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ABSTRACT

Motivation: Identifying orthologous genes in multiple genomes
is a fundamental task in comparative genomics. Construction of
intergenomic symmetrical best matches (SymBets) and joining them
into clusters is a popular method of ortholog definition, embodied in
several software programs. Despite their wide use, the computational
complexity of these programs has not been thoroughly examined.
Results: In this work, we show that in the standard approach of
iteration through all triangles of SymBets, the memory scales with
at least the number of these triangles, O(g3) (where g = number of
genomes), and construction time scales with the iteration through
each pair, i.e. O(g6). We propose the EdgeSearch algorithm that
iterates over edges in the SymBet graph rather than triangles
of SymBets, and as a result has a worst-case complexity of
only O(g3log g). Several optimizations reduce the run-time even
further in realistically sparse graphs. In two real-world datasets of
genomes from bacteriophages (POGs) and Mollicutes (MOGs), an
implementation of the EdgeSearch algorithm runs about an order of
magnitude faster than the original algorithm and scales much better
with increasing number of genomes, with only minor differences in
the final results, and up to 60 times faster than the popular OrthoMCL
program with a 90% overlap between the identified groups of
orthologs.
Availability and implementation: C++ source code freely available
for download at ftp.ncbi.nih.gov/pub/wolf/COGs/COGsoft/
Contact: dmk@stowers.org
Supplementary information: Supplementary materials are available
at Bioinformatics online.

Received on February 15, 2010; revised on April 20, 2010; accepted
on April 21, 2010

1 INTRODUCTION
Classification of genes and their products into families of homologs
is a key component of any study in comparative genomics.
The central problem here is to define orthologous relationships
between genes in two or more species. Orthologs, i.e. homologous
genes related by speciation (Fitch, 1970, 2000), tend to retain
the same function after divergence from their common ancestor,
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whereas paralogs, i.e. homologous genes related by duplication
within a lineage, typically differentiate to perform distinct functions
(Kondrashov et al., 2002; Lynch and Conery, 2000; Lynch and
Force, 2000; Ohno, 1970). Paralogs are subdivided into in-paralogs,
which have diverged after a reference speciation event (often the
last speciation event in the minimal clade that includes the two
compared lineages) and out-paralogs that diverged before this event
(Remm et al., 2001), although in some cases the paralogy status
is difficult to resolve in practice, e.g. in the event of differential
paralog loss in all examined species (Opazo et al., 2008). Because
of the complex interplay of speciation and duplication of genes, a
family of in-paralogs in one lineage can be orthologous to a single
gene in another lineage, so the problem of identification of orthologs
has been redefined to the identification of orthologous groups, i.e.
orthologs as well as their lineage-specific duplications (Koonin,
2005). The Clusters of Orthologous Groups (COGs) resource was
devised for this purpose soon after the representatives of all three
domains of life (Bacteria, Archaea and Eukarya) were sampled by
complete genome sequencing (Tatusov et al., 1997).

Many methods of ortholog inference have been proposed
[reviewed in (Koonin, 2005)], and their comparative performance
has been reviewed (Altenhoff and Dessimoz, 2009; Chen et al.,
2007). These methods belong to the two major classes of approaches:
those that first identify all homologs in a set of species and
then attempt to distinguish between orthologs and paralogs by
analyzing the distribution of the genes from different species
across the tips of the tree (these approaches typically include
comparison with another tree representing the consensus view of
the evolution of those species), and those that do not reconstruct
the trees explicitly, but instead use a heuristic to compile the
pairs of genes, each in a different genome, that are each other’s
best-scoring matches [SymBets, for symmetric best hits (Tatusov
et al., 1997), also sometimes called BBH or RBH, for Bidirectional
or Reciprocal Best Hits] in their respective genomes (Fig. 1).
Examples of automated implementations of the former approach
include the publicly available algorithms EnsemblCompara (Vilella
et al., 2009), SYNERGY (Wapinski et al., 2007), RIO (Zmasek
and Eddy, 2002), Orthostrapper (Storm and Sonnhammer, 2002)
and the databases of orthologous protein families HOBACGEN,
HOVERGEN and HOGENOME (Dufayard et al., 2005), whereas
examples of the latter include OrthoMCL (Li et al., 2003),
eggNOG (Jensen et al., 2008), InParanoid and MultiParanoid
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Fig. 1. Schematic of Symmetric Best matches (SymBets) used to
build COGs.

(Alexeyenko et al., 2006; O’Brien et al., 2005; Remm et al., 2001),
MSOAR and MultiMSOAR (Fu and Jiang, 2007; Fu et al., 2007),
Homologene (Sayers et al., 2010), RoundUp (Deluca et al., 2006)
and OMA (Roth et al., 2008). Still other methods exist that do not
fall neatly into either category, such as that described in (Vashist
et al., 2007), which uses topological distance in a species tree as a
factor in a linkage equation to find dense clusters in a multipartite
graph (whose edges are not restricted to SymBets).

The ‘tree-based’ approaches are often considered superior to the
‘pair-linking’ methods because the former utilize explicit algorithms
to identify duplication and speciation events on the gene/protein
family tree, whereas pair-linking methods use the symmetric-
best-match relationship as a surrogate criterion of orthology. An
additional objection to using BLAST score for defining SymBets
is that it might not be a good estimate of the true evolutionary
distance between two homologous sequences, leading to errors in
evolutionary inference (Brenner, 1999; Rost, 2002; Todd et al.,
2001; Watson et al., 2005). Studies of this problem that we are
aware of mostly showcase the examples where the bias leading to
errors indeed exists [e.g. (Koski and Golding, 2001)], but there is no
evidence to show that the BLAST score is a poor statistical predictor
of orthology at the genome scale. On the contrary, the comparisons of
tree-based and pair-linking methods of ortholog definition show that
the two classes of methods tend to produce similar lists of orthologs,
with the differences mostly due to the sensitivity of the homology
search and to differential treatment of in-paralogous relationships
and the related problem of optimal splitting of large clusters of

paralogs (Altenhoff and Dessimoz, 2009; Chen et al., 2007; Koonin,
2005; Li et al., 2003).

Given the generally good correspondence shown by the best
methods in the two classes of approaches (Altenhoff and Dessimoz,
2009; Chen et al., 2007), and because pair-linking algorithms are
faster and easier to automate than tree-based methods [which,
moreover, have the potential to succumb to errors of their own
that are intrinsic to construction of phylogenetic trees, especially
at large evolutionary distances (Felsenstein, 2004; Forest, 2009)],
many practical efforts of genome-scale ortholog identification
rely on pair-linking methods. However, despite the prevalence of
these approaches in comparative genomics, there has been little
examination of their computational complexity and scalability. In
this study, we analyze the process of the triangle-merging step of
COG construction from a graph-theoretical viewpoint to gain a better
understanding of its limitations, and propose a new algorithm that
has the complexity of O(g3 log g), where g is the number of genomes,
which compares favorably with the high polynomial O(g6) of the
more traditional approaches.

2 RESULTS

2.1 Theory
A graph whose vertices are genes and whose edges denote a SymBet
relationship between a pair of genes (we call these adjacent if such
an edge exists) is called a SymBets graph, G. A subgraph of G
is a triangle if it is a set of three vertices such that each pair of
them is adjacent to one another. As described elsewhere (Koonin,
2005; Tatusov et al., 1997, 2000), each COG is a subgraph of G
that is constructed by using a triangle as a seed and iteratively
adding triangles that share a common side, until no new members
can be added. This description holds both for the earlier described
approach [as implemented, for instance, in the NCBI programs YOG
and COGtriangles used for the construction of COGs and publicly
available since the year 2007—hereinafter COGtriangles method
(ftp.ncbi.nih.gov/pub/wolf/COGs/COGsoft/)] and the new approach
proposed here, despite their radically different ways of following
these guidelines.

Suppose G has n vertices and m edges. Because G is built of
only SymBets between genes in different genomes, it is a g-partite
graph, i.e. it has g groups of vertices, each corresponding to genes
from the same genome, and edges are only allowed between different
groups but not between the vertices in the same group (note that the
collection of in-paralogs due to lineage-specific expansions is done
separately prior to the main algorithm, and in the graph these are
represented by a single vertex). Also, let p be the maximum number
of genes in any given genome, which is a constant for a given set
of genomes and does not depend on the number of genomes, even
though it is possible that the value of p increases as larger genomes
are sequenced and added to G.

The number of vertices n grows linearly with the number of
genomes g, with the addition of each genome adding at most p
new genes to n, so n ≤ gp and the upper bound of the number of
vertices O(n) is simply O(g). Since G is a g-partite graph with no
edges between genes from the same organism, the number of edges
m is:

m≤
(g

2

)
p= g!

(g−2)!2!p= 1

2
(g2 −g)p.
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Thus, the upper bound of m grows with the quadratic term of g
that dominates the behavior of this equation, and O(m)=O(g2).
Similarly, the number of triangles t grows with the cube of the
number of genomes as:

t ≤
(g

3

)
p= g!

(g−3)!3!p= 1

6
(g3 −3g2 −2g)p.

Thus, the upper bound of the number of triangles O(t)=O(g3).
COGs are constructed as subgraphs of G, starting as triangles and

growing by iteratively merging triangles if they share a common
side, until no more triangles can be added. For instance, the
COGtriangles algorithm used to build the most recent available
release of NCBI COGs (ftp.ncbi.nih.gov/pub/COG/COG/) proceeds
in two stages, by finding all possible triangles in G and then iterating
through each pair of them to merge those that share a common side,
as follows:

COGtriangles algorithm:

(1) For each triangle Ta taken from the list of unprocessed
triangles

(2) Initialize a ‘seed’ COG C =Ta

(3) For each triangle Tb not already part of an existing COG
(4) If Tb shares a side with a triangle in C, merge Tb

into C

(5) Print C

(6) End

Since there are at most O(g3) triangles and thus O(g3) initial COGs
before the merging step, and this algorithm iterates over pairs of
triangles (or pairs of a COG and a triangle), it scales with the
high polynomial O(g3)∗O(g3)=O(g6). Though the space of unused
triangles is iteratively reduced as the algorithm progresses, this does
not affect the algorithm complexity: if the number of COGs is c, the
algorithm complexity is O(c)∗O(g3), assuming a O(1) lookup for a
common edge between a triangle and a COG, and since O(c)=O(g3)
in the worst case, the overall complexity is O(g6).

In practical terms, the COGs were first implemented on seven
fully sequenced genomes treated as five lineages (g = 5; see Tatusov
et al., 1997), so at most C5,3∗p = 10p triangles could exist, and
iterating through each pair only cost C10,2∗p2 = 45p2 computations.
With 10 genomes, these numbers become 120p and 7140p2,
respectively, at 20 genomes they rise to 1140p and 6∗105p2, at
50 genomes they are 19 600p and 2∗108p2 and at 100 they became
162 000p and 1010p2. Building a set of COGs with only bacteria
(g ≈ 103 in 2010) produces 108p triangles, and iterating over each
pair would generate 1016p2 computations.

In this work, we present an algorithm that builds triangles and
COGs simultaneously, with the worst-case complexity of only
O(g3 log g). The main idea in our approach is to find a specific class
of subgraphs, recently called triangularly connected subgraphs (Fan
et al., 2008), by iterating over edges instead of triangles, as explained
in more detail below.

A triangle-path in G is a sequence of triangles T1,T2, ...,Tk in G
such that for 1 ≤ i ≤ k−1, the triangles Ti and Ti+1 share a single
edge and for j > i+1, the triangles Ti and Tj do not share any edges.
A connected subgraph C in G is triangularly connected if for any
distinct edges e and e′ in C, there is a triangle path T1,T2,...,Tk in

Fig. 2. Illustration of EdgeSearch algorithm building triangles and COGs
simultaneously while iterating over edges.

C such that e is an edge in T1 and e′ is an edge in Tk . Under these
definitions, a subgraph of G is a COG if it is a triangularly connected
graph and is not a single edge. Note that such subgraphs of G are
edge-disjoint with one another, i.e. no two subgraphs share an edge.

The EdgeSearch algorithm developed in this work is illustrated
in Figure 2. Like the COGtriangles algorithm, EdgeSearch starts by
initializing a ‘seed’ COG C, but instead of searching the space of
all triangles to merge those with common sides, it searches for the
pairs of edges that satisfy the following condition:

• If the vertices u and v and edge (u, v) are in C, and a third
vertex w not in C, and (u, v), (v, w) and (w, u) are edges in
G (i.e. vertices u, v and w form a triangle in G), then add the
vertex w and edges (v, w) and (w, u) to C.

The above process stops when no more vertices and edges can be
added to C. At this point, the algorithm proceeds with another seed
edge not contained in any of the previously identified COGs, and
this sequence of steps is repeated until all triangularly connected
subgraphs (i.e. COGs) with the maximal number of vertices are
found. Each such subgraph that is not a single edge is then declared
an individual COG and output. In more detail, the EdgeSearch
algorithm is:

EdgeSearch algorithm:

(1) For each edge taken from the list of unprocessed edges

(2) Initialize a ‘seed’ COG C with this edge and its vertices

(3) For each unprocessed edge e(u, v) in C
(4) For each vertex w such that (u, w) and (v, w) are

unprocessed edges in G (at least one of which is not
already in C), add this vertex w and edges (u, w) and
(w, v) to C (if they are not already part of C)

(5) Mark e as processed

(6) Print C if it contains three or more vertices

(7) End

Theorem: EdgeSearch finds all maximal triangularly connected
subgraphs in G.
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Proof. This result derives from the following:
(1) The subgraphs output by the algorithm are edge-disjoint—i.e.

no two subgraphs share an edge. This is because the iteration through
all unprocessed edges in the subgraph C (Step 3) ensures that when
triangles that share a common side are merged into C (Step 4), the
result is that all triangles that contain a single edge e will become
part of that same subgraph C. Then, since the algorithm does not
proceed to build another subgraph until all edges of C are processed
(Step 3), the subgraphs output in Step 6 are edge-disjoint.

(2) Each triangle in G belongs to a unique output subgraph. Since
all edges are processed (introduced in either Step 1 or 3 and triangles
formed in Step 4), all triangles in G will eventually be found and
assigned to at least one subgraph. Also, since the subgraphs output
in Step 6 are edge-disjoint (Statement 1), they are also triangle-
disjoint—i.e. no two subgraphs share a triangle, and thus triangles
can belong to at most one subgraph. Thus, each triangle in G belongs
to a single subgraph.

(3) The output is a set of triangularly connected subgraphs in G.
This is because, after forming the first triangle, each subgraph C is
expanded by iteratively adding all triangles that share a common
edge with an existing triangle in C (Step 4).

(4) These triangularly connected subgraphs are maximal.
Since each subgraph is edge-disjoint (Statement 1) and each
triangle belongs to a unique subgraph (Statement 2), there cannot
be a triangle-path between two different subgraphs. Therefore,
each triangularly connected subgraph found by the algorithm
(Statement 3) is also maximal.

(5) EdgeSearch finds all maximal triangularly connected
subgraphs in G. This follows since all edges are processed
(introduced in either Step 1 or 3), and the result is maximal
triangularly connected subgraphs (Statements 3 and 4). Q.E.D.

Analysis of the worst-case complexity of the EdgeSearch
algorithm gives O(g2)∗O(g)∗O(log g)=O(g3 log g). This is because
the algorithm must: (i) iterate over all edges e(u, v) in C (Step 3),
with the worst-case complexity O(m)=O(g2); and for each, (ii) look
for a vertex w and edge f (u, w) in G (Step 4), which is at worst
O(g) if it must look through all other genomes in the g-partite
graph; and finally for each of these, (iii) check whether u and w
are adjacent in G, which is an efficient O(log g) lookup from the
list of all adjacent vertices of w (or v). The worst-case complexity
of EdgeSearch is comparable to the O(V3) (V = number of vertices)
of another heuristic method described in Vashist et al. (2007), but
uses different topological information, i.e. triangles in a SymBets
graph rather than dense clusters (quasi-cliques) in a graph that may
include all edges and does not require a species tree.

Our implementation of EdgeSearch, in addition to iterating in
the lower-dimensional space of edges rather than in the space of
triangles, also takes advantage of optimized data structures. The
most important of these are: (i) a list of all edges to iterate through,
(ii) a hash of all edges to quickly test the existence of an edge, (iii) a
hash of all processed edges to quickly test whether an edge has been
processed already and (iv) a list of all adjacent vertices for each
vertex in the graph, to avoid searching the entire space of edges (also,
as shown in Fig. 2, the vertex with the smaller of the two lists can be
chosen to be u in Step 4 of the algorithm). The minimal extra cost
of producing these data structures (compared to storing all possible
triangles) often gives a large payoff: for example, the knowledge
of which edges have already been processed allows EdgeSearch to

Fig. 3. Hypothetical scenario illustrating how the presence of multiple
domains can complicate the inclusion of proteins into COGs (here, the middle
two proteins could be arbitrarily assigned to either the top or bottom COG).

iterate through edges in O(m)∗O(g)=O(g3) time rather than a full
pair-wise O(m2)=O(g4). Furthermore, many of these optimizations
substantially reduce execution time in realistically sparse graphs,
for example by using a list of edges that each gene is adjacent to in
order to avoid the search through the entire set of genes to find a
third vertex w.

2.2 Additional considerations
The EdgeSearch algorithm deterministically finds triangularly
connected subgraphs in G. Iteration over edges reduces its worst-
case behavior compared with the COGtriangles algorithm, and
several optimizations take advantage of the sparseness of the graph,
further reducing its run-time on realistic datasets (see examples
below). The question, however, is whether triangularly connected
subgraphs are too strict a definition of orthologous groups. For
instance, the incompleteness of the SymBets list or an artifact of
domain fusion might cause a rare case where a triangle shares a
side with a subgraph, but not necessarily with a triangle structure
within the subgraph (Supplementary Fig. 1; note that such subgraphs
could no longer be called triangularly connected). Expanding the
definition of COGs to include such subgraphs can be done by
altering COG C to become the subgraph induced by the vertices in
C (i.e. C contains all edges connecting its member genes), but this
introduces an element of non-determinism to the process of building
COGs, where the order of data processing affects the results. In the
current implementation of EdgeSearch, we choose to avoid this non-
determinism rather than extend the definition to handle these rare
events. The alternatives are discussed further in the Supplementary
Material.

Another concern is whether genes should be allowed to belong to
multiple COGs. The first approach is to assign each gene to a single
COG and then disallow it from belonging to another COG i.e. COGs
are defined as being vertex-disjoint), even though reasons such as
differential combination of protein domains or improperly resolved
paralogous relationships can make it appear to belong to multiple
COGs [the former case can be dealt with by splitting proteins into
their component domains (Koonin, 2005; Tatusov et al., 1997)].
Figure 3 illustrates a hypothetical example: in this scenario, the
middle two proteins contain both domains, and thus each could be
arbitrarily assigned to either the top or bottom COG depending on
the order the input is processed in. This phenomenon can affect
the overall number of COGs: for instance, in this example, if both
proteins are assigned to the top COG, the remaining bottom two
proteins are short of the 3-protein requirement to form a full COG.
In the current implementation of EdgeSearch, we chose to allow
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(a)

(b)

Fig. 4. Run-time performance of EdgeSearch (red triangles) compared with
the original COGtriangles (blue circles) and OrthoMCL (black squares) in
the (a) POGs and (b) MOGs datasets.

genes to belong to multiple COGs, which is a natural consequence
of the SymBets graph structure and preserves this information for
future use, such as in domain dissection.

2.3 Performance in construction of phage orthologous
groups

We implemented the algorithm in C++ and tested its ability to
make COGs in a real-world dataset of protein-coding genes from
323 double-stranded DNA bacteriophages [these COGs in phages
are called Phage Orthologous Groups or POGs (Kristensen et al.,
2009; Liu et al., 2006)]. For a more direct comparison of the
two algorithms, we integrated the new approach into the old
framework by starting with the COGtriangles program, eliminating
the makeTriangles() function, and replacing makeCOGs() with an
implementation of EdgeSearch that makes triangles and subgraphs
simultaneously. Figure 4a demonstrates that, as the number of
randomly chosen genomes from this set of phages increases, the
time required by the original COGtriangles method (measured on a
dual-processor Pentium 3 GHz with 2 GB of RAM) increases from
a few seconds to several minutes, whereas EdgeSearch holds steady
at <12 s throughout the entire tested range. More important than
the actual performance is the shape of the curves, with EdgeSearch
handling the increase in number of genomes much more easily than
the original approach, indicating that as more genomes become
available, the advantage conferred by the new algorithm at handling
larger input sizes will become ever stronger.

Not only is EdgeSearch faster than the original COGtriangles
algorithm, but it also outcompetes the newest version (2.0 beta 6)
of the popular OrthoMCL approach (Fig. 4a). OrthoMCL is based
on a generic clustering MCL algorithm (Enright et al., 2002;

Van Dongen, 2000), which uses simulation of stochastic flow
on the edges of the graph, with Markov matrices determining
the transition probabilities among nodes of the graph. Since the
worst-case complexity depends on the input parameters, and
further complications arise from the fact that the MCL algorithm
is applied iteratively until convergence and that its output is
non-deterministic, here we content ourselves with a comparison
of its run-time performance rather than an in-depth look into its
complexity. Indeed, in the most direct comparison, OrthoMCL
(Li et al., 2003) required 44 s to form groups of orthologs from
three or more genomes in the 323 dsDNA phage genomes, whereas
EdgeSearch required only 12 s and COGtriangles almost 5 min.
These numbers (and those in Fig. 4) represent only the clustering
step of the respective approaches (performed by the separate MCL
program (http://www.micans.org/mcl/) in the case of OrthoMCL),
but when the entire pipeline is considered, starting from the BLAST
results and continuing all the way to the end point of groups
of orthologs, then OrthoMCL (starting with an empty MySQL
database to minimize run-time) required 4 min 25 s, EdgeSearch
only 41 s and COGtriangles 5 min 9 s (Supplementary Table 1).

In theory, the output of the EdgeSearch algorithm should
be identical to that of the COGtriangles algorithm. In practice,
differences were observed due to the non-deterministic resolution
of several problems by COGtriangles, and to the changes made
in EdgeSearch to make its output deterministic (Fig. 3 and
Supplementary Fig. 1). For instance, with COGs defined strictly
as triangularly connected subgraphs in EdgeSearch but not in the
COGtriangles approach, six pairs of POGs (0.6% of the total 2058)
are seen to be split in the former but are merged together in the latter.
In addition, 1.2% of the proteins were observed to belong to multiple
POGs produced by EdgeSearch (regardless of whether proteins were
first split into domains prior to POG construction or not, indicating
that the major cause is unresolved paralogy), which affected the
membership of 93 (5%) of the groups and caused 37 (2%) additional
groups to be formed compared to the original approach where
proteins are only allowed to belong to a single group.

To further confirm that the EdgeSearch and COGtriangles
approaches produce identical results across a wider range of input
graphs, 320 additional randomly chosen test sets were constructed
from the 323 phage genomes (corresponding to the data points
shown in Fig. 4) by randomly sampling an increasing number of
genomes, from 5 to 320 in steps of +5, with five independent
replicates of each sample. In each case, the two outputs were
again the same after accounting for the issues of merging a
triangle with a non-triangle within a POG and multiply represented
genes.

The results of EdgeSearch and OrthoMCL were less similar. This
comes as no surprise given their different underlying rationales
[reviewed in (Chen et al., 2007)]. As a result of analysis
of the 323 phage genomes, EdgeSearch produces 2058 POGs,
whereas OrthoMCL produces 2265 clusters with default parameters.
OrthoMCL uses similarity score cutoffs to define SymBets (default
e-value of 1e-5), whereas the COG approach requires no cutoffs, but
in practice discards matches with e-value greater than the BLAST
default of 10 (Tatusov et al., 1997). When these parameters were
adjusted, OrthoMCL produces 2250 clusters with an e-value cutoff
of 10, and EdgeSearch produces 2062 with an e-value cutoff of 1e-5,
indicating that the difference is due to the underlying algorithms
rather than the choice of e-value threshold. The majority of the
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groups produced by the two programs were similar, with 86% of
EdgeSearch groups overlapping (sharing three or more genes) with
68% of OrthoMCL’s (using default parameters in each program),
and 97% of the genes in POGs appearing in an OrthoMCL cluster.
However, nearly a third of the clusters and an additional 5800
genes (44% of the shared total) in OrthoMCL’s results are not
found in POGs, and OrthoMCL’s clusters are significantly larger,
with a maximum size of 287 genes and average of 8.3 genes
per group, compared to a maximum of only 141 genes and an
average of 6.5 genes in POGs. OrthoMCL clusters contain a much
higher number of paralogs, with the maximum of 13 paralogs in
OrthoMCL versus only 4 in POGs, and 796 OrthoMCL clusters
(35%) containing at least one paralog versus only 256 (12%)
in POGs. The OrthoMCL method has been reported to produce
smaller, tighter clusters whereas KOGs (essentially eukaryotic
COGs) produces larger, more inclusive groupings. Conceivably, the
differences between our results and those of Chen et al. (2007)
could stem from different structures of the analyzed datasets, with
a considerably greater extent of gene paralogy in the eukaryotic
genomes analyzed in their study compared to the bacteriophage
genomes that underlie the POGs. For further comparison between
the COGs and OrthoMCL approaches (as well as other methods
of ortholog identification), see Altenhoff and Dessimoz (2009) and
Chen et al. (2007).

2.4 Genomes of cellular organisms: construction of
MOGs

To assess the performance of the EdgeSearch approach on larger
genomes of cellular organisms, we derived the orthologous groups
of 16 726 protein-coding genes from the completely sequenced
genomes of 23 bacteria from the Mollicutes class (MOGs). The
genome sizes of Mollicutes start at 475 genes in the small
parasite Mycoplasma genitalium and reach 1380 genes in the
more metabolically complex Acholeplasma laidlawii (Pollack et al.,
1996). In addition to encoding larger protein sets than in viruses,
these cellular organisms also contain considerably higher levels of
paralogy than phages, with a maximum of 39 paralogs in MOGs (a
large group of transposases in Mycoplasma mycoides), compared
to only 6 in POGs. Other relatively large groups of in-paralogs
in MOGs include 13 DNA-binding protein HU in-paralogs of
Candidatus Phytoplasma australiense, and 13ABC transporterATP-
binding protein in-paralogs in Mycoplasma hyopneumoniae. Despite
this greater genomic complexity, there were even fewer unresolved
paralogy cases in MOGs than in POGs, with only three pairs of
MOGs (0.7%) sharing a side with a non-triangle and only 0.5% of the
genes belonging to multiple MOGs, which affected the membership
of 18 (2%) of the groups and caused 16 (2%) additional groups to
be formed.

In this set of cellular genomes, the performance of EdgeSearch is
even more striking in comparison to OrthoMCL and COGtriangles
(Fig. 4b). While OrthoMCL required >30 min to cluster orthologs,
EdgeSearch completed the task in only 28 s (a >60-fold speedup),
whereas COGtriangles took nearly 3 min. In the full pipeline
starting from the BLAST results, OrthoMCL required nearly an hour
(>55 min), whereas EdgeSearch required <3 min and COGtriangles
>5 min (Supplementary Table 1). Again, the number of clusters
differed, with EdgeSearch producing 833 and OrthoMCL 930 with
e-value cutoff of 10.

3 CONCLUSIONS
The graph-theoretical analysis of the process of making COGs
frames this problem as partitioning the SymBets graph G into several
triangularly connected subgraphs containing genes from three or
more genomes. This framework reveals the bottleneck of the earlier
approaches at the stage of construction and iteration through all
possible triangles, for which memory scales with at least the number
of these triangles, O(g3), and construction time scales with the
iteration through each pair, or O(g6). Our EdgeSearch algorithm,
by iterating over edges rather than triangles, constructs the same
COGs with a worst-case complexity of only O(g3 log g), and several
optimizations reduce the run-time even further in realistically sparse
graphs (at the cost of additional memory, although still less than
the cost of storing all possible triangles). Given that EdgeSearch
produces the same output as the original COGtriangles (except
for cases due to non-determinism, as discussed in the text), and
does so much more efficiently, a new version of COGtriangles that
uses the EdgeSearch algorithm will replace the original version
in the publicly available source code of the COG software at
ftp.ncbi.nih.gov/pub/wolf/COGs/COGsoft/.
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