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Abstract: In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In 
particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired 
dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, fre-
quencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances 
(extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency 
and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology.
In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is 
designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the 
desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was 
inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressila-
tor can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of 
fitness function.
The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic param-
eters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed 
behaviours.
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repressilator
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Introduction
Although the molecular bases of cellular processes 
are already known, the behaviours of gene regulatory 
networks remain poorly understand due to the com-
plexity of their components as well as their multiple 
specific interactions. The main goal of the nascent 
field of synthetic biology is to design and construct 
biological systems that present a desired behaviour.1,2 
Synthetic biology is foreseen with important applica-
tions in biotechnology and medicine, and with sig-
nificant contributions to a better understanding of the 
function of complex biological systems.3 Recently, 
several novel approaches to study the oscillatory 
interactions between genes and proteins of synthetic 
gene network have arisen.4–6 Two important designs 
of such networks advanced the study. One of them is 
the synthetic genetic toggle switch6 and the other is 
called the repressilator. In the present study, we focus 
on the design of a repressilator. The genetic network 
study of a repressilator was proposed by Elowitz and 
Leibler,4 consisting of three genes repressing each 
other in a closed chain (see Fig.  1). The repressila-
tor can induce oscillation of the intracellular levels 
of three proteins encoded by the sequence of plasmid 
which is hosted by the unicellular bacterial microor-
ganism Escherichia coli (E. coli).4

Although the repressilator can show oscillations in 
its protein concentrations, the design of a repressilator 

with desired amplitude, frequency and phase is a 
challenging problem in gene oscillator design. More-
over, the effects of thermal dynamic noise,7,8 muta-
tion, cell division, undefined interactions with the 
cellular context,2 and changing extracellular envi-
ronments can perturb oscillatory properties such as 
amplitude, frequency and phase. These stochastic 
behaviours are the consequence not only of current 
technological limitations but also of internal molecu-
lar fluctuations and external noise in the environment 
of the host cell. Therefore, designing a reliable gene 
oscillator with a desired amplitude, frequency and 
phase under these intrinsic parameter fluctuations 
and extrinsic disturbances on the host cell is another 
important topic for the design of robust synthetic 
gene oscillators.4,5,9,10 Robustness to intrinsic and 
extrinsic noises limits the range of possible circuits to 
only a few designs that can function properly in the 
synthetic gene network.11 Ko et  al have proposed a 
constrained optimization method for system identifi-
cation of biochemical network.12 Batt et al13 have pro-
posed a piecewise-multi-affine method for a desired 
steady input/output of synthetic gene network and 
Chen et al14–16 and Lin et al17 have proposed a robust 
design to achieve a desired steady state of synthetic 
gene network. However, these desired steady state 
design methods can not be applied to transient oscil-
latory behaviours for a robust gene oscillator design 
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Figure 1. Construction of the repressilator network in the host cell, E. coli. The repressilator is a cyclic negative-feedback loop composed of three repressor 
genes (the red regions) tetR, λcl, Lac and their corresponding promoters (the gray regions) in plasmid. The compatible reporter plasmid expresses an 
intermediate-stability GFP variant (gfp-aav) on the ring.
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problem. Indeed, these oscillatory behaviours could 
be represented as limit cycles in phase planes, which 
are more complex than steady state behaviours with 
a fixed equilibrium point. Therefore, how to design a 
robust oscillator around a desired limit cycle is more 
difficult than a robust synthetic gene network design 
with a desired constant steady state (i.e. to a desired 
equilibrium point) by the conventional system sta-
bilization methods.14–16 The reason is that engineer-
ing a synthetic gene network with desired oscillatory 
behaviours is a tracking design problem, and more 
effort is needed to resolve it. To achieve the design 
objective of robust gene oscillator, we propose a 
genetic algorithm approach to imitate the adaptive 
design mechanisms via natural selection in the real 
evolutionary process.

Unlike the conventional trial and error methods 
in gene oscillator designs, a systematic approach is 
developed for the robust design of oscillatory gene 
networks with desired amplitude, period, and phase 

that is robust against internal parameter fluctuations 
and external disturbances. At first, the desired oscil-
lation is modeled by periodic reference signals with 
desired amplitudes, frequencies, and phases which 
are prescribed by the designer beforehand. Then, the 
robust gene oscillator design problem is transformed 
to a stochastic optimal tracking design problem, 
i.e. to specify the kinetic parameters of a gene oscilla-
tor to optimally track a reference periodic signal with 
desired amplitude, frequency and phase despite intrin-
sic fluctuation and external noise. Finally, a genetic 
algorithm (GA) is employed to mimic natural selec-
tion in an evolutionary process, which is faster than 
the adaptive design rules by natural selection in the 
real evolutionary process.18 This GA-based algorithm 
enables us to select adequate kinetic parameters to 
achieve optimal tracking of a repressilator on the host 
cell (see Fig. 2). GAs have been extensively applied in 
solving global optimization searching problems.19–26 
Since GAs are parallel global search techniques that 
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Figure 2. Robust synthetic gene oscillator design process. Robust synthetic gene oscillator design process based on stochastic optimal reference tracking 
via GA searching. Based on the tracking error, the GA-based algorithm can select the design parameter vector α for synthetic genetic oscillator according 
to the three specifications (i)–(iii) to achieve the optimal tracking of any desired periodic signal in eq. (14).
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simulate natural genetic operators,20–22 they are useful 
when the closed-form optimization technique can not 
be applied. Further, because the GA-based design 
algorithm can simultaneously evaluate many points in 
the kinetic parameter space, it is more likely to con-
verge toward the globally optimal tracking solution. 
The proposed GA-based design algorithm is inspired 
by the mechanics of natural selection to a popula-
tion of binary strings encoding the parameter space. 
At each generation, it explores different areas of the 
parameter space, and then directs the search to regions 
where there is a high probability of finding improved 
tracking performance (fitness). By working with a 
population of tracking solutions, the design algorithm 
can search in effect for many local maximums of the 
fitness function, and thereby increase the likelihood of 
finding the global maximum of fitness function (or the 
optimal tracking performance). Global optimal track-
ing can be achieved via a number of genetic operators, 
e.g. reproduction, mutation, and crossover.

After specifying kinetic parameters in feasible 
ranges by the proposed GA-based design algorithm 
for robust optimal tracking design, the robust synthetic 
gene oscillator could be realized with the recently 
advanced biological techniques. Combinatorial pro-
moters with multiple TF binding sites, or operators, 
can assist in the programming gene expression to 
carry out the designed optimal transcription rates.5,27–29 
Another characteristic method of protease modifica-
tion is to control the degradation rates of protein by 
fusing ssrA- tagged proteins with corresponding pro-
tein, which can reduce the protein degradation of cor-
responding gene.5,30–32 Recently, a simple method to 
select adequate biological parts or devices from bio-
logical device datasheets (or libraries) to construct 
a gene network with desired kinetic parameters and 
decay rates has been proposed.33–35 In this way, syn-
thetic biologists can increase the efficiency of gene 
circuit design through registries of biological parts 
from standard datasheets so that these biological parts 
or devices with desired parameters can be efficiently 
assembled into a desired synthetic gene oscillator.33–35

Gene oscillators have many useful applications. 
For instance, gene oscillators can be applied to control 
the dosage of drugs, e.g. melatonin can be released 
at night to aid sleeping.36 Moreover, oscillators are 
also essential for many biochemical networks which 
require synchronization among circuit elements.4,37 

Further, since all these techniques can be effectively 
applied to any synthetic gene network design, in the 
future there should be many potential applications of 
robust synthetic gene networks.

Finally, a design example is given to describe the 
design procedure for a desired synthetic gene oscil-
lator using the proposed GA-based design algorithm 
and to confirm its robust performance under intrinsic 
parameter fluctuation and extrinsic disturbance.

Methods
Stochastic model for repressilator under 
intrinsic and extrinsic molecular noises
In the previous repressilator design, the repressi-
lator consists of two plasmids (see Fig. 1),4 one of 
which is a plasmid containing three in-chain repres-
sor genes. The other plasmid consists of the reporter 
gene which encodes the green fluorescence pro-
tein (GFP). Because the GFP sequence is coupled 
to a promoter corresponding to one of proteins in 
the repressilator, if this protein is produced, it will 
repress the production of the GFP. That is to say, the 
oscillation expressions of the repressilator encoded 
proteins would be presented by the expression level 
of reporter gene. Hence, the oscillations of the sys-
tem can be detected by measuring the fluorescence 
emitted by the cells.

In the repressilator shown in Figure  1, the first 
repressor protein, lacI from E. coli, inhibits the tran-
scription of the second repressor gene, tetR from the 
tetracycline- resistance transposon TN10, whose pro-
tein product in turn inhibits the expression of the third 
gene, cI from the λ phage. Finally, cI inhibits lacI 
repression, completing the cycle. The negative feed-
back loop in the following transcriptional regulatory 
model can lead to temporal oscillations in the concen-
tration of each component for us to design the repressi-
lator and study its robust dynamic behaviour.4

	

dm
dt

m
p K

i
m i

i

j i
n ii

= − +
+ ( )

+γ α α
1

0 	 (1)

	

dp
dt

m pi
i i p ii

= −β γ 	 (2)

where mi is the concentration of messenger RNA 
(mRNA) and pi and pj are concentrations of proteins 
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for i = 1, 2, 3 corresponding to lacI, tetR, and cI; and 
j = 3, 1, 2 corresponding to cI, lacI, and tetR, respec-
tively. Parameters γ mi , and γ pi  are the decay rates 
of mRNAs and proteins. αi is the transcription rate 
of mRNA. α0i is the effect of leakiness and is usually 
zero for stable state. βi accounts for the number of 
translated protein molecules per mRNA molecule. Ki 
is the number of the jth proteins for a half repression 
of the ith promoter.

In this model, the network behaviour depends 
on the transcription rate of repressor concentration, 
the translation rates and decay rates of protein and 
mRNA. Depending on the values of these parame-
ters, the network may be stable, chaotic or leading 
to sustained limit-cycle oscillations. Oscillations are 
favored by gene regulatory networks with strong 
promoters containing an efficient ribosome-binding 
site, tight transcriptional repression (low ‘leakiness’), 
cooperative repression characteristics, and compara-
ble protein and mRNA decay rates.4 A further obsta-
cle to the design of oscillatory biochemical networks 
is internal uncertainty, e.g. the thermal fluctuation 
and the stochastic effects due to the small number of 
particles involved, characterized as the fluctuations 
of parameters, and external disturbance on the host 
cell from the environment. These intrinsic parameter 
fluctuations and extrinsic molecular noises also may 
lead sustained oscillations to stable steady states or 
chaos. Although synthetic oscillators are much sim-
pler than the real biological oscillations, at present 
these synthetic oscillators still can not work reli-
ably for a long time and need further tuning before 
application.1,2 It is still difficult to systematically 
design a synthetic gene oscillator with desired ampli-
tude, frequency and phase specified beforehand by 
the user. In practical applications, a robust synthetic 
gene oscillator with the desired amplitude, frequency 
and phase under intrinsic and extrinsic molecular 
noises is more useful. More efforts are still needed to 
achieve this kind of robust synthetic gene oscillator 
in vivo design.

Therefore, a robust synthetic oscillator network 
with desired amplitude, frequency and phase is more 
appealing for synthetic biologist. Before further dis-
cussion on the robust design of synthetic biological 
oscillators, a stochastic model for synthetic biological 
oscillator with intrinsic fluctuations and extrinsic 
disturbances in vivo is introduced as follows

m m
p K

vm m n1 1
1 1

3 1
01 11 1 1

= − +( ) +
+( )

+ ( )
+ +γ γ

α α
α∆
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	 (3)
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= +( ) − +( ) +β β γ γ∆ ∆ 	 (8)

where ∆γ mi
, ∆αi, ∆βi, and ∆γpi denote the kinetic para-

metric fluctuations and νk denotes the corresponding 
external stochastic disturbances with variance σ k

2 , 
for k = 1 … 6.

Suppose the parametric fluctuations are stochastic 
as follows
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where δγ mi
, δαi, δβi, and δγpi denote the determinis-

tic parts of parametric fluctuations, and n1, n2, n3, and 
n4 are independent standard white noises to denote 
the random fluctuation sources with unit variance.
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i.e. δγ mi
, δαi, δβi, δγpi denote the standard deviations 

of the corresponding stochastic parametric fluctua-
tions of ∆γ mi

, ∆αi, ∆βi, ∆γpi, respectively.
Substituting (9) into (3) to (8), we get the following 

stochastic synthetic oscillator in vivo
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A more general form of stochastic system for 
synthetic biological oscillator (10) under intrinsic 
parameter fluctuations and external disturbances in 
the context of the host cell can be represented by the 
following nonlinear equation

	
X f X g X n vi i

i

M
= ( ) + ( ) +

=
∑

1
	 (11)

where X = [m1 p1 … m3 p3]
T denotes the state vector 

of the synthetic biological oscillator; ν = [ν1 … ν6]
T 

denotes the external disturbance in vivo; f(X) denotes 
the nonlinear biochemical interactions of synthetic 
biological oscillator; and gi (X) denotes the effect of 
the ith random fluctuation source ni on the synthetic 
oscillator. In a real biological oscillator, the robust 
kinetic parameters are selected by natural selection in 
the evolutionary process to achieve robust oscillation 
under intrinsic and extrinsic molecular noises. In this 
study, we mimic the design rules of natural selection 
via genetic algorithm (GA) to select adequate kinetic 
parameters to achieve a robust genetic oscillator 
design via fast computer simulation.

Recent developed technique in synthetic biol-
ogy may allow tuning promoter, ribosome binding 
and the protein degradation with relative ease and 
precision.5,27–32 Hence, we may select biological parts 
or devices with desired parameters to engineer gene 
circuits from biological device datasheets (or librar-
ies) in future.33–35 Based on these biotechnologies or 
biological device datasheets, we want to design the 
transcription rates αi and the protein degradation 
rates γpi, i = 1, 2, 3 so that the protein concentrations 

pi, i = 1, 2, 3 of the synthetic oscillator in (10) have 
the desired amplitudes, frequencies and phases under 
stochastic intrinsic and extrinsic noises affecting 
the host cell. The transcription rates αi, i  =  1, 2, 3 
are dependent on the binding affinities of the corre-
sponding transcription factors, which are related to 
the locations and lengths of binding sites inserted to 
the promoter regions of the target genes. The deg-
radation rates γpi are dependent on their sequences 
and structures.30–32

Based on the analysis above, design specifica-
tions of robust synthetic gene oscillators are given as 
follows

i.	 Give a desired oscillation with the following 
desired amplitudes, frequencies, and phases as 
followsa

	 Ai sin (ωt + φi), i = 1, 2, 3	 (12)

	 i.e. Ai, ω, and φi, i = 1, 2, 3 in (12) are initially spec-
ified for the oscillatory behaviours of protein con-
centrations pi (t) in (10) by synthetic biologists.

ii.	Give the standard deviations δγ mi
, δαi, δβi, and 

δγpi, of intrinsic parameter fluctuations and the 
variances σ k

2 , k = 1 … 6 of extrinsic disturbances 
νi according to the in vivo situation of synthetic 
oscillators in the host cells.
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aThe sinusoidal signal in (12) is given only for the convenience of the desired 
periodic signal. Actually, it can be any periodic signal to be designed for the syn-
thetic genetic oscillator. For example, it could be any signal Yi (t) generated by 
the nonlinear differential equation Yi (t) = f (Yi (t)), Yi (0) = Yi,0, for i = 1, 2, 3.
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iii. � Give the ranges of feasible design parameters αi 
and γpi according to the feasible design condition

α α α γ γ γi ia ib p p pi ia ib
i∈ [ ] ∈   =, , , ,1 2 3 	(13)

Then our design objective is to search for 
αi ∈ [αia αib] and γpi ∈ [γpia γpib], i = 1, 2, 3 such that 
the following mean-square tracking errors should be 
minimized to satisfy the requirement of the design 
specifications in (i)–(iii).

min sin

, ,

α α α
γ γ γ

ω φ
i ia ib

pi pia pib
i

i i iE p t A t
∈[ ]
∈ 

=

( ) − +( )( )
1 2 3

22

0
1

3
dt

T

i
∫∑

=
	(14)

If the above mean-square tracking errors could 
be minimized by some design parameters αi

*  and 
γ i

*  under the design specification (i)–(iii), then the 
amplitudes, frequencies and phases of the protein 
concentrations of synthetic genetic oscillator could be 
maintained as robustly as possible under the intrinsic 
and extrinsic molecular noises on the host cells.

Robust synthetic genetic oscillator 
design via GA-based design algorithm
It is generally not easy to get a closed-form solution 
to solve the optimal tracking design problem in (14) 
for a nonlinear stochastic oscillation system (11) to 
meet the robust synthetic oscillator design specifi-
cations (i)–(iii). In this study, the genetic algorithm 
(GA) is employed to mimic natural selection in the 
evolutionary process of a gene oscillator but with a 
faster evolutionary computation. Genetic algorithms 
are stochastic optimization algorithms that are origi-
nally motivated by the mechanisms of natural selec-
tion and evolutionary genetics.20–22 The underlying 
principles of GAs and mathematical frameworks 
were presented in Holland’s pioneering work, Adap-
tation in Natural and Artificial Systems.22 GAs have 
been proven to be efficient in many areas21 and more 
details about GAs can be found in.20

GAs are powerful searching algorithms based on the 
mechanics of natural genetic and are inherently paral-
lel because they simultaneously evaluate many points 
in the parameter space (search space). Therefore, 
they are very suitable for the robust optimal design 

of synthetic gene oscillators. In the optimal tracking 
design problem (14), let us denote the cost function J

J E p t A t dti p i i i
T

i
i

( , ) sinα γ ω φ= ( ) − +( )( )∫∑
=

2

0
1

3

	(15)

Our objective is to search for a set of design 
parameters αi and γpi, i = 1, 2, 3 by a genetic algorithm 
within the feasible parameter space in (13) to mini-
mize J (αi, γpi), which should be assigned the smallest 
cost value. This is a highly nonlinear minimization 
problem, in which many local minima can be reached 
via conventional search algorithms, though they 
may not identify the global minimum. GA has been 
employed to solve the global minimization searching 
problem (15). Then the GA tries to generate better 
offspring αi and γpi, i = 1, 2, 3 to improve the fitness 
so we set a fitness function F (αi, γpi) ∝ 1/J (αi γpi). 
Therefore the fitness function plays the role of natural 
selection to select the parameters αi and γpi which will 
maximize the fitness function F (αi, γpi), or equiva-
lently, minimize J (αi, γpi). Here we use the so-called 
the windowing mapping method to get the fitness 
function of natural selection as follows19

	 F (αi, γpi) = aJ (αi, γpi) + b	 (16)

where the constants a and b are computed by Fb, Fw, Jb, 
and Jw in each generation according to (see Fig. 3)

	
a F F

J J
b F aJ J Jb w

b w
b b w b=

−
−

= − >, ,

i.e. the fitness function F (αi, γpi) is inversely propor-
tional to J (αi, γpi). It means a small tracking error will 
lead to a large fitness, and vice versa.

The GA-based deign algorithm is an iterative pro-
cedure to search for αi and γpi to maximize the fitness 
function in (16), which mimics the natural selection 
of the evolution process in the real world to select 
the optimal fit parameters for a robust synthetic 
gene oscillator. In each iteration or generation, these 
genetic operators (reproduction, crossover, and muta-
tion) are performed to generate new populations (off-
springs or new sets of parameters αi, γpi, i = 1, 2, 3), 
and the chromosomes of these new populations are 
evaluated via the fitness score (16). On the basis of 
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these genetic operators and the evaluations, the better 
new populations of candidate solutions are formed in 
each genetic generation. A simple GA-based design 
algorithm is given as follows.

	 i.	� Generate a population (i.e. αi, γpi, i = 1, 2, 3) of 
binary strings randomly within feasible ranges in 
(13).

	 ii.	� Calculate the fitness in (16) for each string in the 
population.

	iii.	� Create offspring by GA operators (i.e. reproduc-
tion, crossover, and mutation)

	iv.	� Evaluate the new strings and calculate the fitness 
of natural selection for each string.

	 v.	� If the searching goal is achieved, or an allowable 
generation is attained, stop and return; else go 
to (iii).

The convergence of genetic searching algorithm 
employed for our design problem has been discussed 
from the viewpoint of schema or similarity template 
scheme.20 It can be guaranteed that the optimal fitness 
function F i pi

( , )* *α γ  can be approached by genetic 

algorithm as t  →  ∞ and the corresponding opti-
mal parameter set ( , )* *α γi pi

 is chosen as schema.20 
We now describe the details in employing the pro-
posed GA-based design algorithm to solve the robust 
design problem of synthetic gene oscillators. In order 
to introduce the design method more clearly, the fol-
lowing illustration is given with the description of 
αi only.

Chromosome coding and decoding
Since GAs work with a population of binary strings, 
not the parameters themselves, for simplicity and con-
venience, binary coding is used in this article. With 
the binary coding method to transform the phenotype 
space into a genotype space, the design parameters 
(phenotype) α1, α2, and α3 would be coded as binary 
strings (genotypes) of 0’s and 1’s with lengths B1, B2, 
and B3 (may be different), respectively. The choice of 
B1, B2, and B3 for the parameters is based on the reso-
lution specified by the designer in the search space. 
In the binary coding method, the bit length Bi and the 
corresponding resolution Ri are related by

Fb

Jb

Fw

Jw

F (α1      α2      α3      γp1      γp2      γp3)

J (α1      α2      α3      γp1      γp2      γp3)

Figure 3. The inverse relation between the cost function J(α1 α2 α3 γP1 γP2 γP1) and fitness function F (α1 α2 α3 γP1 γP2 γP1) in eq. (16). This figure indicates 
that a large tracking error will lead to a small fitness, and vice versa.
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Ri

ib ia
Bi

=
−
−

α α
2 1

	 (17)

where the upper and lower bounds αib and αia are 
defined in (13). For example, suppose the feasible 
parameter domain of (α1, α2, α3) is 

	

D :
.

. .

. .

0 3 75
0 2 0 83
2 5 8 7

1

2

3

 
 
 

α
α
α





 	

(18)

	 The resolution (R1, R2, R3) is specified by the 
designer as (0.25, 0.01, 0.2). From (17), we have(B1, 
B2, B3) = (4, 6, 5). Then the parameter set (α1, α2, α3) 
can be coded according to the following phenotype/
genotype mapping

α α α1 2

0 0000 0 2 000000 2 5 00000
0 25 0001 0 21 000001

Code Code Code3

. .
. . 22 7 00001

3 75 1111 0 83 111111 8 7 11111

.

. . .
     

If (α1, α2, α3) is (0.25, 0.2, 8.7), then the chromo-
some for the parameter set is a binary string (0001 
00000 11111). The decoding procedure is the reverse 
of the procedure for coding. Our design objective is 
to mimic natural selection in evolutionary process to 
search (α1, α2, α3) in D to achieve the maximization 
of the fitness function in (16) through GA via repro-
duction, crossover and mutation operators.

Reproduction
Reproduction is based on the principle of survival of 
the better fitness. The fitness of the ith string, Fi, is 
assigned to each individual string in the population 
where higher Fi means better fitness. These strings 
with large fitness would have a large number of cop-
ies in the new generation. For example, in roulette 
wheel selection, the ith string with high fitness value 
Fi is given a proportionately high probability of repro-
duction, Pi, according to the distribution

	
P F

Fi
i

i
=

∑
	 (19)

Once the strings are reproduced or copied for pos-
sible use in the next generation, they are reproduced in 
a mating pool where they await the action of the other 
two operators, crossover and mutation (see Fig. 4).

Crossover
By the second operator, the strings exchange infor-
mation via probabilistic decision. Crossover provides 
a mechanism for strings to mix and match their desir-
able qualities through a random process. After repro-
duction, simple crossover proceeds in three steps. 
First, two newly reproduced strings are selected from 
the mating pool produced by reproduction. Second, a 
position along the two strings is selected uniformly at 
random. This is illustrated below where two binary 
coded strings, (α1, α2, α3)A and (α1, α2, α3)B with 
length l = 12 are shown aligned for crossover.

	

                              Crossing site↓
( ) =α α α1 2 3 11, , A 000 00011111

0010 110010111 2 3



α α α, ,( ) =B

The third step is to exchange all characters follow-
ing the crossing site. For example, the two strings (α1, 
α2, α3)A and (α1, α2, α3)B with a crossover at the 4th 
bit become.

α α α

α α α
1 2 3

1 2 3

1100 11001011

0010 00011111

, ,

, ,
( ) =

( ) =
A

B





Although crossover uses random choice, it should 
not be thought of as a random walk through the 
search space. When combined with reproduction, it 
is an effective means of exchanging information and 
combining portions of high-quality solutions.

Mutation
Reproduction and crossover give GAs most of their 
search power. The third operator, mutation, enhances 
an ability of GAs to find a near-optimal solution. 
Mutation is the occasional alternation of a value at a 
particular string position, an insurance policy against 
the permanent loss of any simple bit, and it is applied 
with a low probability such that it is chosen so that 
on average one string in the population is mutated. 
For example,
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	 ↓ Mutation

(α1, α2, α3) = 10100101[0]101

(α1, α2, α3) = 10100101[0]101

In the case of binary coding, the mutation opera-
tor simply flips the state of a bit from 0 to 1 at the 9th 
code or vice versa. Mutation should be used sparingly 
because it is a random search operator, and with high 
mutation rates, the algorithm could become a little 
more than a random search.

The convergence of a genetic search algorithm 
employed in our design problem can be shown by 
schema or a similarity template theorem20 to the 
maximization of fitness,b i.e. the optimal oscillation 

tracking for robust parameter design in (14) can be 
achieved under intrinsic parameter fluctuations and 
extrinsic disturbances in the design specifications 
(i)–(iii).

GAs are more suitable to the iterative synthetic 
gene oscillator design problem than other major 
searching methods such as gradient-based algorithms 
and random searching algorithms for the following 
reasons. First, the searching space may be very large. 
Second, the performance surface does not require a 
differentiability assumption with respect to changes 
in kinetic parameters of the repressilator. Hence, the 
gradient-based searching algorithms that depend on 
the existence of derivatives are inefficient. Third, the 
likely fit terms are less likely to be destroyed under a 
genetic operator, thereby often leading to faster con-
vergence. Similarly, other synthetic gene networks 
with desired output responses can be obtained by the 
same design procedure.

Coding

Offspring

11000...

00101...

01010...

00001...

01010...

Mutation Crossover

Decode

Require next one

D

Fi

Pi

No

Yes

Mating
pool

Compute
fitness

value in (16)

Compute
probability

of 
reproduction

α1, α2, α3,
γp1, γp2, γp3 ∈

Figure 4. Flow Chart for the design procedure via GA.

bIn addition, in the genetic algorithm, the elitist strategy can be incorporated. 
This strategy directly copies the best chromosome from the old population into 
the next population to prevent losing the best solutions in the succeeding itera-
tion to improve the genetic algorithm performance.
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Results
In order to illustrate the design procedure of the pro-
posed robust synthetic gene oscillators, the following 
example with numerical simulation is given for the 
description of the design procedure.

Consider the synthetic gene oscillator example 
with the same parameters as,4 except that αi and γpi are 
to be designed. Suppose the desired phases of three 
proteins are uniformly distributed, e.g. φ1  =  2π/3, 
φ2 =  0, and φ3 =  –2π/3. Then we give a prescribed 
reference model for the repressilator as follows (see 
Fig. 5a)

	 Y1 = 28 sin (0.0208πt + 2π/3) + 30

	 Y2 = 27 sin (0.0208πt) + 31	 (20)

	 Y3 = 28 sin (0.0208πt – 2π/3) + 30.5

Suppose the biochemical regulatory network is 
affected by the four random intrinsic parameter fluc-
tuations from n1 to n4, and environmental disturbances 
ν1 (t), ν2 (t) and ν3 (t) as follows

	

dm
dt

n m
n

p
1

1 1
1 2

3
2 010 3465 0 15

0 75

1 40
= − +( ) +

+( )
+ ( )

+. .
.α

α

	

dp
dt

n m n p vp
1

3 1 4 1 10 167 0 1 0 5
1

= +( ) − +( ) +. . .γ

	

dm
dt

n m

n

p

2
1 2

2 2

1
2 02

0 3465 0 12

0 375

1 40

= − +( )

+
+( )

+ ( )
+

. .

.α
α

	 (21)

	

dp
dt

n m n p vp
2

3 2 4 2 20 167 0 2 0 1
2

= +( ) − +( ) +. . .γ

	

dm
dt

n m
n

p
3

1 3
3 2

2
2 030 3465 0 1

0 5

1 40
= − +( ) +

+( )
+ ( )

+. .
.α

α

	

dp
dt

n m n p vp
3

3 3 4 3 30 167 0 15 0 1
3

= +( ) − +( ) +. . .γ
	

where α0i = 0.001αi for i = 1, 2, 3; and the random 
fluctuation sources n1, n2, n3, and n4 are independent 
standard white noises with unit variance from tran-
scriptional noise, translational noise, and molecular 
diffusion noise etc. The standard deviations of sto-
chastic parametric fluctuations in the host cell are 
assumed as

	

δγ δγ δγ
δα δα δα
δβ δβ δβ
δγ δγ δγ

m m m

p p p

1 2 3

1 2 3

1 2 3

1 2 3

0







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









=
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. . .
. . .

15 0 12 0 1
0 75 0 375 0 5
0 1 0 2 0 15
0 5 0 1 0 1



















and the external noises νk for k = 1, 2, 3 are assumed 
to be uniformly distributed white noises on the con-
centrations of corresponding genes or proteins to 
show the ubiquitous intercellular and environmental 
disturbances.

Under the intrinsic fluctuations and extrinsic 
noises, the nominal and the noise-corrupted protein 
time-responses of a synthetic gene network with 
αi = 0.5 and γpi = 0.069 in4 are shown in Figures 5a 
and 5b, respectively. With intrinsic parameter per-
turbations and extrinsic disturbances, the parameter 
fluctuations of the repressilator can perturb the system 
away from the limit cycle region in,4 i.e. the bifurca-
tion in parameters can perturb the synthetic genetic 
system away from limit cycle region and converge 
to some stable region with steady state values shown 
in Figure 5b. Obviously, the oscillatory character of 
synthetic repressilator in4 has been violated by intrin-
sic parameter fluctuations and extrinsic noises. There-
fore, the repressilator in4 is not a robust oscillator. In 
this situation, a robust synthetic genetic oscillator 
design is necessary to guarantee the synthetic gene 
oscillator to function properly under intrinsic param-
eter fluctuations and extrinsic disturbances.

In order to solve the robust optimal tracking 
design problem of synthetic gene oscillator via the 
proposed GA-based design algorithm, we set the GA 
operators as follows: first, we use the roulette wheel 
selection to increase the selecting efficiency of the 
populations which have higher fitness score; second, 
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Figure 5. Time-responses of protein concentrations. (a) The nominal repressilator time-response with αi = 0.5, γpi 0.069 for i = 1, 2, 3 by the minute in.4 
(b) The repressilator time-response under intrinsic parameter fluctuations and extrinsic disturbances on the host cell. These two time-responses show that 
the repressilator in4 suffers substantially from the effects of intrinsic parameter fluctuations and environmental noises on the host cell. Clearly, the corrupted 
repressilator does not have enough robustness to tolerate parameter fluctuations and extrinsic noises and loses its characteristics of oscillation.

http://www.la-press.com


GA-based design algorithms for the robust synthetic

Gene Regulation and Systems Biology 2010:4	 47

the crossover rate is 0.8; third, the chromosome 
mutates uniformly with the mutation rate 0.05; and 
fourth, we set the constants a and b in (16) by choos-
ing [Fb Fw Jb Jw] =  [10 0.01 5.5869 2.6779]. In the 
binary coding process, we set the bit length in (17) as 
[B B B B B B

p p pα α α γ γ γ1 2 3 1 2 3
]  = [11 11 11 10 

10 10], i.e. the corresponding resolutions of R
iα  and 

Rγ pi  are specified as [0.005 0.005 0.005 0.004 0.004 
0.004] among the feasible parameter ranges given by 
αi ∈ [0 10] and γpi ∈ [0 5] for i = 1, 2, 3 (in,4 αi = 0.5 
and γpi  =  0.069 for all i). Via the help of Genetic 
Algorithm Toolbox in Matlab, from these feasible 
parameter ranges, we could solve the optimal track-
ing problem of robust synthetic oscillator in Figure 4 
as [ ]* * * * * *α α α γ γ γ1 2 3 1 2 3p p p   =  [0.515, 0.505, 
0.505, 0.068, 0.068, 0.072], with fitness score 10. 
During the GA simulation, we record the course of 
evolutionary history in Figure 6. From the simulation 
result, we can see that the proposed GA-based design 
method could find the optimal oscillation tracking 

solution efficiently. Because of the random process 
of mutation and crossover, the average fitness score 
jumps up and down (Figure not shown). However, the 
best value is improved by employing the elite strat-
egy with the best two populations in the evolution 
process. This can save the optimal solution until the 
crossover and mutation processes of the next genera-
tion. In Figure 6, we show both the evolutions of the 
best cost value and the best fitness score, with their 
relationship as shown in Figure 3. During the evolu-
tionary process, because the repressilator system is a 
dynamic synthetic gene network, i.e. the parameter 
fluctuations and extrinsic disturbances vary stochasti-
cally in each generation, the fitness score of the best 
population in the new generation would be slightly 
different from the fitness score of the same population 
in the old generation. This is why the fitness score in 
Figure 6 is unsteady.

Based on the design parameters via the proposed 
GA-based design method, the time responses of robust 
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Figure 6. Convergence of fitness value the best fitness score and best cost value evolve during the generations, whose relationship is shown in Figure 3. 
The vibrations of the best cost value and the best fitness score come from the stochastic intrinsic parameter fluctuations and extrinsic noises, which fluctu-
ate in each generation and directly affect the reliability of the synthetic gene network.
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synthetic gene oscillator under intrinsic parameter 
fluctuations and extrinsic noises are shown in Figure 7. 
Through the robust GA-based design method, we can 
obtain desired oscillatory behaviour in this repressi-
lator system. In Figure 7(b), the repressilator system 
with GA optimal solutions shows the robust desired 
characteristics of oscillation under intrinsic param-
eter fluctuations and extrinsic disturbances. Although 
there are still some discrepancies between the desired 
oscillation signals and the protein concentrations of 
repressilator, mainly due to the intrinsic parameter 
fluctuations and extrinsic disturbances, these results 
are much better than the synthetic design in,4 as shown 
in Fig 5b. Clearly, the proposed robust synthetic gene 
oscillator design method has potential for practical 
applications in future.

In this in silico robust repressilator design exam-
ple, the robust design scheme could be realized with 
the specified robust mRNA transcription rates, αi

*, 
and protein decay rates, γ pi

*  for i =  1, 2, 3, in the 
corresponding feasible parameter design ranges to 
satisfy the prescribed oscillatory characteristics of 

the synthetic gene oscillator. Several biotechnology 
methods have been proposed by adjusting the com-
binatorial polymerase binding boxes and integrat-
ing different ligations to generate a diverse promoter 
library and a diverse protein decay rate.27–32 Thus, we 
could synthesize the genetic repressilator with fine-
tuned parameters, αi and γpi for i  =  1, 2, 3 in (10) 
to confirm our design scheme. Although this method 
is direct, it is an inefficient method. To remedy this, 
synthetic biologists can increase efficiency of syn-
thetic gene network design through registries of 
biological parts and standard datasheets of the Bio-
Brick assembly standard, which are developed and 
concerned with proper packing and characterizing of 
‘modular’ biological activities such that these biolog-
ical parts or devices with some prescribed characters 
may be efficiently assembled into gene networks in 
the future.34,35

Comprehensive datasheets are used for quantita-
tive descriptions of devices in many standardized 
engineering disciplines. A synthetic gene network 
designer can quickly and easily select some desired 
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Figure 7. (Continued)
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devices from biological device datasheets to meets 
their design requirements of a system.34 Thus, via 
the help of engineering theory and experience, a 
conceived system could be constructed by a set of 
devices with standard characteristics, which are typi-
cally reported on datasheets and are common across a 
wide range of devices type, such as sensors, logic ele-
ments and actuators. Recently, biological datasheets 
have been set as standards for the characterization, 
manufacture and sharing of information on modu-
lar biological devices to promote a more efficient, 
predictable and design-driven genetic engineering 
science.33–34 Because datasheets of biological parts or 
devices embody engineering standards for synthetic 
biology,34 a good device standard should show suf-
ficient information about biological parts or devices 
to allow the design of synthetic gene networks with 
optimal parameters. Datasheets contain a formal set 
of context-dependent, input-output behaviours, toler-
ances, requirements and other details about a particular 

biological part or device.33–34 Since parameters αi rep-
resent the optimal transcriptional rates, these parame-
ters could be measured from input-output behaviours 
of biological parts or devices. Moreover, through the 
combinations of one or more devices, a biological 
designer could assemble another well-defined phys-
ical device, such as a well-defined γpi, to achieve a 
desired oscillatory characteristic.34,35 From properly 
characterized input-output behaviours, the biological 
designer can estimate the corresponding parameters 
of biological parts or devices. Then, adequate devices 
can be rapidly selected from an extensive list of the 
parts to meet the design parameters. Adherence to the 
set of standard devices in datasheets ensures that each 
device and systems synthesized from them can satisfy 
the requirements of design specifications for a robust 
synthetic gene oscillator.

But there are many uncertainties about the behav-
iour of synthetic oscillators. For example, the cel-
lular functions from devices will fluctuate and there 
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Figure 7. Time-response of the synthetic gene oscillator via the proposed GA-based design method solution. (a) Time-responses of these three proteins. 
(b) Time-response tracking of each protein and its reference. Under the parameter fluctuations and environmental noises, the designed repressilator can 
maintain its characteristics of oscillation and function properly. There are still some discrepancies between the desired reference signals and the protein 
concentrations of the repressilator, which are mainly due to parameter perturbations and environmental noises.
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are also many parasitic and unpredictable uncertain-
ties among components as well as on the host cell. 
Since the transcriptional rate, αi, has a positive corre-
lation with the promoter activity, it can been seen as 
a combinative presentation of promoter strength and 
ribosome binding site of the transcription. However, 
there are still some variations or uncertainties on the 
parameter value αi. In terms of a mathematic model, 
these variations or uncertainties of αi can be trans-
formed to an equivalent uncertain disturbance δαi in 
equation (10), as can the other parameters δγ mi

, δβi, 
and δpi. The robust synthetic oscillator design can 
predict the most robust values of αi and γpi by the pro-
posed GA-based design method under intrinsic fluc-
tuations and extrinsic noise. In our design example, 
the proposed synthetic gene oscillator not only can 
achieve the desired oscillation tracking design but 
also can tolerate the worst-case effect due to these 
uncertain parameter fluctuations and external noises 
on the host cell.

Discussion
By using the GA-based design method along with 
Matlab, we can easily solve the design parameters for 
this optimal reference tracking problem of a robust 
synthetic gene oscillator under intrinsic and extrin-
sic noises. However, there are still some disadvan-
tages in the GA method. First, this method requires 
a great deal of time for the coding and decoding 
process in the natural selection if the number of 
design parameters increases. Fortunately, there are 
many advanced GA methods, like Hybrid Genetic 
Algorithm (HGA)23,26,38 or the combination with Sim-
ulated Annealing Algorithm (SA),24,25 that can save 
time and increase the probability of finding the global 
optimum solution. Second, the solution may be only 
a near-optimum due to limitations of GA method, 
for example, the limitation of finite bit length Bi of 
chromosome coding and the finite generations in GA 
searching process. Therefore it is perhaps not surpris-
ing that the GA method may not converge to the truly 
global optimal tracking solution.

Despite these disadvantages of GA methods, 
their primary advantage is that the highly nonlinear 
constrained minimization problem in (14) can be 
solved for a robust synthetic gene oscillator, which 
does not have a closed-form solution. To avoid find-
ing a local optimal solution, the proposed GA-based 

design method can help approach the global optimal 
solution by the ‘mutation’ and ‘crossover’ processes. 
Even though the GA method does not always find the 
global optimal solution, its solution is often close to 
the optimum, whereas other conventional searching 
algorithm can only obtain a local optimal solution. 
By the property of mimicking natural selection in the 
GA method, most optimal solutions are not reproduc-
ible in the repeated biological simulations. This is not 
surprising because the GA searching process con-
tains not only the different initial conditions but also 
the different random mutations and crossovers, as in 
real world evolutionary processes. For example, in 
some in vivo experimental studies, E. coli changes its 
genotype to increase the survival opportunity when 
suffering intrinsic fluctuations and environmental 
noises like glucose fluctuation, glucose limitation, 
molecular thermal fluctuation or other environmental 
stresses.39–41 These random mutations and crossovers 
may be different in the GA searching process, but the 
evolutionary results from the GA method would be 
very similar due to mimicking the natural selection to 
maximize the fitness score in (16). This phenomenon 
is a form of convergent evolution and, clearly, our 
results by the GA-based design method in silico mir-
ror what happens in these in vivo studies in parallel 
E. coli cultures.

From an engineering point of view, when we 
synthesize a prescribed biological oscillator as the 
repressilator, its function could suffer interference 
from the intrinsic fluctuations and environmental 
noises that affect the host cell. These fluctuations and 
noises will corrupt the synthetic gene oscillator so that 
it can not achieve the desired behaviour. In this study, 
we proposed a design procedure using the GA method 
which mimics the natural selection in the evolution-
ary process of the real world to optimize the desired 
reference tracking of synthetic gene oscillator and to 
tolerate parameter fluctuations and external distur-
bances on the host cell. In this respect, our design is 
a rapid selection scheme. This can save the evolution 
time for optimal selection in the revolutionary pro-
cess for increasing the robust oscillation characteris-
tics and for improving the reliability of a synthetic 
gene network. Thus, the time responses in Figure 7b 
compared with the time response in Figure 5b show 
that the robustly designed repressilator can efficiently 
eliminate the effect of uncertainties due to effects of 
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intrinsic parameter fluctuation and the extrinsic noise 
on the oscillation.

Clearly, the proposed GA-based design method 
provides a systematic design method for a robust 
synthetic gene oscillator with desired amplitude, fre-
quency and phase in a host cell with intrinsic parame-
ter fluctuations and external disturbances. Therefore, 
combined with the recently advanced synthetic tech-
niques such as promoter library, ssrA- tagged protein 
or the Biobrick assembly standard devices in biologi-
cal device datasheets, the proposed design method 
has good potential for practical applications of robust 
synthetic genetic oscillators in future.

Recently, the synchronization problems of cou-
pled biochemical oscillations have been widely 
studied.42–45 This is an important topic of synthetic 
gene oscillators for practical applications. Therefore, 
the robust synchronization design problem of a large 
number of coupling synthetic gene oscillators under 
intrinsic fluctuations and external disturbances will 
be our future work.

Conclusions
This study proposes a simple but efficient robust syn-
thetic gene oscillator design method via a genetic 
algorithm. To mimic the natural selection in evolu-
tion in order to select adequate design parameters 
for obtaining a robust synthetic gene oscillator 
with desired amplitude, frequency and phase under 
intrinsic parametric fluctuations and extrinsic dis-
turbances on the host cell, the proposed GA-based 
design method can search for design parameters to 
achieve the fitness maximization which is equivalent 
to the optimal tracking of desired oscillation under 
the effects of intrinsic and extrinsic noises on the 
host cell. The contributions of this study are given in 
the following. First, the intrinsic parametric fluctua-
tions and environmental noises can be modelled as 
state-dependent noises and external disturbances of 
nonlinear stochastic oscillatory systems to mimic the 
stochastic behaviour of synthetic gene oscillators in 
a host cell. Second, the robust oscillator design prob-
lem can be formulated as an optimal tracking design 
problem and then transformed to a fitness maximiza-
tion problem. Third, based on the fitness function, a 
GA-based design method is proposed to mimic natu-
ral selection in actual evolutionary processes to search 
for the design parameters of a synthetic oscillator to 

achieve the desired robust oscillation. The simula-
tion results show that the robustness performance 
of the synthetic gene oscillator is guaranteed by the 
proposed design method. Therefore, the proposed 
GA-based design method has good potential for the 
practical design of robust synthetic gene oscillators. 
Further, it can also be extended to the robust design of 
other synthetic gene networks which could track their 
desired behaviours.
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