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ABSTRACT

Motivation: Finding novel or non-standard metabolic pathways,
possibly spanning multiple species, has important applications in
fields such as metabolic engineering, metabolic network analysis
and metabolic network reconstruction. Traditionally, this has been
a manual process, but the large volume of metabolic data now
available has created a need for computational tools to automatically
identify biologically relevant pathways.
Results: We present new algorithms for finding metabolic pathways,
given a desired start and target compound, that conserve a
given number of atoms by tracking the movement of atoms
through metabolic networks containing thousands of compounds
and reactions. First, we describe an algorithm that identifies linear
pathways. We then present a new algorithm for finding branched
metabolic pathways. Comparisons to known metabolic pathways
demonstrate that atom tracking enables our algorithms to avoid
many unrealistic connections, often found in previous approaches,
and return biologically meaningful pathways. Our results also
demonstrate the potential of the algorithms to find novel or non-
standard pathways that may span multiple organisms.
Availability: The software is freely available for academic use at:
http://www.kavrakilab.org/atommetanet
Contact: kavraki@rice.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Over the last few decades, experimental studies on metabolic
networks, coupled with computational methods, have generated
increasingly large amounts of data. In turn, many specialized
databases have been created to store and organize information about
metabolic networks (Caspi et al., 2008; Kanehisa et al., 2008).
These networks are usually presented as many small subpathways
that are manually divided based on function. However, it is often
difficult to navigate these subpathways to find connections between
compounds, especially for novel or non-standard routes used in
applications such as metabolic engineering. Furthermore, as more
information is accumulated from metagenome work on multi-
species communities, it is of interest to find pathways that are a
composition of the metabolic pathways from multiple organisms.
Combining parts of pathways existing in different organisms can
lead to new ways of considering how metabolism works in complex
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communities and provide novel routes to form important and
useful compounds. Consequently, computational identification of
biologically relevant pathways in large metabolic networks is
required for applications such as metabolic engineering, metabolic
network analysis and metabolic network reconstruction (Faust et al.,
2009; Planes and Beasley, 2008).

The main contribution of this article is a pair of algorithms that
find metabolic pathways by using atom mapping data to track the
movement of atoms through metabolic networks. One algorithm
finds linear pathways and the other algorithm finds branched
pathways. They both take as input atom mapping data, a start
compound, a target compound, a minimum number of atoms to
conserve and a maximum number of pathways to return. A set of
metabolic pathways, which conserve at least given number of atoms
from the start compound to the target compound, are returned.

Atom tracking is a crucial feature in finding meaningful metabolic
pathways because it essentially eliminates spurious connections
and reactions that do not correspond to useful or real biochemical
pathways or reactions, which are present in earlier work (Arita,
2004; Faust et al., 2009). Furthermore, we are able to harness atom
tracking in order to find branched pathways. While atom tracking
does increase the complexity of finding pathways, we demonstrate
that our algorithms can efficiently identify both linear and branched
metabolic pathways, in which a certain threshold of atoms are
conserved. The resulting metabolic pathways are validated on known
functional pathways and reveal the potential of our algorithms to find
novel or alternative pathways that may span multiple organisms.

2 PREVIOUS WORK
Prior work on path finding in metabolic networks has focused on
finding realistic linear pathways and mostly avoided using atom
tracking, perhaps due to the increase of complexity and the previous
unavailability of data. Initial analysis of metabolic networks was
based on the shortest paths in directed graph representations of
metabolic networks (Jeong et al., 2000; Ravasz et al., 2002).
However, it was revealed that many of the shortest pathways in
the directed graph may be biologically meaningless because they
route through highly connected cofactors or pool metabolites (Arita,
2003, 2004; Ma and Zeng, 2003). Several approaches have been
developed to overcome the problem of meaningless connections,
such as removing these compounds from the graph (Gerlee et al.,
2009; Wagner and Fell, 2001) or adding weights based on the degree
of the nodes (Croes et al., 2006; Faust et al., 2009). Other approaches
use measures of structural similarity between compounds as a
heuristic to avoid spurious connections when finding metabolic
pathways (McShan et al., 2003; Rahman et al., 2005).
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Earlier work has also identified pathways by building
stoichiometric models of metabolic networks (Planes and Beasley,
2008). These stoichiometric approaches typically focus on one
organism or system, and require the user to define which compounds
are present or available to the cell. In contrast, our approach strives
to find interesting metabolic systems without information such as
what organisms or what environments the organisms function in.

Our approach is more closely related to approaches that explicitly
use atom mapping data, which identifies exactly where each atom in
each input compound ends up in the output compounds of a reaction
(Boyer and Viari, 2003; Pitkänen et al., 2009). Atom mapping
data has primarily been used in earlier work as a filter to remove
pathways that do not conserve at least one atom, usually a carbon,
from the start to the end compound (Arita, 2003, 2004; Blum and
Kohlbacher, 2008a, b). It also improved pathfinding results when
used to construct a graph where edges are only drawn between
compounds that share an atom mapping (Faust et al., 2009; Mithani
et al., 2009).

Biochemical intuition says that pathways that move a high
percentage of atoms from start to finish compounds will be
biologically relevant. It has been shown previously that this problem
is PSPACE-complete; when a compound can only be used once in
a pathway, the problem is NP-complete (Boyer and Viari, 2003).
Despite the complexity, this previous work provides inspiration
that linear atom conserving pathways can be found efficiently in
practice. The linear pathfinding algorithm in our article is able to run
efficiently on a dataset containing about twice as many compounds
and three and half times more atom mappings than the dataset used
in Boyer and Viari (2003). Furthermore, explicit tracking of the atom
enables the identification of branched pathways.

The first algorithm to use atom mapping information to find
branched pathways, called ReTrace, was recently introduced
and successfully used to reconstruct the metabolic network of
Trichoderma reesei (Jouhten et al., 2009; Pitkänen et al., 2009).
Our branched pathway algorithm, developed independently, also
augments linear pathways to find branched pathways that maximize
the number of atoms conserved from the start to the target
compound. One key difference is that our method explicitly finds
linear pathways that conserve at least a given number of atoms.
In contrast, ReTrace finds pathways that conserve one atom and
requires weighting heuristics to help find paths that conserve a
larger number of atoms. Since both methods use various heuristics
and cutoffs to overcome the high complexity of finding branched
pathways, the selection of which method to use may be dependent
on the specific application or compounds being studied. As these
methods are adopted, a better understanding and comparison of the
practical performance of these methods will become possible and
help identify areas for future improvement.

This article describes how a graph containing atom mapping
information (Section 3) can be used to find atom conserving linear
pathways (Section 4) that give rise to complex branched pathways
(Section 5). Our results are demonstrated through representative
examples (Section 6).

3 ATOM MAPPING GRAPH CONSTRUCTION
Until recently, the development of automated ways to track atoms
through large metabolic networks has been hindered by a lack of
atom mapping data. Fortunately, large scale curation efforts have

resulted in the increased availability of atom mapping data for
chemical reactions. Progress has also been made in computational
tools for automatically generating correct atom mappings, which can
be used to fill in the gaps of the manual curation process (Akutsu,
2004; Blum and Kohlbacher, 2008a, b). In this work, we use data
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) due to
the existence of the curated KEGG RPAIR database (Kanehisa et al.,
2008). Each KEGG RPAIR entry contains structural information
for each compound, an alignment mapping atoms between the two
compounds and a list of associated reactions (Kanehisa et al., 2006).
We process the KEGG RPAIR data to create a universal index for
each atom in each compound as well as remove entries where the
atom types mapped are different. The data also contains generic
compounds such as ‘alcohol’ where the structure contains a ‘R’.
We include mappings with generic mappings where the ‘R’ is not
mapped to a specific atom, otherwise it is discarded. This processing
of the data results in discarding about one percent of the KEGG
RPAIR entries.

A frequently used representation of metabolic networks is a
directed graph where there are reaction nodes and compound nodes,
and edges are drawn between the compounds and the reactions
they participate in. We found that tracking atoms through this
representation typically results in unreasonably high computational
cost, because of compounds, such as cofactors, participating in a
large number of reactions. Therefore, we create an atom mapping
graph, Gam, built upon the observation that the same atom
mapping pattern between two compounds often appears in multiple
reactions (Arita, 2003). For example, adenosine triphosphate (ATP)
to adenosine diphosphate (ADP) occurs in many reactions, but the
atom mapping remains the same between the two compounds. When
searching Gam, only one node representing the ATP to ADP atom
mapping needs to be explored. This is more efficient than explicitly
exploring all of the reactions containing the atom mapping. In our
experiments, this representation is important to help reduce the
computational cost required to find atom conserving pathways.

Gam is a directed bipartite graph containing compound nodes and
mapping nodes. Building Gam starts by adding a compound node
for each compound in the RPAIR database. Each compound node
has a unique identifier as well as a unique identifier for each of the
atoms in the compound. We add a mapping node for each RPAIR
atom mapping entry and create two directed edges, one from the
first compound to this node and one from this node to the second
compound. The mapping nodes contain atom mapping information,
such that the atom identifiers from the reactant compounds are
associated with the atom indices in the output compounds. For each
mapping node, another mapping node is added to enable the reverse
direction; it has the same edges created but in the reverse direction.

We currently make all mappings reversible due to the lack
of readily available reversibility information of reactions. As
this information becomes more readily available, it could be
incorporated into the graph easily by only allowing the proper
direction to be added to the graph. The KEGG RPAIR data
also does not typically account for molecular symmetry. If
we know a compound is symmetric, we can then create
additional mapping nodes to account for the symmetry of the
molecule. However, automatically identifying symmetric molecules
can be complicated by stereochemistry, and therefore in this
article we only add nodes explicitly represented in the KEGG
RPAIR data.
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Fig. 1. A small subgraph of Gam containing three compound nodes and two mapping nodes representing two atom mappings: RP00080 between C00231 and
C00118, and RP13340 between C00118 and C05345. The KEGG RPAIR database contains information for all non-hydrogen atoms, but only carbons are
depicted for clarity.

Figure 1 shows a small subgraph of Gam. In this subgraph, a
linear path from C00231 to C05345 through RP00080 and RP13340
conserves three carbon atoms. All mapping nodes only have one
input edge and one output edge connected to two different compound
nodes. The compound nodes have the same number of outgoing and
incoming edges equal to the number of atom mapping entries they
participate in. Therefore, the degree of the nodes of Gam is less than
the more traditional compound and reaction directed graph, which
in turn contributes to the efficiency of the pathfinding methods.

4 LINEAR ATOM CONSERVING PATHWAYS
The linear pathway search guarantees finding the k-shortest
pathways that conserve at least a given number of atoms. The linear
pathway search takes as input Gam, a start compound, a target
compound and the minimum number of atoms to be conserved.
Maximal atom conserving linear pathways are found by starting with
the number of atoms in the smaller of the start and target compounds
and decrementing by one until pathways are found or a minimal
number of atoms is reached.

Finding linear pathways starts with an exploration step that
traverses Gam in a depth-first manner while explicitly tracking,
where each atom from the starting compound goes along the way.
The exploration is a modified version of a standard depth first
search because the semantics of Gam are different. These semantics
require that the exact set of atoms visited in each compound
are recorded, and not just the fact that the node itself is visited
as in traditional graph traversals. Therefore, we term a string
containing the compound identifier along with an ordered list
of atom identifiers an atom marking. When the traversal moves
through a mapping node, we use the input atom marking to compute
the output atom marking based upon the mapping contained in
the mapping node. For example, in Figure 1 if we started with
all carbon atoms in D-xylulose 5-phosphate the atom marking
would be ‘C00231 C0 C1 C2 C3 C4’, then taking the mapping
node RP00080 would result in the atom marking ‘C00118 C0 C1
C2’. An object containing the input atom marking, the identifier of
the mapping node taken and the resulting output atom marking is
termed a transition history. Using the atom markings and transition
histories, we can now introduce atom tracking depth-first search in
algorithm 4.1. This search starts from the starting compound and
explores Gam to find all reachable states that conserve the given
number of atoms. The result of the search is a list of transition
histories, L, which is then used to build an auxiliary graph.

The auxiliary graph has the important property that it contains all
paths from the starting compound’s atom marking that conserve
at least the given number of atoms. This allows us to use it as

Algorithm 4.1 Atom tracking depth-first search

Input: Input compound atom marking cin, minimum number of
atoms to conserve n

Output: List of transition histories L
1: V← {cam} Set of visited atom markings
2: S← {} Stack of partial transition histories containing a mapping

node and an input atom marking
3: L← {}
4: for each successor mapping node m from cin do
5: Add {m, cin} to S
6: while S is not empty do
7: Pop s from S
8: cout← the output atom marking of traversing the mapping

node sm of s using the atom marking sam of s
9: Add transition history {sam, sm, cout} to L

10: if cout is not in V then
11: Add cout to V
12: if cout contains n or more atoms then
13: for each successor mapping node m from cout do
14: Push {m, cout} on to S

input to standard algorithms for finding the k-shortest paths in
a graph. The auxiliary graph contains a node labeled with each
atom marking found in L. For each transition history, a new node
containing the mapping node identifier is added. Due to the fact
that the same mapping node can be traversed using different atom
markings, the mapping node identifier is appended with a counter
that is incremented every time the same mapping node is added.
Then an edge is drawn from the input atom marking node to the node
representing the mapping node, and then from the node representing
the mapping node to the output atom marking node. The auxiliary
graph has the important property that it contains all paths from the
starting compound’s atom marking that conserve at least the given
number of atoms. Finally, Eppstein’s k-shortest path algorithm is
then run on this auxiliary graph with the appropriate start and target
nodes as input and the resulting set of pathways are linear atom
conserving pathways (Eppstein, 1998). Depictions of the auxiliary
graph construction can be found in Supplementary Figures 2–4.

5 BRANCHED ATOM CONSERVING PATHWAYS
In addition to eliminating inappropriate transitions, atom tracking
identifies where atoms are lost and gained along a linear pathway
and enables finding branched pathways. Branched pathway finding
starts by obtaining a set of linear pathways between the desired start
and target compounds by using the previously described algorithm.
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In this section, we first describe how the linear pathways give rise to
seed pathways, where transitions that lose or gain atoms are replaced
by specific reactions. Then, we describe how seed pathways are used
to obtain the resulting set of branched pathways.

5.1 Seed pathways
Let Pl be the set of linear atom conserving pathways found in
Section 4. Each pathway in Pl will potentially give rise to a number
of seed pathways, in which loss or gain atom mappings are replaced
by reactions. While Gam contains enough information to find linear
pathways, it is missing information about which compounds the
atoms are lost or gained through. This information is found in the
reactions in the KEGG REACTION database that correspond to the
atom mappings. Therefore, we store a correspondence, provided
by KEGG, between mapping nodes and reactions. For example,
RP00080 in Figure 1 is associated with six different reactions in
KEGG, which use and produce different compounds in addition
to D-xylulose 5-phosphate and D-glyceraldehyde 3-phosphate.
Two of the reactions are illustrated in Supplementary Figure 1. In
one reaction, D-xylulose 5-phosphate reacts with formaldehyde to
produce D-glyceraldehyde 3-phosphate and glycerone. In the other,
D-xylulose 5-phosphate reacts with orthophosphate to produce
D-glyceraldehyde 3-phosphate and acetyl phosphate. The important
difference is that in the first reaction the C0 and C1 carbons of
D-xylulose 5-phosphate end up in glycerone and in the second
reaction they end up in acetyl phosphate. Hence, the starting
compound of the branch is different depending upon which reaction
is used.

For each p∈Pl , two types of mapping nodes are identified: loss
mapping nodes (LMNs) and gain mapping nodes (GMNs). LMNs
are mapping nodes where the atom mapping does not map all of
the atoms in the input compound and GMNs are mapping nodes
where the atom mapping does not map all of the atoms in the output
compound. For example, RP00080 in Figure 1 would be considered
an LMN. To create the seed pathways, we need to (i) replace
each LMN in p with all possible corresponding reactions—called
loss reactions nodes (LRNs) and (ii) replace each GMN in p with
all possible corresponding reactions—called gain reaction nodes
(GRNs). All possible combinations should be produced to obtain the
seed pathways. For example, since RP00080 in Figure 1 is found in
six reactions in KEGG at least six seed pathways would be created,
each one containing one of the reactions. Depending on the reactions
corresponding to GMN RP13340 of Figure 1 more seed pathways
may be generated until we have pathways containing all possible
combinations of LRNs and GRNs. Again, we face the possibility of
theoretical combinatorial explosion as the number of seed pathways
is equal to the number of possible combinations of reactions along
the pathway. However, in practice, we observed most pathways have
few LMNs and GMNs, which also typically correspond to only a
few reactions.

5.2 Finding branched pathways from seed pathways
To attach branches properly to seed pathways, we must now add
compounds nodes involved in the reactions represented by LRNs
and GRNs through which atoms can be lost and gained. These
‘new’ compound nodes will be the starts and ends of branches.
For each seed pathway, we examine its LRNs and add the output
compound nodes from the corresponding reaction through which

Algorithm 5.1 Generate branched pathways

Input: Augmented seed pathways Pa, Gam, max number of
branches b

Output: Sorted list of branched pathways Pb, sorted first by number
of atoms conserved, then by total number of nodes

1: Pb← {}
2: Mb← {} (Mb is map between a pair of compound nodes, cx,cy

and the shortest maximal atom conserving linear pathway in
Gam from cx to cy)

3: for each p in Pa do
4: Cl← all compound nodes from p through which atoms may

be lost
5: Cg← all compound nodes from p through which atoms may

be gained
6: B← {}
7: for each cl,cg in Cl×Cg do
8: if Mb(cl,cg) has not yet been set then
9: Mb(cl,cg)← the shortest maximal atom conserving

linear pathway in Gam from cl to cg
10: Add Mb(cl,cg) to B
11: for each n=1 to b do
12: for each combination V of cardinality n from B do
13: if all paths in V start from different cl ∈Cl and end at

different cg∈Cg then
14: pb← branched pathway created by attaching all

branches in V to p
15: Determine the number of atoms conserved along pb
16: Add pb to Pb

atoms may be lost; a directed edge is created from the LRN to the
node. We then examine the seed pathways’ GRNs and add input
compound nodes from the corresponding reaction through which
atoms may be gained; a directed edge is created from the node to the
GRN. This new construction containing compound nodes through
which atoms can be lost and gained, is termed an augmented seed
pathway.

We now present Algorithm 5.1, which takes as input augmented
seed pathways, and finds possible linear branches searching Gam
(lines 7–10). Then, all combinations of possible branches must be
tried systematically for attachment to the augmented seed pathway,
because adding a branch to an augmented seed pathway effects the
atom tracking down the pathway (lines 11–15). Our experimentation
showed that trying all combinations can lead to long run times
without substantially improving biological value. Therefore, we
provide the option to limit the maximum number of branches that
can be added by b. Extra care is taken to maintain any computed
branches in a global data structure, Mb, so that branches can be
reused to reduce computation time. The result is an ordered list of
branched pathways sorted first by the number of atoms conserved
and second by the total number of nodes in the pathway. A slightly
modified version of Algorithm 5.1 that accepts branched pathways
has also been implemented but not described here due to space
limitations. That version can be repeatedly applied to our branched
pathways until either the maximal number of atoms are conserved
from the start or feasible linear pathways cannot be found. However,
we observed that even for our most complex pathways this only
needed to be done once.
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Table 1. Average accuracy, positive predictive value and sensitivity for the
48 pathways tested

Atom tracking Top Path Best of top five paths

Ac PPV Sn Ac PPV Sn

(a) Max carbons 0.64 0.70 0.58 0.85 0.89 0.80
(b) One carbon 0.37 0.41 0.33 0.65 0.71 0.59
(c) No carbon 0.15 0.19 0.10 0.39 0.5 0.28

6 RESULTS
In this section, we first provide a brief evaluation of our approach
on linear pathways. We then present three biologically motivated
examples of branched pathways found by our algorithms that cannot
be found using pathfinding methods available in the literature. The
atom mapping graph used in all of the experiments contained 5844
compound nodes and 22 920 mapping nodes, built from KEGG
RPAIR data. From the KEGG REACTION database, we obtain
7340 reactions from over 1000 organisms which have corresponding
KEGG RPAIR entries. The KEGG data was acquired in July 2009.
For the purposes of the results in this article, only carbon atoms
were tracked, but the methods described can be used to track atoms
of interest as long as proper atom mapping data is provided. The
resulting pathways presented are ranked first by the number of
carbon atoms they conserve and then by the number of reactions
they contain.

The implementation was done in Java using the Chemical
Development Kit (Steinbeck et al., 2006) and the Java Universal
Network/Graph Framework (http://jung.sourceforge.net/). All result
figures are drawn using Graphviz (http://www.research.att.com/sw/
tools/graphviz/). All experiments were run on a single core from
a 2.83 GHz Intel Xeon E5440 with access to 16 GB of RAM. For
the branched pathways, the input k, for Eppstein’s k-shortest paths
algorithm, was set to one million and the seed pathways were chosen
as all paths, without cycles, containing less mapping nodes than the
shortest path plus four.

6.1 Evaluation on linear pathways
Evaluating metabolic pathfinding methods can be difficult, even for
linear pathways, because there is no standard test set. To provide
a base line comparison for our methods, we downloaded known
metabolic pathways from a recent evaluation on linear pathways
(Faust et al., 2009). We removed pathways where either atom
mapping data was missing or no carbons made it from the start
to target compounds, resulting in a set of 48 known pathways. We
compared these known pathways to the computed shortest paths
using three different types of atom tracking: (i) conserving the
maximum number of carbon atoms; (ii) conserving at least one
carbon; and (iii) not using atom tracking at all.

The results on comparing the known pathways with the computed
pathway are found in Table 1. True positives (TP) are compounds
found in both pathways; false negatives (FN) are compounds in
the known pathway, which are not in the computed pathway; false
positives (FP) are compounds not in the known pathway, which are
in the computed pathway. For each pathway, we use measurements
found previously in the literature to calculate the sensitivity

Fig. 2. The solid edges shows the known pathway, for sn-glycero-3-
phosphocholine to threonine, containing 11 reactions, ranked third in our
results. The dashed edges show how the shortest pathway containing
10 reactions differs. Compound nodes are ovals, mapping nodes are boxes
and reactions are diamonds.

Sn = TP/(TP+FN), positive predictive value (PPV) = TP/(TP+FP)
and accuracy Ac = (Sn+PPV)/2 (Blum and Kohlbacher, 2008a, b;
Croes et al., 2006; Faust et al., 2009). Positive predictive value is
used instead of specificity because true negatives do not exist in
this comparison. The poor performance of (iii) is expected, as this
result is found in a number of previous evaluations (Arita, 2004;
Croes et al., 2006; Faust et al., 2009). The main result is the level of
improvement between (ii) and our approach (i). This indicates that
one important characteristic for many metabolic pathways is the
movement of carbon atoms from the start compound to the target
compound.

6.2 Branched pathway: sn-glycero-3-phosphocholine to
L-threonine

Threonine is an essential amino acid primarily manufactured by
using engineered strains of bacteria, and therefore there has been
a major focus toward improving the yield (Leuchtenberger et al.,
2005). A strategy to increase yield may include using pathways
that transform degradation products, which otherwise might be
lost, into the desired product. In Figure 2, we show results
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from our branched path finding algorithm for starting with sn-
glycero-3-phosphocholine, a common degradation intermediate of
triglycerides containing eight carbons, to threonine, which contains
four carbons. The seed pathway search conserved at least two
carbons from start to finish generating 2155 seed pathways, with the
shortest seed pathway containing six reactions. The whole branched
search pathfinding process took 24 min.

Many of the resulting branched pathways split sn-glycero-3-
phosphocholine into sn-glycerol-3-phosphate and choline, each of
which begin paths conserving two carbons and end at acetaldehyde
and glycine, which then join to make the four carbon threonine.
This general branching scheme is an expected result and no linear
pathways were found that conserved all four carbons. The top-
ranked result is depicted by the dashed edges in Figure 2. This
result takes an unusual, likely infeasible, shortcut through acetyl
phosphate. Reversibility information may help improve the results
because the reaction from acetyl phosphate to glycine is only
observed in the reverse direction. However, the reaction from
betaine to acetyl phosphate is a feasible reaction that may not
typically be considered and could lead to other interesting pathways.
Therefore, interesting paths and reactions may be automatically
revealed that might normally not be foremost to those familiar
with specific subpathways. Additionally, we observe the known
pathway from choline to glycine via demethylation in the next
longest set of pathways, with 11 reactions, and it is depicted
by the solid edges in Figure 2. The pathway from sn-glyerol-3-
phophate to acetaldehyde demonstrates the difficulty in finding
the balance between finding unusual but likely shortcuts and
very unlikely shortcuts. In this pathway, most likely pyruvate
is generated from glycerone phosphate via glycolysis instead of
through methylglyoxal. However, the overall scheme returned by
our search is correct, and in the last section we discuss potential
ways to help address shortcuts around standard pathways such as
glycolysis.

6.3 Branched pathway: chorismate to
(S)-norcoclaurine

(S)-norcoclaurine is a key intermediate in the formation of
benzylisoquinoline alkaloids, leading to more complex molecules
such as morphine and codeine (Minami et al., 2008). In this
example, we demonstrate how starting from multiple molecules
can be incorporated by adding a new compound node representing
two molecules of chorismate that are connected to the rest
of the network by a reaction that creates two molecules of
chorismate. The search proceeds as normal because the seed
pathways use one of the chorismate molecules, while the other
one is considered as a branch start point. Each molecule of
chorismate contains 10 carbons and (S)-norcoclaurine contains
16 carbons. The seed pathways conserve 7 carbons, the shortest
contained 5 reactions and 80 seed pathways were used. The
overall search took 8 min. The top-three ranked, branched pathways
found by our search are known pathways for the synthesis of
(S)-norcoclaurine. An illustration of these three pathways can be
found in Figure 3.

All of the pathways share the same path from chorismate to
(S)-norcoclaurine through 4-hydroxyphenylacetaldehyde, which is
the shortest seed pathway. In this case, the variation can be
discovered in two ways, one being by returning all branches of

Fig. 3. The top three pathways for chorismate to (S)-norcoclaurine, merged
together with the solid line indicating one of the results and the dashed lines
showing how the other two pathways differ. Compounds nodes are ovals,
mapping nodes are boxes and reactions are diamonds.

equal length. However, in an implementation where only one of the
shortest branches was selected, the same paths were still returned
as the top results. This is because the paths from chorismate to
(S)-norcoclaurine via dopamine are also in the set of seed pathways.
Since they are two reactions longer, they are much further down
in the list of paths, but by adding the appropriate branch through
4-hydroxyphenylacetaldehyde they rise to the top of the branched
pathway results over other unlikely seed pathways. This illustrates
that identifying branched pathways may help to avoid undesirable
pathways.

6.4 Branched pathway: α-D-glucose 6-phosphate to
L-tryptophan

Our final result demonstrates how complex topologies of branched
pathways can be revealed by our algorithm. Tryptophan, similar to
threonine, is an essential amino acid mainly produced by microbial
fermentation (Leuchtenberger et al., 2005). The trypthophan
pathway is relatively complex, with a number of places where
carbons are lost and gained along the way. We search for branched
pathways starting with two molecules of α-D-glucose 6-phosphate.
The minimum number of carbons for the seed pathways was 4,
resulting in 798 seed pathways with the shortest seed path having
12 reactions. The overall walltime for the branched pathway search
was 30 min.
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Fig. 4. A single branched pathway result for tryptophan, demonstrates how branching schemes can become quite complicated. The bold edges indicate the
initial seed pathway, the normal solid lines are the branches attached in the first stage of the algorithm and the dotted line is a final branch added after the
initial branches were attached. Compound nodes are ovals, mapping nodes are boxes and reactions are diamonds. The numbers are to assist the reader in
following the pathway, as the figure is split into half to fit on the page.

Due to the length of the pathway, there were many more shortcuts
revealed by the search than in our other results. Many of these
shortcuts proved to be unlikely to occur, such as ones through
L-formylkynurenine to tryptophan and catechol to anthranilate, both
of which normally occur in the other direction. While the top results
using our current ranking are unlikely to model real metabolic
systems, an important aspect of our algorithm is that it returns
a large number of potential pathway results. There are a number
of simple ways to filter the results that enable a user to discover
other interesting pathways. One way is for the user to identify

undesirable reactions, another is to ask for only pathways that go
through specific intermediates. For example, Figure 4 displays a
pathway that is far down in the overall ranking, but is the fourth-
ranked result from the subset of results that go through shikimate,
a known intermediate for tryptophan. This result illuminates a
number of interesting properties of the tryptophan pathway, e.g. that
serine and 5-phospho-α-D-ribose 1-diphosphate both can be made
from compounds further upstream. These complex relationships,
automatically discovered by our algorithm, are of importance for
metabolic pathway analysis and design. We also observe that the
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second α-D-glucose 6-phosphate is ultimately used to create two
molecules of PEP. As with the threonine pathway, these molecules
would typically be created via glycolysis, but here they are created
by a different scheme because we favor pathways utilizing fewer
reactions.

7 DISCUSSION AND CONCLUSIONS
The metabolic pathfinding algorithms we have presented are
part of a growing set of analysis tools that will assist in
understanding metabolic networks and designing of novel pathways
for applications such as metabolic engineering and synthetic biology.
Atom tracking methods, such as ours and ReTrace (Pitkänen
et al., 2009), enable graph-theoretical methods to find biologically
meaningful linear and branched metabolic pathways in genome-
scale metabolic networks. While the theoretical complexity of
finding even linear atom conserving pathways is high, by choosing
the appropriate representations and heuristics, and perhaps due to the
structure of the underlying data, these algorithms have reasonable
running times in practice.

The pathways found by our algorithms demonstrate that they
are able to avoid spurious connections and have the potential
to find biologically interesting pathways. Our results also point
towards a number of interesting areas for future applications and
improvements. For example, in this work we have focused on
tracking carbon atoms, but the methods can be applied to other
atoms of interest, such as nitrogen or sulfur, to better understand
metabolism as a whole. We have also focused on searching across
all of the data in KEGG, but for some applications, one may only
want to look at the metabolic network of a single organism or a
subset of all of the organisms. These organism-specific networks
would be smaller than the network used in this work and we would
expect similar, possibly faster, performance.

The search algorithms may also be improved by using knowledge
about highly conserved metabolic pathways, such as glycolysis.
A small number of these pathways could be cataloged and be
used in the search or as a post-processing step to guide towards
more feasible pathways. Using weighting schemes may provide
another way to improve performance. There are several previously
proposed weighting schemes based upon compound degree, that
could potentially be incorporated with full atom tracking to improve
pathway ranking (Blum and Kohlbacher, 2008a; Croes et al., 2006).
Other weighting schemes based upon characteristics such as energy
consumption, or what organisms can perform the reactions may help
find good candidates for in vivo experimentation. Since it is unlikely
that there will be a single perfect ranking scheme for all applications
of metabolic pathfinding, future studies on the practical performance
of such methods will be required.
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