of two strings with
equal length. If the length of a and b is different, we consider the smallest
possible mismatch in an alignment of the two strings without gaps. Denote
with DE (a,b) the edit distance of the two strings a and b.

3.2 Our definitions of TR
We used two different definitions of TRs:

• Neighboring TR (NTR): a string X , so that for each i∈[1...t−1],
DE (xi,xi+1)≤µ|xi|, for a user defined parameter 0≤µ≤1

• Steiner-STR with sum: a string X =x1x2 ...xt for which two conditions
hold for a user defined error parameter 0≤µ≤1, and constant c with
1≤c≤2:
(a) for each i∈[1...t−1], DE (xi,xi+1)≤cµ|xi|.
(b) there exists a Steiner string x̄∈�∗ so that

∑
i∈[1...t]DE (x̄,xi)≤µ|X|.
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Intuitively, in a Steiner-STR the TR consists of t duplications of a single
Steiner consensus string x̄ with µx̄ mutations on average in each copy, such
that consecutive copies do not diverge too much w.r.t. the average. Note that
condition (a) is vacuous for µ≥1/c. The choice for the constant c depends
also on the level of divergence. For low divergence c=2 is a sensible choice
since two copies at distance µ|x̄| from x̄ are also at distance at most 2µ|x̄|
from each other by the triangular inequality. Thus (a) is a necessary condition
for (b). For higher level of divergence above 30%, the value c=2 is too loose
and we use a lower value c=1.5, so as to maintain a good filtering ability
of condition (a) and to avoid having as a possible solution a TR where the
consecutive pairs may have a very irregular divergence.

3.3 Output of TRStalker
The aim of TRStalker is to produce a ranked list of all maximal tandem
repeat sub-sequences present in the input string that satisfy the definition
above (NTR or Steiner-STR), where maximality means that it is not possible
to extend the TR (as a substring of the input) to the left or to the right without
violating the definition within the given user-defined parameters. We avoid
producing meaningless TRs by imposing also a lower bound on the TRs
length.

3.4 Other definitions
In Sokol et al. (2007) it is used the following definition: X is called a k-edit
ATR when

∑t−1
i=1 DE (xi,xi+1)≤k, where the last repeat xt might be incomplete

so DE (xt−1,xt) is computed as the minimum edit distance of xt and the
prefixes of xt−1. This definition is inspired by the evolutionary model of TRs
in which it is assumed that TRs are generated by duplicating the last copy
of a previous TR, possibly with duplication errors that truncate it. A k-edit
repeat is maximal if it cannot be extended either to the left or to the right
without violating its definition.

In Wexler et al. (2004), for a similarity function φ that measures the
alignment score of two sequences, it is defined a η-Simple ATR (η-SATR)
a string X =x1 ...xt such that: there exists a motif x̄∈�∗ so that for every
i∈[1,...,t], φ(x̄,xi)≥η. In other words, the TR consists of t duplications of
a single consensus string x̄ with mutations. Such string x̄ is also called a
Steiner motif if x̄ is not constrained to be equal to some repeat xj . Often in
practice x̄ is chosen as the repeat xj that minimizes the error function, and
is called a pivot motif. The distinction is critical since, as mentioned before,
Steiner motifs lead to NP-complete recognition problems, while pivot motifs
do not.

The η-Neighboring ATR (η-NATR) is a string X , so that for each i∈
[1,..,t−1], φ(xi,xi+1)≥η (Wexler et al., 2004). The Pairwise ATR (PATR)
is a string X, such that for every pair of indices i,j∈[1,..t]2 with i �= j we
have φ(xi,xj)≥ηij , where ηij is set to be a monotonically decreasing function
of |i−j|, thus allowing more slackness when comparing distant copies of the
basic motif.

In Krishnan and Tang (2004) it is used a definition similar to that of the
NATR, except that the Hamming distance is used and that the threshold is
not absolute but relative to the length. A γ-Hamming ATR (γ-HATR) is a
string X such that: for each i∈[1,...t−1], DH (xi,xi+1)≤|xi|γ .

In Stolovitzky et al. (1999), a more complex definition is given that
takes into account the substring alignment score density function for pairs
of random substrings of a given length. Here, the definition of a TR X
depends on the properties of the longer string Y into which X is embedded. In
particular, a (µ,p)-TR must comply to two conditions: (i)

∑t−1
i=0 φ(xi,xi+1)≥

(t−1)µ, that imposes an average high similarity score for adjacent repeats,
and (ii) define α(p,k) as the value of similarity such that there is probability
p that two random substrings of length k in Y have similarity above
α(p,k). There must be an index q∈[1,...t] such that φ(xq,xj)≥α(p,k) for
all j∈[1,...t]. Note that this condition limits the dispersion of the similarity
with respect to one of the copies (called the pivot).

TRF (Benson, 1999) uses as final validation algorithm the WDP that tests
efficiently the alignments of a given candidate motif with the surrounding

portions of the input sequence, so as to determine the maximum number of
adjacent repetitions within a user-defined score bound. This implies a notion
of TR akin to that of SATRs with pivot motif. Classical results on string
alignments (Gusfield, 1997, p. 351) ensures that, for the metric score given
by the sum of motif-repeats distances, the solution found using the optimal
pivot motif has a score within a factor (2−1/t) of the score induced by the
optimal Steiner motif. For low levels of errors one could use a pivot-SATR
definition doubling the error threshold to capture a Steiner-SATR, however
for higher error levels (say, above 25%), doubling the error threshold forces
the existing systems to work in a range of values (say, above 50%) where
most methods do not perform well.

3.5 Gapped q-grams
Let I be a finite subset of non-negative integers. We call I an index set. The
span of I is span(I)=max{i−j|i,j∈ I}, the position of I is pos(I)=mini∈ I
and the shape of I is shape(I)={i−pos(I)|i∈ I}. When set I has |I|=q and
span(I)=s, its shape belongs to the class of (q,s)-shapes. Any set of non-
negative integers Q containing 0 is a shape. For an alphabet �={A,C,G,T},
a string S ∈�∗ of length n can be seen as a function defined over [0,...,n−1]
with values in �, and for any subset I ⊂[0,...,n−1] the restriction of S to
I , denoted by S[I] a substring of S.

Given any shape Q in the class of (q,s)-shapes, all sets I ⊂[0,...n−1]
such that shape(I)=Q, form the set of Indexes(Q,n). We can use elements
from the Indexes(Q,n) to generate restrictions for the string S. Given two
index sets I1,I2 ∈ Indexes(Q,n), we call them matching (or homologous in
S, if S[I1]=S[I2]. The value |pos(I1)−pos(I2)| is called the period of the
match.

An index set I with |I|=q and span(I)=q−1 is called an ungapped q-
gram since its shape is shape(I)=[0,...q−1]. If we have an index set J
with |J|=q and span(J)=s≥q we have a gapped q-gram since its shape
is formed of non-consecutive integers. In order to generate a population of
candidate periods we consider now all possible (q,s)-shapes with q=3 and
s=4,3,2. Denoting with − the gaps and with # symbols from �, (the first
and last positions must be always #), we have the (3,4)-shapes ##−−#,
#−#−# and #−−##; the (3,3)-shapes #−##, ##−#; and the (3,2)-shape
###.

As noted in Burkhardt and Kärkkäinen (2003) and Burkhardt and
Kärkkäinen (2002), if we fix an ungapped shape and an error level in
Hamming distance, there are error patterns for which every corresponding
ungapped q-gram is affected by error. In contrast with the same Hamming
error level, for some gapped shapes, there are always some gapped q-
grams unaffected by the injected error. Thus using a small complete family
of gapped q-grams we can detect the correct period in situations where
ungapped q-grams cannot.1

3.6 Anti-smear weighting
Let P be a q-gram in the input string Y at position i. Let j1,...,jh be the
next h occurrences of P in Y following the occurrence at position i. The
h corresponding detected distances are xg = jg − i, for g∈[1,...h]. For the
period xg, we increment its weight:

w0(xg)=w0(xg)+1+
∑

y∈Q

2−|xg−y|,

where Q is a queue holding the last H detected distances in the sequential
scan of the input string Y . After the weight update, we enqueue all h values
xg in the queue Q, and we dequeue an equal number h of items. In line

1A precise characterization of the relative gain under different error models
would be theoretically interesting but is now beyond the focus of this article.
Selecting larger values of q and s, as a function of the period to be detected
and the error level, may increase the filtering ability of the method at the
cost of slower computations. Exploring these connections is left for future
research.
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with other constants fixed in TRStalker, we have chosen h=5 and H =20
since they do work well in our synthetic experiments for a large range of TR
error and length values. A fine tuning of these parameters as a function of
the characteristics of the TR sought is possible, but beyond the focus of this
article.

3.7 Positional density
Let k be the period under investigation. Consider the set Kk of the
positions of those q-grams (i.e. substrings of Y ) that contribute to the
weighting of k through the multiplicity weighting. In order to avoid double
counting, we always take the position of the first of the two matching
probes. Note that, if a position is shared by several pairs of probes it
will be counted only once. Let f : [1,...,|Y |]→{0,1} the characteristic
function that for each position in Y denote the membership of that position
to Kk . Consider the k-window smoothing of f : F(i)=∑i+k

j=i f (j) that
computes the k-smoothed density of the function f , for i∈[1,...,|Y |−k].
Finally, we define a threshold t(k) proportional to the average k-density
by a user-defined constant, and we consider as a candidate position set
CP(Y ,k)={i∈[1,...,|Y |−k]|F(i)≥ t(k)}. The output of this positional
density computation is a sequence of pairs (k,i) where k is a candidate
period and i a candidate position.

3.8 Validation
The definition of Steiner-STR is composed of two conditions that will be
tested in cascade starting from the one less computationally demanding.

3.8.1 Testing condition (a) The WDP technique in Fischetti et al. (1993)
solves the following problem. Given a string P of length m and a text T
of length n, with m	n, find the best alignment of Pn (concatenation of n
copies of P in T ), in time and storage O(nm). Note that a naive application of
the standard dynamic programming based optimal alignment of two strings
would require O(n2m) time/storage. We modify the WDP approach in order to
(i) work with edit distance instead of similarity matrices, (ii) take as pattern
the candidate initial tandem copy in positions [i,i+k−1] and as text an
adjacent portion of the input string of size O(m), (iii) we iteratively expand
the the text length till the termination condition is met and (iv) we stop the
matching as soon as the next adjacent copy of the TR differ from the previous
one by more than cµm in edit distance.

3.8.2 Testing condition (b) Let x1,...xt be the candidate TR to test for
property (b) that passed the test for property (a). We incrementally compute
an approximate generalized median x̄i, using xi and the previously computed
approximate generalized median string x̄i−1. Initially x̄1 =x1. Let k and h
be two positive integers and K ={j/k|j∈[0,k]} be the set formed by k+1
equally spaced real values between 0 and 1. For each value α∈K , we
determine up to h median strings between xi and x̄i−1 with weight α. This
set of at most hk candidates is then searched for the string a that minimizes
the function

∑i
j=1 DE (a,xj). So we set x̄i =a and start the next iteration.

A median string of weight α∈[0,...,1] of two strings a and b is obtained as
follows. Compute the edit distance e=DE (a,b) and record the set A(a,b) of
edit operations that transform a into b. Pick any subset of size 
αe� in A(a,b).
The median weighted string c is obtained by applying those operations to
the string a. It is not difficult to show that it holds that DE (a,c)=αDE (a,b)
and DE (b,c)= (1−α)DE (a,b). Note that depending on the value of e we
have

( e
αe

)
different subsets of A(a,b) we can choose. In our algorithm we

randomly select min{h,
( e
αe

)} of them.

3.9 Evaluation of recall in synthetic sequences
In order to measure the quality of the TRs reported by TRSTalker and by
other benchmark algorithms in our synthetic experiments, we need to give a
score to a pair of TRs. The higher the similarity of the two TRs, the higher
should be the score. Since perfect equality is rare we need a more flexible

score function. A TR can be characterized by the triple: (b,p,r), where b is
the initial position, p the period, r the repetition number. Also, the same TR
covers the positions in Y from index b to b+rp−1. We identify the TR with
the set of positions Seg(TR)=[b,b+rp−1]. Given two TRs TR1 and TR2

represented as sets of positions, the classical Jaccard coefficient measure of
set similarity JC is:

JC(TR1,TR2)= |Seg(TR1)∩Seg(TR2)|
|Seg(TR1)∪Seg(TR2)| .

3.9.1 Modified Jaccard coefficient Let t0 be a TR embedded in Y . Even
if t0 is a TR according to the definition, when we embed t0 in a string Y ,
it is well possible that t0 is not maximal in Y , thus if an algorithm reports
correctly t′ ⊃ t0 there will be a slight penalization in the JC measure. This
phenomenon arose a number of times, thus we decided to use a modified
version of the Jaccard coefficient, called JC2, where the denominator is
changed. The resulting measure is thus more robust w.r.t. this penalization:

JC2(TR1,TR2)= |Seg(TR1)∩Seg(TR2)|
max{|Seg(TR1)|,|Seg(TR2)|} .

Given a TR t0 and a set of TRs: T ={t1 ...ts} we define the best-match
BM(t0,T ):

BM(t0,T )=argmax
t∈T

JC2(t0,t),

and the best-match-score (BMS):

BMS(t0,T )=max
t∈T

JC2(t0,t).

In our controlled experiments, the evaluation module knows the embedded
TR t0 and receives the output of an algorithm T , giving back the BMS.
For a series of experiments, we will report the average of the BMS. Note
that BMS has values in the range [0,...,1], and higher values correspond to
better quality. At first sight one might consider this metric as overly generous.
However, since we cannot rule out the existence of other TRs in Y besides
the embedded ones, we do not want to penalize the presence in T of valid
TRs different from t0. Also, the set T will not contain nested TRs.

3.10 Evaluation of recall on biological sequences
The evaluation has been carried out according to the following procedure. Let
TTRS,TTRF ,TATR be the set of TRs found by TRStalker, TRF and ATRHunter
respectively. First, we removed from every set all the TRs that have a Jaccard
coefficient greater than a threshold J when compared with another TR in
the same set. In other words, we removed TR duplicates from every set
of results, where two TRs are considered as duplicates when they cover
the same region with an approximation J . Since TRF and ATRHunter have
been executed with options that discard all TRs having a score lower than a
given threshold, we filtered TTRS by removing all the TRs with a score under
such value (this has been done to not penalize TRF and ATRHunter with
respect to TRStalker). More in detail, TRF has been executed with match,
mismatch and indel score equal to 2, 3 and 3, respectively, maximum motif
length equal to 2000bp2, and threshold equal to 30. ATRHunter has been
executed with match, mismatch, gap and terminal gap score equal to 1 0 -1 0,
maximum motif length equal to 500bp3 and threshold equal to 30. For the
TRs found by TRStalker, the score is computed by using the same weights
used by TRF and ATRHunter then we filtered the results using the same
threshold. After the filtering phase, we computed the union of the TRs found
by all algorithms, U =⋃

(TTRS,TTRF ,TATR). The removal of duplicates with
threshold J is also applied to U. Naturally the higher the value of J less
filtering will be performed.

4 DISCUSSION
We have performed comparative experiments both with synthetic
and with biological sequences. Here we describe the experimental

2Maximum possible value for TRF.
3Maximum possible value for ATRHunter.
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Fig. 1. BMS as a function of copy number for NTR. Motif lengths 60 (a), 100 (b), 100 (c) and 300 (d). The total length of the input sequence is 10 000 bp; the
amount of substitutions, insertions and deletions are equal to 10% of the motif length each (thus with total error allowed of 30%). Every point is the average
of 30 measurements and the 95% confidence intervals are shown.

set up, how the synthetic sequences are generated and the outcome
of the comparison. For biological data, we briefly indicate the reason
why that sequence has been selected, and the new TRs found by the
application of TRStalker.

4.1 Synthetic data
4.1.1 Generation of synthetic data We carried out a first set of
experiments by using synthetic data. This allows a fine grained
control on the amount of mutations introduced within the regions
covered by the TRs. The sequences we gave as input to the programs
have been built according to the following steps:

(1) the background sequence is generated by selecting the four
bases A,C,G and T with equal probability;

(2) a perfect TR is embedded within the previous sequence, the
TR is generated as r repetitions of a motif with length l;

(3) the region covered by the TR is mutated according to
substitution, insertion and deletion probabilities (ps, pi and
pd ); the number of substitutions, insertions and deletion for
every repetition of the motif is exactly equal to lps, lpi and
lpd ; and

(4) if the TR is a Steiner-STR, mutations are introduced in every
repeat with respect to the consensus motif; if the TR is a NTR,
mutations are introduced with respect to the previous repeat.

The experiments have been carried out running ATRHunter with
these parameters: match, mismatch, gap and terminal gap score equal
to 1 0 -1 0 (the most permissive setting on the website); maximum
motif length equal to 500 bp (the maximum allowed by the tool).
In order to select the definition of TRs among those allowed by
ATRHunter, we performed a preliminary set of experiments: the
definition that gave the best results was the third one (minimum
alignment score). In this case, ATRHunter reports only the TRs that
have a score higher than a given threshold. The value of the threshold
has been set to 30.

For the web-based version of TRF, all the experiments have been
carried out with these parameters: match, mismatch and indel score
equal to 2, 3 and 5, respectively; maximum period equal to 500;
minimum score equal to 30. For the binary version, we used the
following ones: match, mismatch and indel score equal to 2, 3 and
3, respectively; match and indel probability equal to 0.75 and 0.20;
maximum period equal to 500; minimum score equal to 30. The
parameters of the experiments have been set so as to make sure that
the minimum allowed score for all the tools tested is attained on the
input data. TRStalker is run with the error parameter µ=0.3 and the
constant c=1.5.

4.1.2 Discussion of the comparative experiments For the
experiments on NTR (Fig. 1), we tested TRs with motifs of length
from 60 to 300, and a number of repeats from 2 to 8. TRStalker
has recall always above 95%. TRF (binary) has always a recall
above 80% except for TR with repeat number 2 for which the
recall drops to 60%. ATRHunter has recall of a about 60%. These
experiments confirm the effectiveness of the new techniques for the
initial filtering steps.

Results on Steiner-STR with motifs of length from 60 to 300,
and a number of repeats from 2 to 8 are shown in Figure 2. Here
we notice that all methods have degraded performance for longer
motifs (>200 bases) while TRStalker still manages to have recall
above 60%. For shorter motifs (of <100 bases) TRF (binary) is able
to match TRStalker only when the repeat number is above 6. Thus
for a large range of values, TRStalker attains the best performance
in recall, or a matching one, always above 80%.

The time performance of TRStalker has not been yet optimized.
At the moment it is within an order of magnitude of TRF
and ATRHunter. More details on the running time are in the
Supplementary Materials.

4.2 Biological sequences
Testing of TRStalker on biological sequences has confirmed the
potential of our method for finding very fuzzy TRs not detected
by TRF and ATRHunter, and, to the best of our knowledge, not
reported in literature. We tested the following sequences:

(1) U43748 Homo sapiens frataxin gene, promoter region and
exon—2465 bp long (FRDA).

(2) L3609 Homo sapiens germline T-cell receptor βchain,
complete gene—684 973 bp long (HSBT).

(3) NC_001133.8 Saccharomyces cerevisiae Chromosome I—
230 208 bp long (YCh1).

4.2.1 Experimental settings The three algorithms have been run
with the setting used in the synthetic experiments4 (thus with a
very permissive acceptance policy). In general, none of the three
algorithms generates all TRs found by the two others, and in Table 1
we show the percentage of the TRs found by each algorithm with
respect to the union of the TRs found. In Table 2, we report some very
long TRs that were detected by TRStalker but missed by the other
two methods. We check the motif/repeat alignments using the tool
jaligner (http://jaligner.sourceforge.net/) using the BLOSUM62

4For TRF the maximum motif length has been raised to 2000 bp.
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Fig. 2. BMS as a function of copy number for Steiner-STR. Motif lengths 60 (a), 100 (b), 200 (c) and 300 (d). The total length of the input sequence is
10 000 bp; the amount of substitutions, insertions and deletions are equal to 10% of the motif length each (thus with total error allowed of 30%). Every point
is the average of 30 measurements and the 95% confidence intervals are shown.

Table 1. Evaluation of recall for the three methods under evaluation

Algorithm Filter 90% Filter 70%

Frataxin
TRStalker (TRF filter) 59 (56.2) 43 (56.5)
TRStalker (ATR filter) 43 (41.0) 30 (39.4)
TRF 24 (22.9) 18 (23.6)
ATRHunter 24 (22.9) 23 (30.2)
Union 105 (100.0) 76 (100.0)
Homo sapiens T-cell receptor β chain
TRStalker (TRF Filter) 22 557 (59.1) 14 137 (60.2)
TRStalker (ATR Filter) 18 124 (47.5) 11 427 (48.7)
TRF 9977 (26.1) 8521 (36.0)
ATRHunter 7392 (19.3) 7034 (29.6)
Union 38218 (100.0) 23743 (100.0)
Saccharomyces cerevisiae chromosome I
TRStalker (TRF Filter) 7168 (61.8) 4656 (63.5)
TRStalker (ATR Filter) 5621 (48.4) 3655 (49.9)
TRF 2892 (24.9) 2518 (34.1)
ATRHunter 2037 (17.6) 1958 (26.4)
Union 11 616 (100.0) 7407 (100.0)

Each entry in the table gives the absolute number of unique TR found, and in the
percentage of unique TR w.r.t the union of the three methods. For TRSTalker, we used
both a TRF-like and an ATRHunter-like filtering (more restrictive) on the TRs found.

score matrix, that confirms the good quality of the motifs found
(Table 3).

4.2.2 Frederich’s ataxia Frederich’s ataxia is an autosomal
recessive degenerative disease involving the central and peripheral
nervous system and the heart, that roughly affects one person in
50 000 (Wells, 2008). In 1996, it was shown (Campuzano et al.,
1996) that in 98% of the cases this disease was caused by an
abnormal expansion in the copy number of a triplet TR in the first
intron of the Frataxin coding sequence. It belongs to the family of
trinucleotide repeat disorders. Very recently (Vissers et al., 2009)
it has been shown that the local repetitive structure of DNA may
play a role in variable copy number genomic disorders. Applying
TRStalker to the frataxin sequence we detected a divergent TR in
positions [2036–2414], of period 188 and copy number 2, to the
best of our knowledge not previously reported, that includes the
breakpoint region of the repeat disorder (Table 2). Experimental
data reported in Brodzik (2007) on the Frataxin sequence did find
a number of short TRs (of period up to 10/13) that are completely
covered by the longer fuzzy TR reported by TRStalker.

4.2.3 Human beta T-cell receptor locus The cellular immune
system detects the presence of pathogens largely through the
activation of T-cell receptor proteins (TCR) (Glusman et al., 2001),
which come in four different families α, β, γ and δ. The complete
DNA sequence of the human β T-cell receptor locus has been
determined (Rowen et al., 1996) and it has been found that a large
fraction of the locus sequence (about 47%) is formed by locus-
specific repeats (Rowen et al., 1996). This sequence was selected
as a test case for TRStalker because of its richness in repeating
elements with the aim of highlighting the ability of TRStalker in
finding repeats with high divergence among adjacent copies. Here,
(Table 2) we could find a few such repeats apparently not recorded in
the GenBank: L36092.2 record, nor found by TRF and ATRHunter
(still set with very loose parameters).

4.2.4 Yeast chromosome I Saccharomyces cerevisiae (baker’s
yeast) has been the focus of intensive study as the first eukaryotic
organism whose genome was completely sequenced (Dujon, 1996),
and serves as a model organism in basic genomic investigations.
Chromosome I (Bussey et al., 1995) is the smallest of the 16
chromosomes present in yeast. It has been noticed that the yeast
genome is remarkably poor in repeated elements (Dujon, 1996),
thus finding new TRs in such organism is a challenging task for any
algorithm. In Table 2 we report a TR in position [186168,188347]
of copy number 2 and motif length 1089. This TR is not reported in
the TRDB database, while ATRHunter in the same region finds 15
shorter TR of length ranging from 50 to 180. This region, according
to the NCBI record, is rich in genes of the DUP240 gene family
(encoding membrane proteins). The presence of a fuzzy repeat in
this region thus suggests a possible remote gene duplication event.

4.2.5 Performance on biological sequences Reporting
interesting single new TRs, as in Table 2, is useful to demonstrate
that biological relevant TRs are still unknown. We give also an
evaluation of the overall behavior of the three different methods
on biological sequences. Thus, we compared TRStalker, TRF
and ATRHunter by estimating their recall on the three biological
sequences with the methodology described in Section 3.10. Table 1
reports (i) the number of unique TRs found by the different
algorithms and (ii) the percentage of the union reported by a given
algorithm, with two filtering thresholds at J =90% and J =70%.
For all the three sequences, TRStalker is able to find a large number
of TRs that are not discovered by using the other methods. In
practice, a better overall coverage can be attained by using all three
methods and merging their results. Although lower J values imply
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Table 2. Examples of TRs found by TRStalker and missed by TRF and ATRHunter

No. Sequence Seq. length TR start TR end TR length Consensus Repetitions Score Norm. score

1 HSBT 684 973 411 000 413127 2127 1061 2.00 2868 1.384
2 HSBT 684 973 448 001 449687 1686 842 2.00 2310 1.370
3 HSBT 684 973 636 116 638622 2506 1253 2.00 3323 1.326
4 YCh1 230 208 186 168 188347 2179 1089 2.00 3053 1.401
5 FRDA 2465 2029 2407 378 188 2.011 501 1.325

We report the original sequence name and length, the TR starting and ending positions, the TR length and the TR repeating unit length and copy number. The score is computed by
assigning +2 to matches and −1 to mismatches and gaps w.r.t the consensus string. The normalized score is the score divided the TR length.

Table 3. Motif/repeats alignment scores computed by jaligner using the BLOSUM62 score matrix with gap open penalty set to 10.0 and gap extend
penalty set to 0.5 for the TRs reported in Table 2

Seq. No. Repeat Length, N Identity, n(%) Gaps, n(%) Score

HSBT 1 1 1107 805(72.72) 91 (8.22) 3657.00
- 1 2 1093 895(81.88) 70 (6.40) 4291.00
HSBT 2 1 878 638(72.67) 85 (9.68) 3045.50
- 2 2 866 716(82.68) 52 (6.00) 3568.00
HSBT 3 1 1300 1000(76.92) 94 (7.23) 5206.00
- 3 2 1313 1004(76.47) 120 (9.14) 5176.50
YCh1 4 1 1130 895(79.20) 83 (7.35) 4280.50
- 4 2 1123 901(80.23) 77 (6.86) 4345.50
FRDA 5 1 193 149(77.20) 10 (5.18) 723.50
- 5 2 191 146(76.44) 5 (2.62) 765.00

a more aggressive filtering, the percentage of the union attained by
TRStalker is almost constant.

5 CONCLUSION
TRStalker is a novel efficient heuristic algorithm for finding Fuzzy
TRs in biological sequences. TRStalker aims at improving the
capability of TR detection for a class of fuzzy TRs for which
existing methods do not perform well. Initial testing on biological
data show that fuzzy TRs not previously reported are present in
biologically relevant sequences. In the case of the Frataxin sequence,
the fuzzy TR reported is associated with the known variable copy
number breakpoint of Frederich’s ataxia. Future work will involve
testing TRStalker on relevant families of repetitive elements such as
centromeric α-satellites. An extension of TRStalker to handle amino
acid sequences is under development.
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