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ABSTRACT

Motivation: Next-generation sequencing technologies have enabled
the sequencing of several human genomes in their entirety.
However, the routine resequencing of complete genomes remains
infeasible. The massive capacity of next-generation sequencers
can be harnessed for sequencing specific genomic regions in
hundreds to thousands of individuals. Sequencing-based association
studies are currently limited by the low level of multiplexing offered
by sequencing platforms. Pooled sequencing represents a cost-
effective approach for studying rare variants in large populations. To
utilize the power of DNA pooling, it is important to accurately identify
sequence variants from pooled sequencing data. Detection of rare
variants from pooled sequencing represents a different challenge
than detection of variants from individual sequencing.
Results: We describe a novel statistical approach, CRISP
[Comprehensive Read analysis for Identification of Single Nucleotide
Polymorphisms (SNPs) from Pooled sequencing] that is able to
identify both rare and common variants by using two approaches:
(i) comparing the distribution of allele counts across multiple pools
using contingency tables and (ii) evaluating the probability of
observing multiple non-reference base calls due to sequencing
errors alone. Information about the distribution of reads between
the forward and reverse strands and the size of the pools is
also incorporated within this framework to filter out false variants.
Validation of CRISP on two separate pooled sequencing datasets
generated using the Illumina Genome Analyzer demonstrates that it
can detect 80–85% of SNPs identified using individual sequencing
while achieving a low false discovery rate (3–5%). Comparison
with previous methods for pooled SNP detection demonstrates the
significantly lower false positive and false negative rates for CRISP.
Availability: Implementation of this method is available at
http://polymorphism.scripps.edu/∼vbansal/software/CRISP/
Contact: vbansal@scripps.edu

1 INTRODUCTION
Genome-wide association studies, using dense panels of common
variants, have been enormously successful in identifying genomic
loci for various diseases. However, the associated variants can
explain only a small fraction of the heritability of most common
traits (Maher, 2008). Rare variants or variants with a low minor
allele frequency are not interrogated in genome-wide association
studies and could explain a large fraction of the missing heritability
of common diseases (Manolio et al., 2009). In comparison with
common variants, the catalog of rare variants in the human genome
is highly incomplete. Sequencing of a large number of individuals
is required for finding rare sequence variants. With the availability
of several next-generation sequencing platforms, the cost of DNA
sequencing has dropped dramatically over the past few years
and has made it feasible to sequence complete human genomes.

Sequencing of the genomes of J. C. Venter (Levy et al., 2007) and
James Watson (Wheeler et al., 2008) marked the beginning of the
era of personal genomes. Next-generation sequencers such as the
Illumina Genome Analyzer (GA) and ABI SOLiD have enabled
the sequencing of several individual genomes in the past 2 years
(Bentley et al., 2008; Kim et al., 2009; Wang et al., 2008).

The size of the human genome makes it infeasible to routinely
sequence the complete genomes of hundreds of individuals.
Nonetheless, it is feasible to sequence targeted regions of the human
genome in hundreds to thousands of individuals in an individual
laboratory (Stratton, 2008). A single run of the Illumina GA can
be used to sequence an entire human genome to 2× coverage.1

Alternatively, it can be used to sequence 1 Mb of the human genome
to 6000× coverage. Sequencing a large number of individuals
simultaneously requires a high level of multiplexing. The Illumina
GA allows multiplexed sequencing of eight samples per run (one
on each lane) and also sequencing of up to 96 samples using DNA
barcodes. To bypass the limited multiplexing and to reduce sample
preparation and sequencing costs, an alternate approach is to pool
genomic DNA from multiple individuals and sequence the pooled
DNA samples (Sham et al., 2002). Pooled sequencing can be used
to identify rare variants in targeted regions of the genome in large
populations. Nejentsev et al. (2009) utilized pooled sequencing to
resequence 10 candidate genes for type I diabetes and identified four
rare variants that lowered disease risk.

Post-sequencing, the first objective is to identify all polymorphic
sites. To overcome the high error rates of next-generation sequencing
instruments and to ensure the sampling of both alleles at each
variant site, individual genomes are typically sequenced to 20–30×
depth of coverage. A number of tools have been developed to
align millions of short reads with multiple errors to a reference
sequence (Langmead et al., 2009; Li et al., 2008; Li and Durbin,
2009; Li,R et al., 2009; Rumble et al., 2009). Some of these tools
also identify single nucleotide polymorphisms (SNPs) by leveraging
base-quality values across multiple reads covering the same position
and have been successfully used to identify SNPs in individual
genome sequencing projects (Bentley et al., 2008). Most of these
SNP calling methods have been designed to identify SNPs from
sequencing of individual genomes. The lack of methods for pooled
SNP detection from next-generation sequencing data has motivated
recent work on designing new methods for this purpose. Druley et al.
(2009) demonstrated that it is feasible to identify rare variants with a
minor allele frequency below the average sequencing error rate from
pooled sequencing by using a highly accurate subset of the base
calls for variant detection. Several studies have evaluated the ability
to detect rare SNPs and estimate allele frequencies from pooled
sequencing (Ingman and Gyllensten, 2009; Out et al., 2009). Novel

1Assuming a yield of ∼6 Gb per run.
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approaches have been described for designing pooled sequencing
experiments (Hajirasouliha et al., 2008; Prabhu and Pe’er, 2009) to
achieve various objectives.

Detection of SNPs from pooled sequencing requires methods over
and above those used to identify SNPs from sequencing of diploid or
haploid genomes. For a diploid genome, the frequency of a variant
allele is either 0.5 (heterozygous) or 1 (alternate homozygous). At a
sequence coverage of ∼30×, one can expect to observe the variant
allele sufficient number of times to distinguish it from sequencing
errors that are unlikely to reach the same threshold as that of a variant
allele (Bentley et al., 2008). In contrast, for pooled sequencing, the
frequency of a variant allele is a function of the population allele
frequency and the size of the pool. For a singleton heterozygous
variant allele in a pool of 25 diploid individuals, one would expect
2% of the reads to carry the variant allele. However, with an average
sequencing error rate of 1%, the same signal could be observed
just due to an excess of sequencing errors. Increasing the sequence
coverage can help to distinguish moderately frequent alleles from
sequencing errors, but additional signals are needed to reliably
detect rare alleles. To determine these signals, one requires some
understanding of the characteristics of sequencing errors of next-
generation sequencing platforms. In comparison with base calls that
represent variant alleles, base calls that represent sequencing errors
are more likely to cluster on one strand of the DNA (sequencing error
rates on the forward and reverse strands are likely independent),
cluster in a subset of positions in reads (toward the 3′-end of the
read for Illumina reads) and have lower base-quality values. Further,
sequencing errors that are a function of the local sequence context
(the nucleotides flanking the base in the read) (Dohm et al., 2008)
are expected to be systematically over or underrepresented across
multiple DNA pools at the same position.

In this article, we demonstrate how these signals can be used
to reliably identify SNPs from pooled sequencing data. We have
developed a novel statistical approach that is able to identify
rare variants by comparing the distribution of allele counts across
multiple DNA pools using contingency tables. To detect common
variants, we utilize individual base-quality values to compute the
probability of observing multiple non-reference base calls due to
sequencing errors alone. Additionally, we incorporate information
about the distribution of reads on the forward and reverse strands
and the size of the pools to filter out false variants.

To illustrate the power of our method, we utilize two independent
pooled sequencing datasets generated using the Illumina GA: (i) 50
individuals sequenced in two pools of 25 each across a 200 kb region
on chromosome 9 and (ii) 48 individuals sequenced in six equi-sized
pools across two genes of the human genome spanning 188 kb of
DNA sequence. For both datasets, we compare the pooled SNP calls
to SNPs identified from individual sequencing of the same set of
samples to estimate the sensitivity and specificity of CRISP. For
one of the datasets, our method was able to identify 86% of the
variants identified by individual sequencing with a false positive
rate of 5–6%. By comparison with previously proposed methods for
pooled SNP detection (Druley et al., 2009; Koboldt et al., 2009),
we show that CRISP has significantly lower false positive and false
negative rates.

2 METHODS
Our objective is to utilize sequenced reads from multiple DNA pools to
identify SNPs. We assume that the reads for each pool have been aligned

to the corresponding reference sequence. For each position, we consider the
entire set of reads across all pools that cover this position. We utilize multiple
signals to distinguish sequencing errors from real variants:

(1) In the absence of a variant, the frequency of the reads with a nucleotide
different from the reference base at a particular position should be
similar across multiple pools. The intuition being that sequencing
errors, especially those that depend upon the local sequence context,
are likely to be shared across reads in multiple pools. In contrast,
presence of a rare variant in a pool is expected to result in an excess
of reads with the alternate allele as compared with the other pools.
We use a contingency table approach to compute a P-value for the
null hypothesis in the absence of a SNP (see Fig. 1 for an illustration
of this idea).

(2) In the absence of a variant, the number of reads with a nucleotide
different from the reference base should not be significantly greater
than that expected based on the sequencing error rate. Utilizing the
individual base-quality values and the Chernoff bound (Chernoff,
1952), we compute an upper bound on the probability of observing s
reads with an alternate allele out of n reads in a pool due to sequencing
errors alone. The P-value corresponding to this bound is computed
independently for the forward and reverse strand since a low P-value
for one strand alone is indicative of strand-specific sequencing errors.

(3) The minimum allele frequency of a variant allele in a pool with h
haploid DNA sequences is 1

h , assuming equal representation of the h
haplotypes in the pool. In the presence of a variant, the number of reads
supporting the variant allele in any pool should not be significantly
lower than 1

h times the depth of coverage. We use a one-sided binomial
test to compute a P-value for this deviation.

In the next few sections, we present the mathematical description of the
methods used to compute P-values for the absence of a SNP and subsequently
describe how these P-values can be combined together to distinguish SNPs
from sequencing errors.

2.1 Modeling aligned sequence reads as a contingency
table

In a resequencing study, a set of targeted regions are sequenced in a
population of individuals. We consider a set of targeted regions of total
length L nucleotides resequenced in N diploid individuals using k DNA
pools with N/k individuals each to an average depth of coverage 2NC/k
per pool. Here, C is the average coverage per haplotype in the pool. For
simplicity, we assume that the number of individuals per pool is identical,
however, this is not necessary.

Our objective is to identify positions in the sequenced region for which at
least one of the 2N haplotypes carries a base different from the reference base.
These positions correspond to what are commonly known as SNPs or more
precisely, single nucleotide variants. Consider a position p in the sequenced
region and let A represent the reference base at this position and B be the
most frequent non-reference base across all pools. Let ri denote the observed
number of aligned reads covering the position p for the i-th pool (1≤ i≤k)
of which ai represent the alternate allele B.2 Let e1,e2,...,ek represent the
average sequencing error rates in the k pools. In the absence of a SNP, all
reads with the alternate allele represent sequencing errors. Assuming that all
sequencing error rates ei are approximately equal (a valid assumption if all
pools are sequenced using the same sequencing platform), the reads with
the alternate allele should be more or less randomly distributed across the k
pools. Alternately, in the presence of a SNP, a large fraction of the alternate
reads should cluster into a few pools. Under the null hypothesis, the fraction
of reads with the alternate allele is the same across the k pools. This is also
true for SNPs whose frequency is identical across the k pools. However, such
SNPs are likely to be common SNPs and detectable using other methods.

2We ignore reads that have a base different from both A and B.
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(a)

(b)

Fig. 1. Illustration of how comparison of allele counts across multiple DNA pools can be used to distinguish rare variants from sequencing errors. (a) Four
sequenced pools are represented as boxes with each base call shown as a circle. All five of the alternate base calls are present in a single pool. The P-value
of the contingency table corresponding to four pools is 0.002 suggesting that the five base calls represent a rare SNP rather than sequencing errors. (b) Five
of the nine alternate base calls are present in a single pool. The P-value of the corresponding contingency table is 0.24 indicating that the presence of five
alternate base calls in a single pool is likely due to sequencing errors alone.

The number of reads with the reference and alternate alleles at a particular
position across the k pools can be modeled as a contingency table T0 with
two rows and k columns with row sums: A=∑

i ai and R−A=∑
i ri −ai and

column sums ri (1≤ i≤k):

Col 1 Col 2 …… Col k Total

Row 1 r1 −a1 r2 −a2 …… rk −ak R−A
Row 2 a1 a2 …… ak A
Total r1 r2 …… rk R

Furthermore, the probability of the observed read counts under the null
hypothesis can be defined as the probability of the table T0:

P(T0)=
(

r1

a1

)
×···×

(
rk

ak

)/(
R

A

)
(1)

The significance or the P-value associated with the observed table T0 is
defined as the sum of all 2×k contingency tables with identical row and
column sums that have equal or lower probability than the observed table.
Formally, we are interested in computing the sum:

p=
∑

T∈� s.t. P(T )≤P(T0)

P(T )

where � represents the set of all 2×k contingency tables with the same
marginal sums as T0 and P(T ) for any table T is defined by Equation 1.

2.2 Computing significance of a 2×k contingency table
The χ2 test is commonly used to estimate the significance of contingency
tables. However, the P-values derived from the χ2 distribution are known to
deviate from the true P-values when some of the entries in the contingency
table are small. Indeed, many of the entries in the 2×k contingency table
(especially the ai values) are expected to be close to 0 or even 0. Therefore,
it is preferable to compute the significance using an exact test. For k =2, the
number of tables in � is bounded by the row-sum A and the P-value can
be computed exactly using the Fisher exact test for 2×2 tables. However,
computing the significance of a 2×k table for larger values of k requires
significant computational effort since the number of tables that need to be
examined grows exponentially with k. Mehta and Patel (1980) proposed

a network algorithm to compute the P-value of a 2×k table without
enumerating all feasible tables. We provide a simple recursive formulation
for computing the P-value of a 2×k table that is similar to the approach of
Mehta and Patel (1980). We define a function F that expresses the sum of
probabilities of tables T with probability less than or equal to that of the table
T0, i.e. the P-value of T0, as the sum of probabilities of multiple 2×(k−1)
contingency tables:

F [{r1,...,rk},A,P]=
r′∑

i=0

F

[
{r1,...,rk−1},A− i,

P(rk
i

)
](

rk

i

)

where r′ =min(rk,A). The base case is defined as:

F[{r1},a,P]=
⎧⎨
⎩

0
(r1

a

)
>P

(r1
a

) (r1
a

)≤P

It is easy to see that F
[
{r1,r2,...,rk},A,P(T0)

(R
A

)]/(R
A

)
is equal to the

P-value of the table T0. Therefore, the P-value can be computed exactly using
a simple recursive algorithm. The running time of this algorithm is a function
of both the number of columns k and the value A. For k =2, the P-value can
be computed exactly for all values of A. As k increases, the maximum value
of A for which the P-value can be computed exactly decreases. For tables
with large k and A, an alternate way to compute the P-value is by simulating
many random contingency tables with the same marginal sums as T0 and
counting the number of tables T ′ with probability P(T ′)≤P(T0). We have
implemented a simple Monte Carlo scheme to estimate the significance of a
2×k table:

Monte Carlo method to estimate P-value:

1. Initialize t =0

2. Initialize an array P of size R with P[i]=p for r1 +···+rp−1 ≤ i≤
r1 +···+rp (1≤ i≤k)

3. For i=1,...,k, set ai =0

4. For i=1,...,N , do the following:

a. Set P(T ′)=1/
(R

A

)
b. For a=1,...,A, do

i. Randomly select an integer r in the interval [a,R]
ii. Set j=P[r] and swap the elements P[a] and P[r]
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�

�
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For each position in the sequenced region:

1. Generate a list of base-calls Bi (1≤ i≤k) for each of the k sequenced pools and determine the alternate allele using base counts

2. Construct the 2×k contingency table T =[(r1 −a1,a1),(r2 −a2,a2),...(rk −ak,ak)] from the counts of reads with the reference and alternate alleles

3. Calculate the P-value p(T ) for the table T using the exact algorithm or the Monte Carlo method

4. set variantpools = 0

5. For i = 1,2,....k

a. Compute the P-values p(Bi
+) and p(Bi

−) using the Chernoff bound applied to the quality values for the forward(+) and reverse(-) strands

b. if p(T )< thresh1 OR min(p(Bi
+),p(Bi

−))< thresh2 :

i. compute P-values (pi
+,pi

−) using the binomial distribution B(ri,
1
h ) for the two strands

ii. if pi
+ ·pi

− >= thresh3 and ai >= minreads: variantpools +=1

6. If variantpools >0: identify as SNP

Fig. 2. Description of the algorithm CRISP for detection of SNPs using sequencing data from k DNA pools.

iii. P(T ′)=P(T ′)× rj−aj
aj+1 , aj =aj +1

c. If P(T ′)≤P(T0): t = t+1

d. For any pool j chosen in step (2), set aj =0

5. The estimated P-value is t+1
N+1

Each iteration of the loop in Step 4 can be implemented in O(A) time.
Therefore, the overall running time of the whole procedure is O(NA+R+k).
For A�R, the procedure is much faster than an alternate implementation
with O(NR) running time. In practice, we use one of the two methods: the
exact recursive algorithm and the Monte Carlo method to compute a P-value
for each contingency table depending upon the values of k and A. For the
Monte Carlo method, 104–105 permutations were used to compute the P-
value.

2.3 Probability of multiple sequencing errors using
quality values

The contingency table approach described in the previous section evaluates
the significance of the distribution of the reads with the alternate allele across
multiple pools. It utilizes information about the number of reads with the
reference and alternate allele in each pool and does not use information about
base-quality values. Base calls generated by next-generation sequencing
instruments are accompanied by base-quality values that represent estimates
of the accuracy of each base call. While these base-quality values are not
as accurate as Phred scores for Sanger sequencing, they do contain useful
information about the accuracy of individual base calls. For example, if the
average sequencing error rate is 0.01, one can expect about 10 in 1000 base
calls to be sequencing errors. If one observes 30 non-reference base calls
at a particular position with 1000× coverage, it indicates the presence of a
variant allele rather than sequencing errors. More formally, we can define
the P-value for the null hypothesis that s alternate base calls at a position
with n base calls all represent sequencing errors:

Pr(≥s mismatches in n basecalls |Q1,Q2,...,Qn) (2)

where Q1,Q2,...,Qn represent the quality values of the n base calls.
Assuming independence between base calls, this probability can be computed
using the distribution of the sum of n independent Bernoulli random
variables with success probabilities p1,p2,...,pn where pi =10−0.1×Qi . The
probability of the sum X =X1 +X2 +···+Xn of n independent Bernoulli
random variables deviating from its mean µ=∑

i pi can be bounded using
the Chernoff bound (Chernoff, 1952):

Pr[X > (1+δ)µ]<
[

eδ

(1+δ)1+δ

]µ

where s= (1+δ)µ. Using this equation, we can compute an upper bound
on the P-value of observing s of n reads with an alternate alleles due to

sequencing errors alone. This P-value is computed for each strand separately
and by considering the base calls for each pool independently. This test
complements the contingency table-based P-value since it tests for the over-
abundance of alternate alleles within each pool beyond what is expected
based on the sequencing error rate.

2.4 Calling SNPs from pooled sequence data using
multiple statistics

The contingency table P-value represents the probability of the absence of a
SNP at a particular position across multiple DNA pools. Positions for which
the P-value was below a threshold (thresh1) were identified as potential
SNPs. For the quality value-based P-values, we required the P-value for
each strand to be below a threshold (thresh2) in at least one pool, for the
position to be identified as a potential SNP. We required the quality value-
based P-value to be below a threshold for both strands independently since a
low P-value for one strand alone is indicative of strand-specific sequencing
errors rather than the presence of a variant allele.

For each potential SNP, we further analyzed the reads within each pool
and imposed additional filters to call the site as a SNP. For each pool, we
evaluated if the fraction of alternate alleles was significantly lower than 1

h ,
the minimum expected fraction in a pool with h haplotypes. Given a pool
with s of n reads with the alternate allele, we used the binomial distribution
to compute the probability of observing s or fewer successes in n trials with
success probability 1

h . The probability was computed separately for the two
strands. Pools for which the product of the probabilities for the forward and
reverse strands was above a threshold (thresh3 = 0.01) were retained as SNPs.
For each pool, we also required at least four reads with the alternate allele,
at least one read with the alternate allele from each of the two strands and
one or more reads with the alternate allele in the middle of the read (to avoid
calling indels as SNPs). Positions for which one or more pools passed all
filters were reported as the final set of SNPs. The full algorithm is described
in Figure 2.

3 RESULTS

3.1 Pooled sequencing data
We assessed the performance of our method using two separate
pooled sequencing datasets generated using the Illumina GA. The
first of these datasets was generated from the sequencing of a
197 kb region on chromosome 9 of the human genome in 50
individuals using two pools with 25 individuals each (Bansal et al.,
2010). The targeted region was amplified using multiple long-range
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(a) (b)

Fig. 3. Empirical distribution of the sequence coverage per haplotype (one pool) in the two-pooled sequencing datasets: (a) 50 individuals in two pools and
(b) 48 individuals in six pools.

polymerase chain reaction (LR-PCR) reactions in the 50 individuals
and two pools were formed by equi-molar pooling of DNA from
25 individuals each. Each pool was sequenced using four lanes
of the Illumina GA with 36 bp single ended reads. The average
coverage of the two pools, based on the alignments, was ∼2080×
(42× per haplotype) and 2500× (50× per haplotype), respectively
(Fig. 3a). For this dataset, the 50 individuals were also sequenced
individually using the Illumina GA to identify SNPs (O.Harismendy
et al. unpublished data). This afforded us with the opportunity to
compare the set of SNPs identified from the pooled sequencing
with the set of SNPs determined from the individual sequencing
and thereby obtain good estimates of the sensitivity and specificity
of our method.

The second pooled sequencing data that we utilized was obtained
from the sequencing of two genes (188 kb of sequence) in 48
individuals using six pools with eight individuals each (Harismendy
et al., unpublished). Each pool was sequenced using one lane of
the Illumina GA using 36 bp reads. The average coverage per pool
varied between 400–500× (25–30× per haplotype). However, there
was some non-uniformity in the coverage from position to position
resulting from the unequal pooling of the LR-PCR products (see
Fig. 3b). Samples in each pool were indexed with barcodes before
pooling. For the evaluation of our method, we ignored the barcode
information and considered the reads from each lane as a single pool.
The barcodes have previously been used to split the reads for each
lane, create sequence files for each sample and call SNPs for each
sample using the MAQ SNP caller (Harismendy et al., unpublished).
This again enabled us to compare the SNP calls from the pooled data
with the individual SNP calls.

3.2 Detection of SNPs from pooled sequencing datasets
The reads for each pool were aligned to the corresponding reference
sequence (for the targeted regions) using the MAQ aligner (Li et al.,
2008) (v0.7.1). For pooled SNP detection, we only considered reads
with a MAQ mapping quality of 20 or more and with three or fewer
mismatches to the reference sequence. We also filtered out base calls
with a quality value below 17, i.e. base calls with an error probability
>0.02. The algorithm CRISP (as described in Fig. 2) was applied to

identify SNP sites for each of the two datasets. For the contingency
table P-value, we chose a threshold of 10−4. At this threshold,
the expected number of positions with a significant contingency table
P-value across 2×105 positions is small. Further, additional filtering
used to remove positions with low number of alternate alleles
(Section 2.4) is likely to remove such false SNPs. For the quality
score P-value, we chose a threshold of p=1−(1−α)1/K =10−7.3

with α=0.01 and K =2×105. This stringent threshold adjusted for
testing of multiple positions and also accounted for the non-random
correlation between sequencing errors at the same position which
leads to over-inflated quality values.

For the chromosome 9 dataset, CRISP identified 665 SNPs across
the two pools. Eight hundered and seventeen SNPs had previously
been identified from the individual sequencing of the 50 samples in
the two pools. Of the 665 pooled SNP calls, 627 were shared with the
individual SNP calls, suggesting a false discovery rate of 5–6%. We
further analyzed 190 SNPs that were not identified from the pooled
sequencing data. Of these SNPs, 44 had low sequence coverage
(<15× in one of the two pools).An additional 46 SNPs were specific
to one of the 50 individuals indicating that this individual was poorly
represented in the DNA pools. Ignoring the 46 SNPs specific to
one individual and the 44 SNPs with low coverage, there were 727
SNPs called from the individual sequencing and CRISP was unable
to identify 100 of these SNPs. Therefore, we can estimate a false
negative rate of 13.7% for CRISP. Additional analysis showed that
75 of the 100 missed SNPs were singletons, i.e. called as SNPs in
one sample each.

Similarly, CRISP called 541 SNPs across the six pools for the
second dataset and 525 of these were shared with the 687 SNPs
previously identified in the 48 samples. Therefore, we estimate that
<3% (16/541) of the called variants are likely to be false. The false
negative rate is higher likely due to the lower sequence coverage.
Using this dataset, we contrasted the power of the contingency
table approach and the quality values approach to detect SNPs
with different allele frequencies (see Fig. 4a). For low frequency
SNPs, the contingency table approach had greater power than the
quality values-based approach that was able to identify common
SNPs missed by the contingency table approach. This was not
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(a) (b)

Fig. 4. (a) Comparison of SNPs identified from the second pooled sequencing dataset using two independent statistics: contingency table P-value and quality
values-based P-value. Only SNPs that were also identified from the individual sequencing of the 48 samples are shown. (b) Precision–recall curve for SNPs
identified by CRISP from the second pooled dataset using different thresholds for the two P-values: contingency table P-value and the quality values-based
P-value. The P-value thresholds (log base 10) are shown for each point on the curve.

Table 1. Comparison of the number of false positive and false negative SNP calls using CRISP, SNPseeker, VarScan and
MAQ (pooled) for the two datasets

50 samples in two pools 48 samples in six pools

Method No. of SNPs False positives False negatives No. of SNPs False positives False negatives

CRISP 665 38 (5.6%) 190/817 541 16 (3%) 162/687
SNPSeeker 739 307 (41%) 385/817 508 199 (39%) 378/687
VarScan 1849 1244 (67%) 212/817 715 234 (33%) 206/687
MAQ (pooled) 367 279 (76%) 729/817 948 681 (71%) 420/687

entirely unexpected, but demonstrated the ability of the contingency
table approach to identify rare alleles and also illustrated the
complementary nature of the two strategies.

To evaluate the effect of changing the P-value thresholds on
the true positive and false negative rates, we plotted a precision–
recall curve for the second pooled dataset using different pairs
of thresholds for the two P-values (Fig. 4b). As for any statistic,
choosing a lower cutoff for either of the two P-values decreased
the true positive rate (recall) while increasing the precision.
However, reducing the thresholds below certain values (10−4 for
the contingency table P-value and 10−10 for the quality values-
based P-value) did not improve the precision further but reduced
the true positive rate. More sophisticated strategies can be used for
selecting the thresholds, e.g. by using a set of known SNPs to learn
the optimum thresholds using the precision–recall curve.

3.3 Comparison of performance with previous methods
For comparison, we also applied two previously published methods,
SNPseeker (Druley et al., 2009) and VarScan (Koboldt et al.,
2009), to identify SNPs from the two-pooled sequencing datasets.
SNPseeker was run with the default options (error model was
generated using a phiX control lane and bases 3–12 were used
for variant calling). For running VarScan, the reads were aligned
using Bowtie (Langmead et al., 2009) and variants called using the

easyrun option. For SNPseeker, we reduced the P-value cutoff to
0.001 from 0.05 to improve the specificity. Similarly for VarScan,
we increased the –min-read2 parameter to 4 and –min-var-freq
parameter to 1/(No. of haplotypes per pool) to reduce the number
of false positives. We also utilized the default MAQ SNP caller
(maq.pl easyrun -N haplotypes -E 0) to identify SNPs. For MAQ,
we used a Q60 threshold for calling SNPs. All methods (except
CRISP) were applied separately on each pool and the SNP calls
merged across the pools for each dataset. Table 1 details the number
of true positives and false positives for each of the two datasets using
different methods.

From the table, it is clear that CRISP significantly outperforms
all other methods. The power of SNPSeeker was likely reduced
compared with other methods since it only uses a subset of base
calls for variant detection. The specificity of each method could
potentially be improved by increasing the respective thresholds used
for calling SNPs or by giving more weight to SNPs called in more
than one pool. However, the sensitivity for all methods at the default
thresholds was lower than that for CRISP.

4 CONCLUSIONS
We have presented a novel approach that systematically combines
two different statistical approaches to identify both rare and common
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SNPs from massively parallel sequencing of DNA pools using
the Illumina GA. Detection of SNPs from pooled sequence data
requires different strategies than those used to identify SNPs from
individual genome sequencing. We have demonstrated that modeling
of aligned reads across multiple pools using a contingency table can
be used to identify rare SNPs present at frequencies comparable
to the sequencing error rate. Comparison of allele counts across
multiple pools is especially powerful to identify rare alleles. Most
previous methods do not utilize information from multiple pools
to identify variants. We have demonstrated the better performance
of this method in comparison with several other existing methods
for pooled SNP calling using two-pooled sequencing datasets
with different depths of pooling generated using the Illumina GA
platform.

In this article, we focused on detection of SNPs. Indels represent
an important class of small-sequence variation that can be identified
from short read sequence data. Our method, in particular the
contingency table approach should be extendable for identifying
indels from pooled sequencing. Previous papers have focused on
the estimation of allele frequency from pooled sequencing data. We
believe that accurate estimate of allele frequency is not difficult once
SNPs have been identified reliably. Moreover, pooling imbalances
are likely to influence the allele frequency estimates irrespective of
the method used to estimate the frequency.

CRISP has been implemented in python and accepts read
alignments in the generic SAM format (Li,H. et al., 2009). The
method is compatible with any short read alignment program and
potentially applicable to sequence data from sequencing platforms
other than the Illumina GA. From the perspective of computational
efficiency, the main bottleneck is computing the P-value of a large
number of contingency tables. We have attempted to make this
computation highly efficient. CRISP took 1 h to analyze the first
dataset (with two pools) and 4 h to identify SNPs for the second
dataset on a single CPU.
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