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ABSTRACT

Motivation: Tumorigenesis is an evolutionary process by which
tumor cells acquire sequences of mutations leading to increased
growth, invasiveness and eventually metastasis. It is hoped that
by identifying the common patterns of mutations underlying
major cancer sub-types, we can better understand the molecular
basis of tumor development and identify new diagnostics and
therapeutic targets. This goal has motivated several attempts to
apply evolutionary tree reconstruction methods to assays of tumor
state. Inference of tumor evolution is in principle aided by the fact that
tumors are heterogeneous, retaining remnant populations of different
stages along their development along with contaminating healthy
cell populations. In practice, though, this heterogeneity complicates
interpretation of tumor data because distinct cell types are conflated
by common methods for assaying the tumor state. We previously
proposed a method to computationally infer cell populations from
measures of tumor-wide gene expression through a geometric
interpretation of mixture type separation, but this approach deals
poorly with noisy and outlier data.
Results: In the present work, we propose a new method to perform
tumor mixture separation efficiently and robustly to an experimental
error. The method builds on the prior geometric approach but
uses a novel objective function allowing for robust fits that greatly
reduces the sensitivity to noise and outliers. We further develop an
efficient gradient optimization method to optimize this ‘soft geometric
unmixing’ objective for measurements of tumor DNA copy numbers
assessed by array comparative genomic hybridization (aCGH) data.
We show, on a combination of semi-synthetic and real data, that the
method yields fast and accurate separation of tumor states.
Conclusions: We have shown a novel objective function and
optimization method for the robust separation of tumor sub-types
from aCGH data and have shown that the method provides fast,
accurate reconstruction of tumor states from mixed samples. Better
solutions to this problem can be expected to improve our ability to
accurately identify genetic abnormalities in primary tumor samples
and to infer patterns of tumor evolution.
Contact: tolliver@cs.cmu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genomic studies have dramatically improved our understanding of
the biology of tumor formation and treatment. In part, this has been
accomplished by harnessing tools that profile the genes and proteins
in tumor cells, revealing previously indistinguishable tumor sub-
types that are likely to exhibit distinct sensitivities to treatment
methods (Golub et al., 1999; Perou et al., 2000; Sorlie et al.,
2001, 2003). As these tumor sub-types are uncovered, it becomes
possible to develop novel therapeutics more specifically targeted to
the particular genetic defects that cause each cancer (Atkins and
Gershell, 2002; Bild et al., 2006; Pegram et al., 2000). While recent
advances have had a profound impact on our understanding of the
tumor biology, the limits of our understanding of the molecular
nature of cancer obstruct the burgeoning efforts in ‘targeted
therapeutics’development. These limitations are apparent in the high
failure rate of the discovery pipeline for novel cancer therapeutics
(Kamb et al., 2007) as well as in the continuing difficulty of
predicting which patients will respond to a given therapeutic.
A striking example is the fact that traztuzumab, the targeted
therapeutic developed to treat HER2-amplified breast cancers, is
ineffective in many patients who have HER2-overexpressing tumors
and yet effective in some who do not (Paik et al., 2008). Furthermore,
sub-types typically remain poorly defined—e.g. the ‘basal-like’
breast cancer sub-type, for which different studies have inferred
very distinct genetic signatures (Perou et al., 2000; Sorlie et al.,
2001; Sotiriou et al., 2003)—and yet many patients do not fall into
any known sub-type. Our belief, then, is that clinical treatment of
cancer will reap considerable benefit from the identification of new
cancer sub-types and genetic signatures.

One promising approach for better elucidating the common
mutational patterns by which tumors develop is to recognize
that tumor development is an evolutionary process and apply
phylogenetic methods to tumor data to reveal these evolutionary
relationships. Much of the work on tumor evolution models flows
from the seminal efforts of Desper et al. (1999) on inferring
oncogenetic trees from array comparative genomic hybridization
(aCGH) profiles of tumor cells. The strength of this model stems
from the extraction of ancestral structure from many probe sites per
tumor, potentially utilizing measurements of the expression or copy
number changes across the entire genome. However, this comes
at the cost of overlooking the diversity of cell populations within
tumors, which can provide important clues to tumor progression but
are conflated with one another in tissue-wide assays such as aCGH.
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The cell-by-cell approaches, such as Pennington et al. (2007);
Shackney et al. (2004), use this heterogeneity information but at
the cost of allowing only a small number of probes per cell. In
recent work, Schwartz and Shackney (2010) proposed bridging
the gap between these two methodologies by computationally
inferring cell populations from tissue-wide gene expression samples.
This inference was accomplished through ‘geometric unmixing,’ a
mathematical formalism of the problem of separating components
of mixed samples in which each observation is presumed to be
an unknown convex combination1 of several hidden fundamental
components. Other approaches to inferring common pathways
include mixture models of oncogenetic trees (Beerenwinkel et al.,
2005), principle component analysis (PCA)-based methods (Hglund
et al., 2001), conjunctive Bayesian networks (Gerstung et al., 2009)
and clustering (Liu et al., 2006).

Unmixing falls into the class of methods that seek to recover a
set of pure sources from a set of mixed observations. Analogous
problems have been coined ‘the cocktail problem,’ ‘blind source
separation’ and ‘component analysis’ and various communities
have formalized a menagerie of models with distinct statistical
assumptions. In a broad sense, the classical approach of PCA
(Pearson, 1901) seeks to factor the data under the constraint that,
collectively, the fundamental components form an orthonormal
system. Independent component analysis (ICA; Comon, 1994) seeks
a set of statistically independent fundamental components. These
methods, and their ilk, have been extended to represent non-linear
data distributions through the use of kernel methods (see Schölkopf
and Smola, 2002; Schölkopf et al., 1998, for details), which often
confound modeling with black-box data transformations. Both
PCA and ICA break down as pure source separators when the
sources exhibit a modest degree of correlation. Collectively, these
methods place strong independence constraints on the fundamental
components that are unlikely to hold for tumor samples, where we
expect components to correspond to closely related cell states.

The structure of our present inference problem, that of extracting
multiple correlated fundamental components, has motivated the
development of new methods for unmixing genetic data. Similar
unmixing methods were first developed for tumor samples by
Billheimer and colleagues (Etzioni et al., 2005) to improve the
power of statistical tests on tumor samples in the presence of
contaminating stromal cells. Similarly, a hidden Markov model
approach to unmixing was developed by Lamy et al. (2007) to
correct for stromal contamination in DNA copy number data.
These recent advances demonstrate the feasibility of unmixing-
based approaches for separating cell sub-populations in tumor
data. Outside the bioinformatics community, geometric unmixing
has been successfully applied in the geo-sciences (Ehrlich and
Full, 1987) and in hyper-spectral image analysis (Chan et al.,
2009).

The recent work by Schwartz and Shackney (2010) applied
the hard geometric unmixing model (see Section 2.1.1) to gene
expression data with the goal of recovering expression signatures
of tumor cell sub-types, with the specific goal of facilitating
phylogenetic analysis of tumors. The results showed promise in

1A point p is a convex combination combination of basis points v0,...,vk if
and only if the constraints p=∑k

i=0αivi,
∑

iαi =1 and ∀i : αi ≥0 obtain.
The fractions αi determine a mixture over the basis points {vi} that produce
the location p.

A B

Fig. 1. (A) The minimum area fit of a simplex containing the sample points in
the plane (shown in black) using the program in Section 2.1.1. On noiseless
data, hard geometric unmixing recovers the locations of the fundamental
components at the vertices. (B) However, the containment simplex is highly
sensitive to noise and outliers in the data. A single outlier, circled above,
radically changes the shape of the containment simplex fit (light gray above).
In turn, this changes the estimates of basis distributions used to unmix the
data. We mitigate this short coming by developing a soft geometric unmixing
model (see Section 2.1.2) that is comparatively robust to noise. The soft fit
(shown dark gray) is geometrically very close to the generating sources as
seen on the left.

identifying meaningful sub-populations and improving phylogenetic
inferences. They were, however, hampered by limitations of the
hard geometric approach, particularly the sensitivity to experimental
error and outlier data points caused by the simplex fitting approach.
An example of simplex fitting in the plane is shown in Figure 1,
illustrating why the strict containment model used in Chan et al.
(2009); Ehrlich and Full (1987); Schwartz and Shackney (2010)
is extremely sensitive to the noise in data. In the present work,
we introduce a soft geometric unmixing model (see Section 2.1.2)
for tumor mixture separation, which relaxes the requirement for
strict containment using a fitting criterion that is robust to noisy
measurements. We develop a formalization of the problem and
derive an efficient gradient-based optimization method. We develop
this method specifically for analyzing tissue-wide DNA copy
number data as assessed by aCGH data. We demonstrate the value of
the soft unmixing model by comparison to a hard unmixing method
on synthetic and real aCGH data. We apply our method to an aCGH
dataset taken from Navin et al. (2010) and show that the method
identifies state sets corresponding to known sub-types consistent
with much of the analysis performed by the authors.

2 APPROACH
The data are assumed to be given as g genes sampled in s tumors
or tumor sections. The samples are collected in a matrix, M ∈�g×s,
in which each row corresponds to an estimate of gene copy number
across the sample population obtained with aCGH. The data in M
are processed as raw or baseline normalized raw input, rather than
as log ratios. The ‘unmixing’ model, described below, asserts that
each sample mi, a column of M, is well approximated by a convex
combination of a fixed set C =[c0|...|ck] of k+1 unobserved basis
distributions over the gene measurements. Further, the observed
measurements are assumed to be perturbed by additive noise in the
log domain, i.e.

mi =blogb (CFi )+η
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where Fi is the vector of coefficients for the convex combination
of the (k+1) basis distributions and η the additive zero mode i.i.d.
noise.

2.1 Algorithms and assumptions
Given the data model above, the inference procedure seeks to
recover the k+1 distributions over gene-copy number or expression
that ‘unmix’ the data. The procedure contains three primary stages

(1) Compute a reduced representation xi for each sample mi;

(2) Estimate the basis distributions Kmin in the reduced
coordinates and the mixture fractions F;

(3) Map the reduced coordinates Kmin back into the ‘gene space,’
recovering C.

The second step in the method is performed by optimizing the
objective in Section 2.1.1 or the robust problem formulation in
Section 2.1.2.

Obtaining the reduced representation: We begin our calculations by
projecting the data into a k-dimension vector space (i.e. the intrinsic
dimensionality of a (k+1)−vertex simplex). We accomplish this
using PCA (Pearson, 1901), which decomposes the input matrix
M into a set of orthogonal basis vectors of maximum variance and
retain only the k components of highest variance. PCA transforms
the g×s measurement matrix M into a linear combination as
MT =XV +A, where V is a matrix of the principal components of
M, X provides a representation of each input sample as a linear
combination of the components of V and A is a s×g matrix in which
each row contains g copies of the mean value of the corresponding
row of MT . Thus, the matrix X provides a reduced-dimension
representation of M, and becomes the input to the sample mixture
identification method in Stage 2. V and A are retained to allow us
to later construct estimated aCGH vectors corresponding to the
inferred mixture components in the original dimension g.

Assuming the generative model of the data above, PCA typically
recovers a sensible reduced representation, as low magnitude
log additive noise induces ‘shot-noise’ behavior in the subspace
containing the simplex with small perturbations in the orthogonal
complement subspace. An illustration of this stage of our algorithm
can be found in Figure 2.

Sample mixture identification: Stage 2 invokes either a hard
geometric unmixing method that seeks the minimum volume
simplex enclosing the input point set X (Program 1) or a
soft geometric unmixing method that fits a simplex to the points
balancing the desire for a compact simplex with that for containment
of the input point set (Program 2). For this purpose, we place a
prior over simplexes, preferring those with small volume that fit
or enclose the point set of X. This prior captures the intuition that
the most plausible set of components explaining a given dataset
are those that can explain as much as possible of the observed data
while leaving in the simplex as little empty volume, corresponding
to mixtures that could be but are not observed, as possible.

Upon completion, Stage 2 obtains estimates of the vertex locations
Kmin, representing the inferred cell types from the aCGH data in
reduced coordinates, and a set of mixture fractions describing the
amount of each observed tumor sample attributed to each mixture
component. The mixture fractions are encoded in a (k+1)×s

Fig. 2. An illustration of the reduced coordinates under the unmixing
hypothesis: points (show in gray) sampled from the 3—simplex embedded
are �3 and then perturbed by log-normal noise, producing points shown in
black with sample correspondence given the green arrows. Note that the
dominant subspace remains in the planar variation induced by the simplex,
and a 2D reduced representation for simplex fitting is thus sufficient.

matrix F, in which each column corresponds to the inferred mixture
fractions of one observed tumor sample and each row corresponds
to the amount of a single component attributed to all tumor samples.
We define Fij to be the fraction of component i assigned to tumor
sample j and Fj to be vector of all mixture fractions assigned to a
given tumor sample j. To ensure that the observations are modeled
as convex combinations of the basis vertices, we require that F1=1.

Cell type identification: The reduced coordinate components
from Stage 2, Kmin, are projected up to a g×(k+1) matrix C
in which each column corresponds to one of the k+1 inferred
components and each row corresponds to the approximate copy
number of a single probe in a component. We perform this
transformation using the matrices V and A produced by PCA in
Stage 1 with the formula C =VT Kmin +A, augmenting the average
to k+1 columns.

Finally, the complete inference procedure is summarized in the
following pseudocode:

Given tumor sample matrix M, the desired number of mixture
components k, and the strength of the volume prior γ:

(1) Factor the sample matrix M such that MT =XV +A;
(2) Produce the reduced k−dimensional representation by

retaining the top k components in X :
(3) Minimize Program 1, obtaining an estimate of the simplex

K0
min;

(4) Minimize Program 2 starting at K0
min, obtaining Kmin and F;

(5) Obtain the centers C in gene space as C =A+VT Kmin

2.1.1 Hard geometric unmixing Hard geometric unmixing
is equivalent to finding a minimum volume (k+1)−simplex
containing a set of s points {X} in �k . A non-linear program for
hard geometric unmixing can be written as follows:

min
K

: logvol(K) (1)

∀i : xi =KFi

∀Fi : FT
i 1=1, Fi �0
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where logvol measures the volume of simplex defined by
the vertices K

.= [v0|...|vk] and F �0 requires that ∀ij. Fij ≥0.
Collectively, the constraints ensure that each point be expressed
exactly as a unique convex combination of the vertices. Exact non-
negative matrix factorization (NNMF), see Lee and Seung (1999),
can be seen as a relaxation of hard geometric unmixing. Exact
NNMF retains the constraint Fi �0 while omitting the constraint that
the columns sum to unity—thus admitting all positive combinations
rather than the restriction to convex combinations as is the case for
geometric unmixing.

Approximate and exponential-time exact minimizers are available
for Program 1. In our experiments, we use the approach of Chan et al.
(2009), which sacrifices some measure of accuracy for efficiency.

2.1.2 Soft geometric unmixing Estimates of the target
distributions, derived from the fundamental components (simplex
vertices), produced by hard geometric unmixing are sensitive to
the wide-spectrum noise and outliers characteristic of log-additive
noise (i.e. multiplicative noise in the linear domain). The robust
formulation below tolerates noise in the sample measurements
mi and subsequently in the reduced representations xi, improving
the stability of these estimates. The sensitivity of hard geometric
unmixing is illustrated in Figure 1. The motivation for soft
geometric unmixing is to provide some tolerance to experimental
error and outliers by relaxing the constraints in Program 1, allowing
points to lie outside the boundary of the simplex fit to the data. We
extend Program 1 to provide a robust formulation as follows:

min
K

:
s∑

i=1

|xi −KFi|p +γ logvol(K) (2)

∀Fi : FT
i 1=1, Fi �0

where the term |xi −KFi|p penalizes the imprecise fit of the simplex
to the data and γ establishes the strength of the minimum-volume
prior. Optimization of Program 2 is seeded with an estimate
produced from Program 1 and refined using the MATLAB’s
fminsearch with analytical derivatives for the logvol term and an
LP-step that determines mixture components Fi and the distance to
the boundary for each point outside the simplex.

We observe that when taken as whole, Program 2 can be
interpreted as the negative log likelihood of a Bayesian model of
signal formation. In the case of array CGH data, we choose p=1
(i.e. optimizing relative to an �1 norm), as we observe that the
errors may be induced by outliers and the �1 norm would provide a
relatively modest penalty for a few points far from the simplex. From
the Bayesian perspective, this is equivalent to relaxing the noise
model to assume i.i.d. heavy-tailed additive noise. To mitigate some
of the more pernicious effects of log-normal noise, we also apply
a total variation-like smoother to aCGH data in our experiments.
Additionally, the method can be readily extended to weighted norms
if an explicit outlier model is available.

2.1.3 Analysis and Efficiency The hard geometric unmixing
problem in Section 2.1.1 is a non-convex objective in the present
parameterization, and was shown by Packer (2002) to be NP-
hard when k+1≥ log(s). For the special case of minimum volume
tetrahedra (k =3), Zhou and Suri (2000) demonstrated an exact
algorithm with time complexity �(s4) and a (1+ε) approximate
method with complexity O(s+1/ε6). Below, we examine the present

definition and show that Programs 1 and 2 have structural properties
that may be exploited to construct efficient gradient-based methods
that seek local minima. Such gradient methods can be applied in
lieu of or after heuristic or approximate combinatorial methods for
minimizing Program 1, such as Chan et al. (2009); Ehrlich and Full
(1987) or the (1+ε) method of Zhou and Suri (2000) for simplexes
in �3.

We begin by studying the volume penalization term as it appears
in both procedures. The volume of a convex body is well known
(see Boyd and Vandenberghe, 2004) to be a log concave function.
In the case of a simplex, analytic partial derivatives with respect to
vertex position can be used to speed the estimation of the minimum
volume configuration Kmin. The volume of a simplex, represented
by the vertex matrix K = [v0|...|vk], can be calculated as

vol(K)=ck ·det
(
�T KKT �

)1/2 =ck ·det Q (3)

where ck is the volume of the unit simplex defined on k+1
points and � a fixed vertex-edge incidence matrix such that �T K =
[v1 −v0|...|vk −v0]. The matrix Q is an inner product matrix over
the vectors from the special vertex v0 to each of the remaining k
vertices. In the case where the simplex K is non-degenerate, these
vectors form a linearly independent set and Q is positive definite
(PD). While the determinant is log concave over PD matrices,
our parameterization is linear over the matrices K , not Q. Thus,
it is possible to generate a degenerate simplex when interpolating
between the two non-degenerate simplexes K and K ′. For example,
let K define a triangle with two vertices on the y-axis and produce
a new simplex K ′ by reflecting the triangle K across the y-axis. The
curve K(α)=αK +(1−α)K ′ linearly interpolates between the two.
Clearly, when α=1/2, all three vertices of K(α) are co-linear and
thus the matrix Q is not full rank and the determinant vanishes.
However, in the case of small perturbations, we can expect the
simplexes to remain non-degenerate.

To derive the partial derivative, we begin by substituting the
determinant formulation into our volume penalization and arrive
at the following calculation:

logvol(K) = logck + 1

2
logdetQ

∝ log
k∏

d=1

λd (Q)=
k∑

d=1

logλd (Q)

therefore, the gradient of logvol(K) is given by

∂logvol(K)

∂Kij
=

k∑

d=1

∂

∂Kij
logλd =

k∑

d=1

(
zT
d (�T EijE

T
ij �)zd

)

λd

where the eigenvector zd satisfies the equality Qzd =λdzd and Eij
is the indicator matrix for the entry ij. To minimize the volume,
we move the vertices along the paths specified by the negative log
gradient of the current simplex volume. The Hessian is derived by
an analogous computation, making Newton’s method for Program 1,
with log barriers over the equality and inequality constraints, a
possible optimization strategy.

Soft geometric unmixing (Program 2) trades the equality
constraints in Program 1 for a convex, but non-differentiable, term in
the objective function

∑s
i=1 |xi −KFi|p for p|1≤p≤2. Intuitively,

points inside the simplex have no impact on the cost of the fit.
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However, over the course of the optimization, as the shape of the
simplex changes points move from the interior to the exterior, at
which time they incur a cost. To determine this cost, we solve
the non-negative least squares problem for each mixture fraction
Fi, minF : (KFi −xi)T (KFi −xi). This step simultaneously solves
for the mixture fraction, and for exterior points, the distance to the
simplex is determined. The simplex is then shifted under a standard
shrinkage method based on these distances.

3 EXPERIMENTAL METHODS
We evaluated our methods using synthetic experiments, allowing us to assess
two properties of robust unmixing (1) the fidelity with which endmembers
(sub-types) are identified and (2) the relative effect of noise on hard versus
robust unmixing. We then evaluate the robust method on a real-world aCGH
dataset published by Navin et al. (2010) in which ground truth is not
available, but for which we uncover much the structure reported by the
authors.

3.1 Methods: synthetic experiments
To test the algorithms given in Section 2, we simulated data using a
biologically plausible model of ad-mixtures. Simulated data provides a
quantitative means of evaluation as ground truth is available for both
the components C and the mixture fractions Fi associated with each
measurement in the synthetic design matrix M. The tests evaluate and
compare hard geometric unmixing (Section 2.1.1) and soft geometric
unmixing (Section 2.1.2) in the presence of varying levels of log-additive
Gaussian noise and varying k. By applying additive Gaussian noise in
the log domain, we simulate the heteroscedasticity characteristic of CGH
measurements (i.e. higher variance with larger magnitude measurements).
By varying k, the dimensionality of the simplex used to fit the data, we assess
the algorithmic sensitivity to this parameter as well as that to γ governing the
strength of the volume prior in Program 2. The sample generation process
consists of three major steps: (1) mixture fraction generation (determining
the ratio of sub-types present in a sample); (2) end-member (i.e. sub-type)
generation; and (3) the sample perturbation by additive noise in the log-ratio
domain.

3.1.1 Mixture sampler Samples over mixture fractions were generated
in a manner analogous to the Polya’s Urn Process, in which previously
sampled simplicial components (e.g. line segments, triangles and tetrahedra)
are more likely to be sampled again. This sampling mechanism produces data
distributions that are similar to those we see in low-dimensional projections
of aCGH data when compared against purely uniform samples over mixtures.
An example of a low-dimensional sample set and the simplex that was used
to generate the points is shown in Figure 3.

To generate the mixture fractions Fi for the i-th sample, the individual
components in Ctrue are sampled without replacement from a dynamic
tree model. Each node in the tree contains a dynamic distribution over
the remaining components, each of which is initialized to the uniform
distribution. We then sample s mixtures by choosing an initial component
according to the root’s component distribution and proceed down the tree.
As a tree-node is reached, its component distribution is updated to reflect
the frequency with which its children are drawn. To generate the i-th
sample, the fractional values Fi are initialized to zero. As sample generation
proceeds, the currently selected component Cj updates the mixture as

Fij∼uniform[(1/2)f j
p,1] where f j

p is the frequency of j’s parent node. For

the i-th mixture, this process terminates when the condition 1≤∑k+1
j=1 Fij

holds. Therefore, samples generated by long paths in the tree will tend to
be homogenous combinations of the components Ctrue, whereas short paths
will produce lower dimensional substructures. At the end of the process, the
matrix of fractions F is re-normalized so that the mixtures associated with
each sample sum to unity. This defines a mixture F true

i for each sample—i.e.

Fig. 3. An example sample set generated for Section 3.1.2 shown in the
‘intrinsic dimensions’ of the model. Note that sample points cleave to the
lower dimensional substructure (edges) of the simplex.

the convex combination over fundamental components generating the sample
point.

3.1.2 Geometric sampling of end-members & noise To determine the
locations of the end-members, we specify an extrinsic dimension (number
of genes) g, and an intrinsic dimension k (requiring k+1 components). We
then simulate k+1 components by constructing a g×(k+1) matrix Ctrue of
fundamental components in which each column is an end-member (i.e. sub-
type) and each row is the copy number of one hypothetical gene, sampled
from the unit Gaussian distribution and rounded to the nearest integer.
Samples mi, corresponding to the columns of the data matrix M, are then
given by:

mi =2log2
(
CtrueFtrue

i

)+ 1
2 ση (4)

where η∼normal(0,1) and the mixture fractions F true
i were obtained as in

Section 3.1.1.

3.1.3 Evaluation We follow Schwartz and Shackney (2010) in assessing
the quality of the unmixing methods by independently measuring the
accuracy of inferring the components and the mixture fractions. We
first match inferred mixture components to true mixture components by
performing a maximum weighted bipartite matching of columns between
Ctrue and the inferred components Ce, weighted by negative Euclidean
distance. We will now assume that the estimates have been permuted
according to this matching and continue. We then assess the quality of the
mixture component identification by the root mean square distance over
all entries of all components between the matched columns of the two C
matrices:

error= 1

g(k+1)

∣∣|Ctrue −Ce|∣∣2
F (5)

where ||A||F =
√∑

ij a
2
ij denotes the Frobenius norm of the matrix A.

We similarly assess the quality of the mixture fractions by the root mean
square distance between F true and the inferred fractions Fe over all genes
and samples

error= 1

g(k+1)

∣∣|F true −Fe|∣∣2
F . (6)

This process was performed for s=100 and d =10000 to approximate a
realistic tumor expression dataset and evaluated for k =3 to k =7 and for
σ ={0,0.1,0.2,...,1.0}, with 10 repetitions per parameter.

4 RESULTS

4.1 Results: synthetic data
The results for the synthetic experiment are summarized in Figure 4.
The figure shows the trends in MSE for hard geometric unmixing
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A B

Fig. 4. (A): mean squared error for the component reconstruction comparing hard geometric unmixing (MVES: Chan et al., 2009) and soft geometric unmixing
(SGU) introduced in Section 2.1.2 for the experiment described in Section 3.1.2 with variable γ . The plot demonstrates that robust unmixing more accurately
reconstructs the ground truth centers relative to hard unmixing in the presence of noise. (B): mean squared error for mixture reconstruction comparing MVES
and SGU.

Section 2.1.1 and soft geometric unmixing Section 2.1.2 on the
synthetic data described above.As hard geometric unmixing requires
that each sample lie inside the fit simplex, as noise levels increase
(larger σ), the fit becomes increasingly inaccurate. Further, the
method MVES deteriorates to some degree as order k of the
simplex increases. However, soft geometric unmixing degrades
more gracefully in the presence of noise if an estimate of the noise
level is available with ±0.1 in our current model. The trend of soft
unmixing exhibiting lower error and better scaling in k than hard
unmixing holds for both components and mixture fractions, although
components exhibit a higher average degree of variability due to the
scale of the synthetic measurements when compared to the mixture
fractions.

4.2 aCGH data
We further illustrate the performance of our methods on a publicly
available primary ductal breast cancer aCGH dataset furnished with
Navin et al. (2010). This dataset is of interest in that each tumor
sample has been sectored multiple times during biopsy, which is
ideal for understanding the substructure of the tumor population. The
data consists of 87 aCGH profiles from 14 tumors run on a high-
density ROMA platform with 83055 probes. Profiles are derived
from 4 to 6 sectors per tumor, with samples for tumors 5–14 sub-
partitioned by cell sorting according to the total DNA content, and
with healthy control samples for tumors 6, 9, 12 and 13. For full
details, the reader is referred to Navin et al. (2010). The processed
data consists of log10 ratios, which were exponentiated prior to the
PCA step (Stage 1) of the method.

4.2.1 Preprocessing To mitigate the effects of sensor noise
on the geometric inference problem, we apply a total variation
(TV) functional to the raw log-domain data. The �1 −�1−TV
minimization is equivalent to a penalized projection onto the over-
complete Harr basis preserving a larger degree of the signal variation
when compared to discretization methods (e.g. Guha et al., 2006;
Olshen et al., 2004) that employ aggressive priors over the data
distribution. The procedure seeks a smooth instance x of the

A B

Fig. 5. Empirical motivation for the �1 −�1−total variation functional for
smoothing CGH data. (A) The plot shows the histogram of values found
in the CGH data obtained from the Navin et al. (2010) dataset. The
distribution is well fit by the high kurtosis Laplacian distribution in lieu
of a Gaussian. (B)The plot shows the distribution of differences along the
probe array values. As with the values distribution, these frequencies exhibit
high kurtosis.

observed signal s by optimizing the following functional:

min
x

:
g∑

i=1

|xi −si|1 +λ

g−1∑

i=1

∣∣xi −xi+1
∣∣
1 (7)

The functional 7 is convex and can be solved readily using
the Newton’s method with log-barrier functions (Boyd and
Vandenberghe, 2004). The solution x can be taken as the maximum
likelihood estimate of a Bayesian model of CGH data formation.
That is, the above is the negative log-likelihood of a simple
Bayesian model of signal formation. The measurements x̂i are
assumed to be perturbed by the i.i.d. Laplacian noise and the
changes along the probe array are assumed to be sparse. Recall
that the Laplacian distribution is defined as Pr(x)= 1

z exp −|x|
a . In

all experiments, the strength of the prior λ was set to λ=10. The
data fit this model well, as illustrated in Figure 5. The dimension
of the reduced representation k, fixing the number of fundamental
components, was determined using the eigengap heuristic during the
PCA computation (Stage 1). This rule ceases computing additional
principal components when the difference in variances jumps above
threshold.

4.2.2 Unmixing analysis and validation The raw data was
preprocessed as described above and a simplex was fit to the reduced
coordinate representation using the soft geometric unmixing method
(see Section 2.1.2).A3D visualization of the resulting fit is shown for
the Navin et al. (2010) dataset in Figure 6. To assess the performance
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Fig. 6. The simplex fit to the CGH data samples from Navin et al. (2010)
ductal dataset in �3. The gray tetrahedron was return by the optimization of
Program 1 and the green tetrahedron was returned by the robust unmixing
routine.

Fig. 7. Inferred mixture fractions for six-component soft geometric
unmixing applied to breast cancer aCGH data. Data is grouped by tumor,
with multiple sectors per tumor placed side-by-side. Columns are annotated
below by sector or N for normal control and above by cell sorting fraction
(D for diploid, H for hypodiploid, A for aneuploid and A1/A2 for subsets of
aneuploid) where cell sorting was used.

with increasing dimensionality, we ran experiments for polytope
dimensionality k ranging from 3 to 9. Following the eigen-gap
heuristic, we chose to analyze the results for k =6. The γ value was
picked according to the estimated noise level in the aCGH dataset
and scaled relative to the unit simplex volume (here, γ =100). The
estimated six components/simplex vertices/pure cancer types are
labeled C1,C2,...,C6.

Figure 7 shows mixture fraction assignments for the aCGH data
for k =6. While there is typically a non-zero amount of each
component in each sample due to imprecision in assignments, the
results nonetheless show distinct subsets of tumors favoring different
mixture compositions and with tumor cells clearly differentiated
from healthy control samples. The relative consistency within versus
between tumors provides a secondary validation that soft unmixing
is effective at robustly assigning mixture fractions to tumor samples
despite noise inherent to the assay and that produced by sub-
sampling cell populations. It is also consistent with observations
of Navin et al. (2010)

It is not possible to know with certainty the true cell components or
mixture fractions of the real data, but we can validate the biological
plausibility of our results by examining known sites of amplification
in the inferred components. We selected 14 benchmark loci
frequently amplified in breast cancers through the manual literature
search. Table 1 lists the chosen benchmarks and the components

Table 1. Benchmark set of breast cancer markers selected for validation of
real data, annotated by gene name, genomic locus and the set of components
exhibiting amplification at the given marker

Marker Locus Component Marker Locus Component

MUC1 1q21 C1,C4 BRCA2 13q12.3 C5
PIK3CA 3q26.3 C3,C6 ESR2 14q23 C1
ESR1 6q25.1 C4 BRCA1, 17q21 C5,C6
EGFR 7p12 C5 ERBB2
c-MYC 8q24 C1,C3,C5 STAT5A, 17q11.2 C5
PTEN 10p23 none STAT5B
PGR 14q23.2 C6 GRB7 17q12 C6
CCND1 11q13 C4 CEA 19q13.2 C6

Fig. 8. Copy numbers of inferred components versus genomic position.
The average of all input arrays (top) is shown for comparison, with the six
components below. Benchmarks loci are indicated by yellow vertical bars.

exhibiting at least 2-fold amplification of each. Figure 8 visualizes
the results, plotting relative amplification of each component as a
function of genomic coordinate and highlighting the locations of
the benchmark markers. Thirteen of the fourteen benchmark loci
exhibit amplification for a subset of the components, although often
at minimal levels. The components also show amplification of many
other sites not in our benchmark set, but we cannot definitively
determine which are true sites of amplification and which are false
positives. We further tested for amplification of seven loci reported
as amplified by Navin et al. (2010) specifically in the tumors
examined here and found that six of the seven are specifically
amplified in one of our inferred components: PPP1R12A (C2),
KRAS (C2), CDC6 (C2), RARA (C2), EFNA5 (C2), PTPN1 (C3)
and LPXN (not detected). Our method did not infer a component
corresponding to normal diploid cells as one might expect due to
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Fig. 9. Plot of amplification per probe highlighting regions of shared amplification across components. The lower (blue) dots mark the location of the collected
cancer benchmarks set. Bars highlight specific markers of high shared amplification for discussion in the text. Above: A: 1q21 (site of MUC1), B: 9p21 (site
of CDKN2B), C: 7q21 (site of HER2), D: 17q12 (site of PGAP3), E: 5q21 (site of APC/MCC).

stromal contamination. This failure may reflect a bias introduced by
the dataset, in which many samples were cell sorted to specifically
select aneuploid cell fractions, or could reflect an inherent bias of
the method towards more distinct components, which would tend to
favor components with large amplifications.

We repeated these analyses for the hard unmixing with a higher
amplification threshold due to the noise levels in the centers. It
detected amplification at 11 of the 14 loci, with spurious inferences
of deletion at 4 of the 11. For the seven sites reported in Navin et al.
(2010), hard unmixing identified five (failing to identify EFNA5 or
LPXN) and again made spurious inferences of deletions for three of
these sites, an artifact the soft unmixing eliminates. The full results
are provided in Supplementary Section S1. The results suggest that
hard unmixing produces less precise fits of simplexes to the true
data.

We can also provide a secondary analysis based on Navin
et al.’s (2010) central result that the tumors can be partitioned
into monogenomic (those appearing to show essentially a single
genotype) and polygenomic (those that appear to contain multiple
tumor sub-populations). We test for monogeniety in mixture
fractions by finding the minimum correlation coefficient between
mixture fractions of consecutive tumor sectors (ignoring normal
controls) maximized over all permutations of the sectors. Those
tumors with correlations above the mean over all tumors (0.69)
were considered monogenomic and the remainder polygenomic.
Navin et al. (2010) assign {1,2,6,7,9,11} as monogenomic
and {3,4,5,8,10,12,13,14} as polygenomic. Our tests classify
{1,2,5,6,7,8,11} as monogenomic and {3,4,10,12,13,14} as
polygenomic, disagreeing only in tumors 5 and 8. Our methods
are thus effective at identifying true intratumor heterogeneity
in almost all cases without introducing spurious heterogeneity.
By contrast, hard unmixing identifies only tumors 7 and 8 as
polygenomic, generally obscuring true heterogeneity in the tumors
(see Supplementary Section S1).

Our long-term goal in this work is not just to identify sub-types,
but to describe the evolutionary relationships among them. We
have no empirical basis for validating any such predictions at the
moment but nonetheless consider the problem informally here for
illustrative purposes. To explore the question of possible ancestral
relationships among components, we manually examined the most

pronounced regions of shared gain across components. Figure 9
shows a condensed view of the six components highlighting several
regions of shared amplification between components. The left half of
the image shows Components 3, 5 and 1, revealing a region of shared
gain across all three components at 9p21 (labeled B). Components
5 and 1 share an additional amplification at 1q21 (labeled A).
Components 1 and 5 have distinct but nearby amplifications on
chromosome 17, with Component 1 exhibiting amplification at
17q12 (labeled D) and Component 5 at 17q21 (labeled C). We can
interpret these images to suggest a possible evolutionary scenario:
component 3 initially acquires an amplification at 9p21 (the locus
of the gene CDKN2B/p15INK4b), an unobserved descendent of
Component 3 acquires secondary amplification at 1q21 (the locus
of MUC1), and this descendent then diverges into Components 1
and 5 through acquisition of independent abnormalities at 17q12
(site of PGAP3) or 17q21 (site of HER2). The right side of the
figure similarly shows some sharing of sites of amplification between
Components 2, 4, and 6, although the amplified regions do not lead
to so simple an evolutionary interpretation. The figure is consistent
with the notion that Component 2 is ancestral to 4, with Component
2 acquiring a mutation at 5q21 (site of APC/MCC) and Component
4 inheriting that mutation but adding an additional one at 17q21.
We would then infer that the amplification at the HER2 locus
arose independently in Component 6, as well as in Component 5.
The figure thus suggests the possibility that the HER2-amplifying
breast cancer sub-type may arise from multiple distinct ancestral
backgrounds in different tumors. While we cannot evaluate the
accuracy of these evolutionary scenarios, they nonetheless provide
an illustration of how the output of this method is intended to be
used to make inferences of evolutionary pathways of tumor states.

5 CONCLUSION
We have developed a novel method for unmixing aCGH data to infer
copy number profiles of distinct cell states from tumor samples. The
method uses ‘soft geometric unmixing’ to provide superior tolerance
to experimental noise and outliers compared to the prior work.
We have further developed an efficient gradient-based optimization
algorithm for this objective function. We have shown through tests
on simulated data that the soft unmixing approach dramatically
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improves accuracy of inference of components and mixture fractions
in the presence of high noise or large component numbers relative to
a hard unmixing method. We have further verified, with application
to a set of real aCGH data from breast cancer patients, that
the method is effective at separating components corresponding
to distinct subsets of known breast cancer markers. The specific
patterns of gain and loss in the components are suggestive of patterns
of evolution among the tumor types. Thus, the work demonstrates
the potential of tumor sample unmixing applied to aCGH data to
infer copy number profiles of cell populations from heterogenous
tumor samples. In addition to facilitating studies of tumor evolution,
the methods may have value to many other applications of mixture
separation from noisy data.
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