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INTRODUCTION
Activation of cyclooxygenase (COX) 

enzymes and oxidative stress are 2 sepa-
rate pathogenic mechanisms, which have 
been implicated as major contributors to 
central nervous system (CNS) diseases. A 
common link between these seemingly dis-
parate processes is the oxidation of arachi-
donic acid (AA) to yield bioactive oxidized 
lipids. Interestingly, both COX-mediated 
and oxidative stress-mediated oxidation of 
AA can lead to the generation of electro-
philic lipid species containing unsaturated 
cyclopentenone ring structures. Due to this 
reactive carbonyl moiety, these cyclopente-
none eicosanoids rapidly form Michael ad-
ducts with cellular thiols, including those 
found in glutathione (GSH) and proteins. 
Two major classes of cyclopentenone eico-
sanoids have been described: cyclopen-
tenone prostaglandins (PGA2, PGJ2, and 
their metabolites such as 15-deoxy-Δ12,14 

PGJ2), which arise from the enzymatic 
oxidation of arachidonic acid by COX en-
zymes, and cyclopentenone isoprostanes 
(A2/J2-IsoPs), which are formed as a result 
of non-enzymatic, free-radical mediated 
peroxidation of AA. While cyclopentenone 
molecules derived from AA have been most 
thoroughly studied, similar compounds 
can also arise from the oxidation of other 
polyunsaturated fatty acids (PUFAs), such 
as and docosahexaenoic acid (DHA). Sig-
nificant evidence has accumulated demon-
strating that cyclopentenone eicosanoids 
exert potent biological actions in the CNS, 
and may mediate some of the pathogenic 
consequences of both COX-2 activation 
and oxidative stress in the brain. 

CYCLOOXYGENASE EXPRESSION IN 
NEURODEGENERATION

Enzymatic oxidation of free AA by cyclo-
oxygenase (COX) enzymes plays important 

roles in many physiological processes, and 
is reviewed extensively elsewhere (94). Two 
COX isoforms exist: a constitutive form 
(COX-1), and an inducible form (COX-2), 
both of which are expressed in brain and are 
the targets of non-steroidal anti-inflamma-
tory drugs. The sequential actions of COX 
and the prostaglandin (PG) synthase en-
zymes convert AA to the potent eicosanoids 
PGE2, PGD2, PGI2, PGF2a, and thrombox-
ane, the proportions of each being dictated 
by the relative abundance of various PG 
synthases in a given tissue. These “classic” 
PGs then interact with cognate G-protein 
coupled receptors and mediate many vital 
actions in the body. Considerable evidence 
now suggests that COX enzymes, par-
ticularly COX-2, play a role in neurode-
generation. Overexpression of COX-2 in 
neurons has been documented in several 
neurodegenerative conditions, including 
stroke (123), Alzheimer disease (AD) (104, 
106), amyotrophic lateral sclerosis (ALS) 
(137), and Parkinson disease (PD) (132). 
In animal models of cerebral ischemic in-
jury (45, 102), ALS (25), or PD (28, 131, 
132), neuronal COX-2 expression is corre-
lated with cell death, and genetic deletion 
or pharmacologic inhibition of COX-2 
provides neuroprotection. Thus, it appears 
that overexpression of COX-2 in neurons is 
toxic to these cells. COX-2 expression also 
occurs in activated microglia and promotes 
neuroinflammation, which can contribute 
to neuronal death (71, 78). Furthermore, 
increased intake of non-steroidal anti-in-
flammatory drugs, which inhibit COX 
activity in all cells, is correlated with a 
decreased relative risk of developing AD 
(46, 127, 139) and PD (18). However, the 
mechanism by which COX-2 contributes 
to neuronal death is unknown. Attempts 
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to identify which “classic” prostaglandins 
mediate COX-2 neurotoxicity have been 
inconclusive, and have lead some investiga-
tors to suggest that cyclopentenone PGs, 
highly reactive dehydration products of 
PGE2 and PGD2, may in fact be the toxic 
COX products (34, 56). 

CYCLOPENTENONE PROSTAGLANDINS: 
AN OVERVIEW

PGE2 and PGD2 are abundant COX 
products in brain tissue (1, 103). However, 
both of these PGs are intrinsically unstable, 
and can spontaneously dehydrate to yield 
PGA2 and PGJ2, respectively (Figure 1). 
Unlike other PGs, both PGA2 and PGJ2 
contain an unsaturated carbonyl moiety in 
their cyclopentenone ring structure, which 
is highly reactive and can readily form Mi-
chael adducts with nucleophilic substrates, 
such as thiol groups. Thus, PGA2 and PGJ2, 

also known as cyclopentenone PGs, are 
unique electrophilic products of COX-me-
diated AA metabolism, and therefore, have 
been thoroughly studied. PGA2, which is 
formed by spontaneous dehydration of 
PGE2, was initially identified in human 
seminal fluid (36) and in rabbit adrenal 
medulla (60), and was subsequently shown 
to be present in human plasma (31, 142). 
PGJ2, the product of the spontaneous de-
hydration of PGD2, was identified in 1982 
(32), and its metabolite Δ12,14 PGJ2 was sub-
sequently quantified in human urine (39). 
In the presence of serum albumin, PGD2 
rapidly converts not only to PGJ2, but also 
to the highly bioactive metabolites Δ12-PGJ2 
and 15-deoxy-Δ12,14 PGJ2 (29, 52). Unlike 
other PGs, which interact with membrane-
bound receptors, cyclopentenone PGs are 
taken up by cells via an active transport 
process and accumulate intracellularly (99) 

with nearly 50% of the compound trans-
ported to the nucleus (100). Cyclopente-
none PGs are rapidly metabolized in cells 
via glutathione transferase (GST)-mediated 
conjugation to glutathione (GSH) (7, 11), 
then removed from the cell by the action of 
ATP-dependent efflux pumps (107). Vari-
ability between cell types in GSH and GST 
levels and efflux pump activity may explain 
the differential susceptibility of various cell 
lines to the effects of cyclopentenone PGs 
(24, 40). Accordingly, depletion of intracel-
lular GSH levels potentiates the effects of 
cyclopentenone PGs, while augmentation 
of cellular GSH content protects cells from 
these compounds (6, 63).

The biological actions of cyclopente-
none PGs appear to depend on the reac-
tive cyclopentenone ring structure, as GSH 
conjugates of cyclopentenone PGs are bio-
logically inactive, as are non-reactive cyclo-
pentenone PGs analogs (41). Cyclopente-
none PGs form reversible adducts with a 
specific population of vulnerable cysteine 
thiol groups on numerous intracellular pro-
teins (16, 109, 110). Cyclopentenone PGs 
can inhibit the transcriptional activity of 
several important transcription factors, in-
cluding p53 (87), AP-1 (109), and NF-κB 
(16) via covalent modification of specific 
cysteine residues in the DNA binding sites 
of these proteins. 

 While direct thiol adduction is the pri-
mary mechanism of cyclopentenone PG ac-
tion, it should be noted that 15-deoxy-Δ12,14 
PGJ2 is a ligand for the peroxisome prolif-
erator activated receptor-gamma (PPARγ) 
nuclear receptor, which is thought to con-
tribute to some of the biological effects of 
this compound (17, 30, 53, 118). PPARγ 
regulates numerous cellular processes in-
cluding apidogenesis and inflammation, all 
of which can be modulated in PPARγ-ex-
pressing cells by addition of 15-deoxy-Δ12,14 
PGJ2 (30, 53, 118). However, significant 
controversy exists over whether 15-deoxy-
Δ12,14 PGJ2 is formed in vivo at levels re-
quired for PPARγ ligation (10).

Another pronounced effect of cyclopen-
tenone PGs is their ability to inhibit the 
inflammatory response (128). Cyclopen-
tenone PGs prevent the expression of pro-
inflammatory molecules such as cytokines 
and inducible nitric oxide synthase (iNOS) 
in lipopolysaccharide-stimulated macro-
phages (17, 69, 118) or in tumor necrosis 
factor (TNF)-α stimulated microglia (57, 

Figure 1. Diagram of the formation of cyclopentenone eicosanoids. COX-dependent metabolism of 
arachidonic acid yields PGH
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2
 and PGJ
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, respectively. PGJ
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Free-radical mediated oxidation of arachidonic acid leads to the formation of an unstable endoperoxide 
intermediate, which can be reduced to form stable, non-reactive F
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measured as an index of oxidative stress, or can isomerize to E
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to form the reactive A
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-IsoPs, also known as cyclopentenone IsoPs. Note that prostaglandins have trans 

stereochemistry of their side chains with respect to the prostane ring, while IsoPs have a predominantly 
cis orientation. While IsoPs are formed as a mixture of 4 regioisomers, only the 15-series regioisomers are 
depicted for simplicity. The A
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-IsoP isomer depicted is 15-A

2t
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111). Indeed, cyclopentenone PGs sup-
press inflammatory protein expression in a 
variety of cell types in response to multiple 
stimuli (48, 122, 128, 136). The anti-in-
flammatory effects of cyclopentenone PGs 
are largely due to the ability of these com-
pounds to inhibit the NF-κB pathway at 
several steps (16, 109, 118, 121, 129), as 
NF-κB is a central mediator of inflamma-
tory protein transcription.

Cyclopentenone PGs can also potently 
induce cell stress responsive proteins, in-
cluding the cytoprotective chaperone heat 
shock protein 70 (hsp70), and the anti-
inflammatory, anti-oxidant protein heme 
oxygenase-1 (54). Finally, cyclopentenone 
PGs can activate the cytoprotective An-
tioxidant Response Element pathway via 
interaction with the redox-sensitive protein 
Keap1 (64). By this mechanism, cyclopen-
tenone PGs can increase GSH levels and 
precondition certain cells against future in-
sults (50, 63).

However, the cytoprotective stress re-
sponses activated by cyclopentenone PGs 
are balanced by their many cytotoxic ef-
fects. Cyclopentenone PGs potently induce 
apoptosis in several cancer cell lines (22, 51, 
68, 138), as well as in non-cancerous cells, 
including neurons (120, 125), endothelial 
cells (63), macrophages (15, 42), hepatic 
myofibroblasts (65), and dendritic cells 
(101). Cyclopentenone PGs can induce in-
tracellular oxidative stress in a variety of cell 
types (4, 55, 62, 65). This increased reactive 
oxygen species (ROS) production appears 
to originate from the mitochondria (55), 
and contributes to some of the biological 
effects of cyclopentenone PGs (4, 62, 65), 
including cytotoxicity (55). Furthermore, 
cyclopentenone PGs can impair the cellu-
lar glutathione system by direct scavenging 
and depletion of GSH (55), impairment of 
GST enzymatic activity, and inhibition of 
efflux pump function (133). Thus, a tenu-
ous balance exists between the toxic and 
protective effects of cyclopentenone PGs, 
which is cell type, concentration, and con-
text dependent (63).

NEUROTOXIC EFFECTS OF 
CYCLOPENTENONE PGS

Several lines of evidence suggest that cy-
clopentenone PGs may be neurotoxic me-
diators in the CNS. While cyclopentenone 
PGs have never been shown to be formed 
in brain, PGE2 and PGD2, the precur-

sors to cyclopentenone PGs, are produced 
abundantly in the CNS and are elevated in 
several neurodegenerative diseases (47, 78, 
86). Furthermore, Kondo et al demonstrat-
ed increased 15-deoxy-Δ12,14 PGJ2-like im-
munoreactivity in spinal cord sections from 
ALS patients (56). 15-deoxy-Δ12,14 PGJ2 
potently induces apoptosis in primary cor-
tical neurons (120) and cerebellar granule 
cells (125) in culture, as well as in SH-SY5Y 
neuroblastoma cells. In SH-SY5Y cells, 15-
deoxy-Δ12,14 PGJ2-induced apoptosis is me-
diated by increased p53 expression and ac-
tivation of the Fas-Fas ligand pathway (56). 
A second study with SH-SY5Y cells dem-
onstrated that 15-deoxy-Δ12,14 PGJ2 caused 
a loss of mitochondrial membrane poten-
tial and increased mitochondrial ROS pro-
duction, depletion of GSH, accumulation 
of ubiquitinated proteins, and increased 
lipid peroxidation (55). 15-deoxy-Δ12,14 
PGJ2 toxicity was prevented by antioxi-
dants, and was closely correlated with the 
degree of oxidation damage. This finding 
is intriguing, as mitochondrial dysfunction 
and oxidative stress are hallmarks of many 
neurodegenerative diseases (9), and are 
often associated with COX-2 expression 
(108). Furthermore, basal NF-κB activity 
in neurons is required for survival, while 
NF-κB inhibition can precipitate neuro-
nal death and enhance neurodegeneration 
caused by various insults (21, 23, 49, 70). 
As cyclopentenone PGs are potent inhibi-
tors of NF-κB, this mechanism could con-
tribute to their neurotoxicity. These studies 
thus suggest that cyclopentenone PGs can 
contribute to neurodegeneration by several 
potential mechanisms.

POTENTIAL NEUROPROTECTIVE 
EFFECTS OF CYCLOPENTENONE PGS

The role of cyclopentenone PGs in the 
CNS is far from clear, however, because in 
addition to toxic effects, neuroprotective 
actions of these molecules have been de-
scribed. While inhibition of basal NF-κB 
activity can be fatal to neurons, excessive 
activation of NF-κB has also been associ-
ated with neuronal death (73). The mito-
chondrial complex I inhibitor rotenone 
induces pronounced NF-κB activation and 
cell death in SH-SY5Y cells, both of which 
can be prevented by PGA1, a PGA2 analog 
(134). Similarly, DNA fragmentation and 
NF-κB overactivation caused by striatal 
quinolinic acid injection in rats is blocked 

by co-injection of PGA1 (113). In both 
cases, PGA1 neuroprotection was also cor-
related with increased expression of hsp70, 
suggesting that stress response elicited by 
cyclopentenone PGs, rather than NF-κB 
inhibition, may mediate their protective 
effects. Similarly, 15-deoxy-Δ12,14 PGJ2 
protects HT22 hippocampal cells, but not 
SK-N-SH neuroblastoma cells, from gluta-
mate and hydrogen peroxide toxicity, but 
only when cells were preincubated with 
low concentrations of the PG for several 
hours prior to insult (5). Similarly, 24-hour 
pre-incubation with low (0.5 and 2 µM) 
concentrations of 15-deoxy-Δ12,14 PGJ2 
protects PC12 cells from subsequent nitro-
sative stress-induced cell death (67). These 
2 studies further suggest that exposure to 
sublethal concentrations of cyclopentenone 
PGs precondition cells against future in-
sults, as has been reported for other cellular 
insults (72). Accordingly, cyclopentenone 
PGs can activate the Nrf2-antioxidant re-
sponse element pathway (64), a signaling 
system shown to protect neurons from vari-
ous stressors (58, 61). These studies suggest 
that cyclopentenone PGs can exert direct 
neuroprotection by modulating NF-κB 
activity and neuronal stress response path-
ways, particularly when cells are exposed to 
sublethal concentrations prior to a second 
insult.

Neuroinflammation is a key contributor 
to several neurodegenerative conditions, 
including AD and PD (44, 71). Activation 
of NF-κB in microglia and macrophages 
by cytokines, bacterial endotoxin or other 
stimuli facilitates the expression of numer-
ous pro-inflammatory proteins, including 
TNFα, COX-2, and iNOS, which can 
enhance neurodegeneration (33, 71). In-
deed, inhibition of microglial activation is 
protective in several mouse models of neu-
rodegenerative diseases (14, 26, 74). Cyclo-
pentenone PGs have been shown to inhibit 
neuroinflammation both in vivo and in vi-
tro by blocking glial NF-κB activation and 
thereby suppressing the expression of cy-
tokines and inflammatory proteins such as 
iNOS in both microglia and macrophages 
(38, 48, 57, 111). Accordingly, 15-deoxy-
Δ12,14 PGJ2 can exert neuroprotective effects 
in models of inflammatory neurodegenera-
tion (37, 38). These studies also suggested 
that PPARγ activation is crucial for 15-
deoxy-Δ12,14 PGJ2-mediated protection, as 
other PPARγ agonists were also protective. 
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Thus, while cyclopentenone PGs on their 
own appear to be neurotoxic, they can po-
tentially act as neuroprotective mediators 
in the brain through activation of stress re-
sponse or inhibition of inflammation.

CYCLOPENTENONE ISOPROSTANES: 
REACTIVE PRODUCTS OF FREE-RADICAL 
MEDIATED LIPID PEROXIDATION

Enzymatic metabolism is not the only 
possible oxidative fate of AA. IsoPs, a 
family of PG-like molecules, are formed 
non-enzymatically as a result of free radi-
cal-mediated peroxidation of AA. IsoPs 
containing various prostane ring structures 
are formed in vivo, including F2-IsoPs, 
which are isomeric to PGF2a (92), and D2/
E2-IsoPs, which are isomers of PGD2 and 
PGE2, respectively (Figure 1) (117). Unlike 
PGs, which have a set stereochemistry due 
to their enzymatic generation, each type of 
IsoP is formed as a racemic mixture of 64 
possible regio- and stereoisomers. A second 
important distinction between IsoPs and 
PGs is that the former contain side chains 
that are predominantly oriented cis to the 
prostane ring while the latter possess ex-
clusively trans side chains, a stereochemical 
disparity which can greatly affect bioactiv-
ity (92). Furthermore, while PGs can only 
be generated from free arachidonic acid, 
IsoPs are initially formed in situ esterified 
to phospholipids, and are subsequently 
released by unidentified phospholipase(s) 
(90). Because of their stability, the measure-
ment of F2-IsoPs by mass spectrometry has 
been extensively employed as a marker of 
oxidant stress, and is widely considered to 
be the “gold-standard” index of lipid per-
oxidation in vivo (91, 95). 

As oxidative stress has been implicated 
in the pathogenesis of numerous neurode-
generative conditions (9), IsoP formation 
in the brain has been extensively studied. 
Increased F2-IsoPs have been observed in 
human AD brain samples (115), and in 
post-mortem cerebrospinal fluid (CSF) 
from AD patients (82, 83), as well as in 
CSF from living patients with probable 
AD (80, 112). Significantly elevated CSF 
F2-IsoPs have also been reported in patients 
with Huntington disease (81), Creutzfeldt-
Jakob disease (79), traumatic brain injury 
(8), and multiple sclerosis (35), suggesting 
that oxidative stress and IsoP formation are 
conserved characteristics of the neurode-
generative process. 

As described previously, the cyclopen-
tenone PGs, PGA2 and PGJ2, arise from 
the spontaneous dehydration of PGE2 and 
PGD2, respectively. The finding that E2/D2-
Isoprostanes, which are isomeric to PGE2 
and D2, respectively, are formed in vivo un-
der conditions of oxidative stress suggested 
that cyclopentenone IsoPs (A2/J2-IsoPs) 
would likely be present in oxidized tissue 
(Figure 1) (93). The potent and diverse 
biological actions of cyclopentenone PGs 
spurred interest in the existence of these 
analogous cyclopentenone IsoPs, as these 
non-enzymatic products might also possess 
bioactivity. Indeed, A2/J2-IsoPs were found 
to be formed in vivo in rat liver (19). Cy-
clopentenone IsoPs were significantly more 
abundant that F2-IsoPs in the same tissue, 
and increased 22-fold following exposure 
to CCl4, which causes severe hepatic oxi-
dant injury (19). Previous experiments had 
shown that 15-E2t-IsoP, an E-ring isopros-
tane, was formed abundantly in CCl4-treat-
ed rat liver tissue (93, 96). In keeping with 
our hypothesis that A2-IsoPs arise from the 
dehydration of E2-IsoPs, 15-A2t-IsoP, the 
dehydration product of 15-E2t-IsoPs and a 
stereoisomer of PGA2, was formed in vivo 
and was found to be a relatively abundant 
cyclopentenone IsoP isomer (20). 

Interestingly, cyclopentenone IsoPs in 
free acid form were undetectable in the 
aforementioned experiments (19), suggest-
ing that following hydrolysis from mem-
brane phospholipids, these IsoPs are either 
rapidly metabolized or quickly form pro-
tein adducts. Accordingly, cyclopentenone 
IsoPs are highly reactive and readily form 
thiol adducts with proteins (19). Further-
more, 15-A2t-IsoP is efficiently conjugated 
to GSH in cells, and is metabolized more 
quickly and extensively than PGA2, sug-
gesting that the IsoP has equal or greater 
reactivity than its analogous PG (77). 15-
A2t-IsoP metabolism is largely mediated 
by human or rat GST A4-4 (43). Studies 
in HepG2 cells revealed that 15-A2-IsoP 
isomers are rapidly converted to 4 distinct 
GSH conjugates, with over 60% of total 
IsoPs metabolized within 6 hours (77). The 
primary urinary metabolite of 15-A2t-IsoP 
was also identified in rat as a modified mer-
capturic acid conjugate, and was found to 
increase dramatically in rats following treat-
ment with CCl4 (G. Milne, unpublished 
data). Thus, cyclopentenone IsoPs differ 
from other IsoPs (particularly F2-IsoPs) in 

that they are unstable, reactive, and rapidly 
metabolized via GST-mediated conjuga-
tion to GSH.

FORMATION OF CYCLOPENTENONE ISOPS 
IN THE BRAIN

IsoPs are products of lipid peroxidation 
that are formed abundantly in affected 
brain tissue from patients with numerous 
neurodegenerative diseases. However, un-
til recently, the formation and biological 
actions of reactive cyclopentenone IsoPs 
in the brain were completely unexplored. 
Several pieces of evidence suggested that 
cyclopentenone IsoPs should be formed 
abundantly in the brain. The loss of reduc-
ing environment in the brain, manifested 
by depletion of GSH and vitamin E, shifts 
the IsoP pathway toward the formation 
of E/D-ring IsoPs and away from reduced 
F-ring IsoPs (85). In peroxidizing brain 
synaptosomes, E2/D2-IsoP are the favored 
products of the IsoP pathway, and their 
levels far exceed those of F-ring IsoPs (85). 
Moreover, E2/D2-IsoP levels are significant-
ly elevated in the brains of human AD pa-
tients, and the ratio of E/D-ring to F-ring 
IsoPs is increased in this disease (115). As 
E2/D2-IsoPs are the direct precursors of A2/
J2-IsoPs, these findings strongly suggest that 
A2/J2-IsoPs are formed in brain tissue. To 
address this question, we developed a novel 
liquid chromatography electrospray ioniza-
tion tandem mass spectrometric method 
employing a [4H2]-PGA2 internal standard 
to quantify cyclopentenone IsoPs in human 
tissue. This method has proven to be highly 
specific, sensitive, and accurate. Using this 
assay, we found that cyclopentenone IsoPs 
are indeed formed abundantly in rat brain 
tissue and are nearly 7-fold more abundant 
than F2-IsoPs (Musiek et al, manuscript sub-
mitted). Oxidative injury caused a marked 
elevation in brain cyclopentenone IsoPs, as 
levels increased 12-fold following 24-hour 
exposure of rat brain tissue to the oxidant 
AAPH, while F2-IsoPs increased only 2-
fold. In post-mortem samples of human 
cerebral cortex, cyclopentenone IsoPs were 
again present at levels considerably higher 
than previously reported concentrations of 
F2-IsoPs in human cerebral tissue. Thus, cy-
clopentenone IsoPs are formed abundantly 
in brain tissue, and are elevated under con-
ditions of oxidative stress, suggesting that 
these molecules could mediate some of the 
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neurodegenerative effects of cerebral oxi-
dant injury.

NEURODEGENERATIVE EFFECTS OF 
CYCLOPENTENONE ISOPS

Due to their chemical similarity to the 
cytotoxic cyclopentenone PGs, we have 
recently explored the potential neurotoxic-
ity of cyclopentenone IsoPs. We have ob-
served that 15-A2t-IsoP causes cell death in 
primary cortical neuronal cultures with an 
LD50 of 950 nM (Musiek et al, manuscript 
submitted). In HT22 hippocampal cells, 
both 15-A2t-IsoP and 15-J2-IsoP, a J-ring 
cyclopentenone IsoP, induce cell death with 
LD50s ~4 µM. 15-A2t-IsoP-induced neuro-
nal death is apoptotic, as cells exposed to 
this IsoP exhibited condensed nuclei and 
asymmetric chromatin formations, as well 
as increased caspase-3 cleavage, and were 
completely protected by the pan-caspase 
inhibitor zVAD-FMK. Similar to the ef-
fects of cyclopentenone PGs in SH-SY5Y 
cells, 15-A2-IsoP caused rapid GSH deple-
tion in neurons, and induced membrane 
lipid peroxidation via promotion of mito-
chondrial ROS production. Furthermore, 
15-A2t-IsoP toxicity was mitigated by the 
free radical scavengers, suggesting that re-
dox alterations caused by 15-A2t-IsoP con-
tribute to its toxicity.

Neurotoxicity caused by depletion of 
GSH can be modeled in embryonic neu-
rons or HT22 hippocampal cells, neither 
of which express functional NMDA recep-
tors, via application of millimolar concen-
trations of extracellular glutamate. This in-
sult, known as oxidative glutamate toxicity, 
blocks cellular uptake of cystine, which is 
required for GSH synthesis, and leads to 
severe GSH depletion within several hours 
(98, 114). Fortunately, the signaling path-
ways mediating oxidative glutamate toxic-
ity are well described. As 15-A2t-IsoP also 
depletes GSH, we sought to compare the 
pathogenic signaling pathways activated 
by these 2 insults. We found great overlap 
between the cell death cascades activated 
by both insults, as both required increased 
ROS production, translocation and acti-
vation of the enzyme 12/15-lipoxygenase, 
and phosphorylation of ERK1/2 (66, 126, 
130). These findings suggest that this path-
way is a conserved response to neuronal 
oxidation, and that cyclopentenone IsoPs 
might be one of the pathogenic products 
formed secondary to GSH depletion that 

mediate oxidative glutamate toxicity. Fur-
thermore, each of these signaling events ac-
tivated by 15-A2t-IsoP have been previously 
implicated in neurodegeneration.

As cyclopentenone IsoPs are products of 
oxidative injury and can induce ROS pro-
duction and further lipid peroxidation, we 
have suggested that cyclopentenone IsoPs 
can set in motion a feed-forward cycle of 
increasing intracellular oxidation which ul-
timately pushes a neuron toward cell death. 
The activation of conserved cell death 
pathways in neurons by 15-A2t-IsoP also 
suggests that cyclopentenone IsoPs might 
exacerbate neuronal injury caused by other 
insults. Indeed, subtoxic concentrations of 
15-A2t-IsoP as low as 100 nM significantly 
potentiate neuronal death caused by sub-
lethal oxidative glutamate toxicity. 15-A2t-
IsoP also greatly enhances death of neurons 
induced by oxygen-glucose deprivation, an 
in vitro model of cerebral ischemic injury 
(Musiek et al, manuscript submitted). As 
esterified cyclopentenone IsoPs are present 
in oxidized rat brain tissue at levels, which 
roughly convert to ~550 nM, these find-
ings demonstrate that these molecules, at 
biologically relevant concentrations, can 
contribute to the neurodegenerative pro-
cess. Previously, the study of the role of 
lipid peroxidation in neurodegeneration 
has been largely focused on the actions of 
4-hydroxynonenal (HNE) (12, 59, 105). 
We have found that cyclopentenone IsoPs 
are more biologically potent than HNE 
(unpublished data), and can be more accu-
rately quantified in vivo. Thus, the actions 
of cyclopentenone eicosanoids in the brain 
should no longer be neglected, and merit 
further exploration.

POTENTIAL NEUROPROTECTIVE 
EFFECTS OF CYCLOPENTENONE ISOPS

Unlike cyclopentenone PGs, no data ex-
ists to suggest that cyclopentenone IsoPs 
can exert direct neuroprotective effects. 
While 15-deoxy-Δ12,14 PGJ2 can protect 
neurons from oxidative glutamate toxicity 
in some instances (5), 15-A2t-IsoP potenti-
ates this insult at all concentrations tested. 
This is perhaps partly explained by our 
findings that 15-A2-IsoPs are not ligands 
for PPARγ, and are not potent inducers of 
hsp70 or heme oxygenase-1 (unpublished 
data). However, it remains to be seen if oth-
er cyclopentenone IsoP isomers, such as 15-
J2-IsoPs, have neuroprotective properties.

Like cyclopentenone PGs, however, cy-
clopentenone IsoPs can inhibit the inflam-
matory response. We have found that both 
15-A2- and 15-J2-IsoPs are potent inhibi-
tors of LPS-induced NF-κB activation in 
RAW264.7 macrophages, preventing ex-
pression of iNOS and COX-2, as well as 
elaboration of nitric oxide, PGs (Musiek 
et al, manuscript submitted), and various 
cytokines (76). 15-A2-IsoPs also inhibit 
LPS-induced nitric oxide production in 
BV-2 microglial cells at sub-micromolar 
concentrations, suggesting that this process 
is relevant to the CNS (unpublished data). 
As NF-κB inhibition can also be toxic to 
neurons (21, 23), ongoing studies are ex-
amining the effects of NF-κB inhibition by 
cyclopentenone IsoPs in the CNS.

OTHER CYCLOPENTENONE PRODUCTS 
OF LIPID PEROXIDATION

Previous studies in our lab have shown 
that oxidation of docosahexaenoic acid 
(DHA), an omega-3 PUFA, leads to the 
formation of IsoP-like molecules termed 
neuroprostanes (NPs) (119). NPs are so 
named because DHA is highly enriched in 
neuronal membranes (124). The mecha-
nism of NP formation is similar to that of 
IsoP formation, and F-, D-, and E-ring NPs 
have been described (119). Due to the high 
concentration of DHA in the brain, cere-
bral F4-NPs are highly abundant, and are 
significantly increased in human AD brain 
samples (115), as well as in animal mod-
els involving CNS oxidative stress (75, 84, 
116). We have recently described the for-
mation of cyclopentenone NPs (A4/J4-NPs) 
in vivo in rat brain (27). Like other cyclo-
pentenone compounds, cyclopentenone 
NPs are reactive and form adducts with 
GSH and proteins. Interestingly, cyclopen-
tenone NPs are extremely abundant in the 
CNS, exceeding the levels of any other IsoP 
or PG measured in brain to date. While the 
biological effects of cyclopentenone NPs 
have not yet been explored, several inter-
esting possibilities exist. DHA is a primary 
constituent of fish oil, dietary consumption 
of which has been associated with numer-
ous neuroprotective effects (2, 13, 135), 
including decreased risk of AD (89). DHA 
and fish oil also have potent anti-inflamma-
tory effects, and can protect tissue from in-
flammatory damage (88). Thus, one might 
expect that cyclopentenone NPs will prefer-
entially activate cytoprotective responses in 
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neurons and suppress the microglial inflam-
matory response, with minimal activation 
of cell death pathways, thereby exerting 
primarily neuroprotective effects. However, 
the actual impact of cyclopentenone NPs in 
the brain remains to be determined experi-
mentally.

SUMMARY
Cyclopentenone eicosanoids exert nu-

merous potent and sometimes conflict-
ing effects in the brain (Figure 2). While 
these compounds are generally neurotoxic, 
some cyclopentenone species (particularly 
cyclopentenone PGs) are able to protect 
neurons from other insults, largely through 
activation of cytoprotective stress response 
pathways. It is common for neurotoxic 
compounds to elicit neuroprotection when 
administered at low concentrations; how-
ever, many sublethal insults can precondi-
tion cells against future damage (72). Our 
preliminary studies with 15-A2t-IsoP dem-
onstrate that co-application of this com-
pound during an insult is not protective, 
but rather potentiates neuronal death. As 
cyclopentenone eicosanoids are produced 
during an inflammatory or oxidative insult 
in the brain, not hours before, this result is 
likely more indicative of actual pathophysi-
ology. 

The ability of all tested cyclopentenone 
eicosanoids to inhibit neuroinflammation, 
particularly through microglial NF-κB in-
hibition, could offer neuroprotection from 
inflammatory insults. However, inhibition 
of microglial/macrophage function is not 
always a protective effect in the brain, as 
these cells actively remove debris and pre-

vent the accumulation of certain neurotox-
ic compounds, such β-amyloid (3). Thus, 
inhibition of glial function and induction 
of macrophage/microglial apoptosis, an ef-
fect seen with cyclopentenone eicosanoids 
(42), could exacerbate certain aspects of 
neurodegenerative disease, such as amyloid 
plaque development (3). Furthermore, the 
findings that cyclopentenone eicosanoids 
perturb mitochondrial function and pro-
mote oxidative stress in both neurons and 
glia suggest that these compounds are more 
likely toxic than protective. 

While numerous cyclopentenone IsoP 
isomers are formed, the biology of only a 
few has been examined. Thus, further stud-
ies must be conducted to explore the for-
mation of these lipids in the brain under 
neurodegenerative conditions, as well the 
diversity of effects of these compounds in 
the CNS. The recent development of novel 
mass spectrometric methods to quantify 
these compounds in brain tissue in our lab-
oratory, as well as the chemical synthesis of 
several cyclopentenone IsoP isomers (140, 
141), should expedite these investigations. 
The existing data support the speculation 
that cyclopentenone eicosanoids likely play 
a role in neurodegenerative disease, and 
suggest that the further study of these mol-
ecules might provide insight for novel neu-
roprotective therapeutic strategies.
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