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Abstract

The determination of binding constants is central to many areas of research, supramolecular
chemistry in particular. Traditional nonlinear regression analysis, however, cannot be applied to
complex systems unless certain assumptions are undertaken, which often limits the reliability of such
calculations. Our group has developed an iterative method using commercial software that allows
for the rigorous determination of binding constants in a variety of systems, including 1 : 2 complexes,
indicator displacement assays, and enantioselective indicator displacement assays. The improved
accuracy of the values obtained in the latter case, in turn, allows for a more precise determination of
ee in competitive equilibria.

Introduction

The study of host—guest chemistry is a large and continually growing research field with
applications in nearly every chemical discipline.! Host-guest complexes are often
characterized in part by determining their thermodynamic properties, in particular the binding
constant of the guest to the host. The determination of accurate binding constants can be critical
to the applications of many such systems, which range from sensing to drug discovery and
development. Unfortunately, current analyses often depend upon the assumption that the
concentration of free guest in solution is mathematically equivalent to the total concentration
of guest, thus allowing for the use of simple graphing methods, such as Benesi-Hildebrand
plots and Scatchard plots.2 However, this approximation is never fully valid and is particularly
inappropriate in cases where the host—guest interaction is strong. While binding constants can
be determined numerically using advanced programs such as HYPERQUAD,3 these programs
are often expensive and awkward for an untrained user. As described here, the iterative methods
developed by our group allow for the rigorous application of binding equations by employing
the nonlinear regression module present in Origin,* an inexpensive software package found in
many laboratories, combined with a user-specified target function. While several researchers
have developed unique in-house methods to determine binding constants for systems of 1: 1
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binding stoichiometry, such as the method described in detail by Hirose,> our method is further
applicable to non-trivial systems of equilibria, including those characterized by a 1 : 2 binding
stoichiometry or associated with common indicator displacement assays (IDAS).

Optical spectroscopy is one of the preferred methods for measuring host : guest
thermodynamics due to its ease of use, straightforward data interpretation, and the requirement
for relatively inexpensive instrumentation. For systems that obey the Beer—Lambert law
(“Beer's law™) and for which a 1 : 1 host : guest binding stoichiometry pertains, the
mathematical isotherm used in the determination of binding constants (K) using optical
spectroscopy can be solved in closed form, and many research groups employ nonlinear curve-
fitting of the isotherm using commercial data analysis software programs, such as Origin. For
more complex binding equilibria, such as those characterized by a 1 : 2 binding stoichiometry
or involved in the IDAs regularly used by our research group,® the mathematical constructs
needed to fit the isotherms contain a polynomial equation that can be readily solved using
iterative methods that avoid the previously mentioned assumption. For example, in the
equations used for fitting an indicator displacement isotherm (eqn (39) and (41)), the
concentration of free host is related to the binding constants (Kg, K|) through cubic egn (39).
In addition, the use of empirically determined values (in this case K|, g, g) to calculate other
unknown values (Kg) can lead to decreased accuracy in the fitting.” In order to address this
problem and avoid as many assumptions as possible, we have developed a method that
combines an in-house written subprogram (“script”) with the nonlinear curve fitting operation
of Origin. This method allows us to determine iteratively the parameter values in the relevant
isotherms that best fit the experimental data. This approach has proved invaluable to our group
in the determination of binding constants from indicator displacement assays® and has also
facilitated calculations of enantiomeric excess using enantioselective indicator displacement
assays (elDAs). /2 After the script has been input into Origin, the determination of binding
constants from titration data is as simple as importing the signal and concentration values from
a standard spreadsheet. In hopes that such methods will be useful to others in the field, we
herein describe in detail this script and the associated methods used by our group to determine
binding constants for 1 : 1 and 1 : 2 host : guest binding stoichiometries and IDAs, as well as
to determine enantiomeric excess via elDAs.

Results and discussion

The goal in each binding scenario is to derive an equation that relates the measured signal
(absorbance or fluorescence) to the total concentration of the host and guest through the desired
values (K or ee). These equations are derived through a manipulation of equilibrium constant
equations, mass balance equations, and signal-to-concentration relationships, such as Beer's
law in the case of absorption. Unfortunately, the concentration of free host and guest in a given
solution cannot be determined using known values. As a result, a rigorous application of the
binding equations to the data more often than not requires the solution to two or more related
equations. As such, they benefit from the use of iterative methods both to develop the
underlying binding equations and to obtain the best fits to the data. Appreciating this need, we
have incorporated Newton's iterative method1? into a set of expressions and associated scripts.

We will begin our discussion with the simplest system, namely systems characterized by a 1 :
1 host :guest binding stoichiometry. We will then build from this foundation in the treatment
of situations with greater complexity. While we appreciate that a number of alternative
approaches may be used to treat 1 : 1 binding processes, we focus on a description that most
closely mirrors the methods we use to treat more complex situations.

New J Chem. Author manuscript; available in PMC 2011 January 1.
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We begin each derivation by defining the solution equilibria and mass balance equations. In a
simple host—guest binding equilibrium, assuming both the host (H) and guest (G) have only
one binding site, the equilibrium equation is represented by egn (1).

H+G = HG (1)

The desired binding constant (K) is expressed in egn (2).

[HI[G] (2

Assigning the total concentrations of H and G as [H]; and [G];, respectively, gives mass balance
eqgn (3) and (4).

[H]=[H]+[HG] @)

[Gl=[G]+[HG] )

Using eqn (2)—(4) as a starting point, the first step is to derive an equation based on only one
unknown concentration ([G], [H], or [HG]) to which all other concentrations are related. We
arbitrarily chose [G] for this example and thus begin with the modification of eqn (4). This
modification first requires the definition of [HG] in terms of [G]. Eqn (2) is rearranged to define
[HG] and then used to substitute for [HG] in eqn (3). Solving for [H] yields eqgn (5).

[H],
Hl=——
[H] 1+K[ G] (5)

Combining rearranged egn (2) and (5) then gives eqn (6).

_K[GI[H]

HG]=————
[ | 1+K[ G] (6)

Substituting eqn (6) into eqn (4) yields a quadratic equation, which is rearranged to give egn

().
K[GI*+(1 - K[G]+K[H])[G] - [G],=0 )

Thereal root of eqn (7) is expressed in egn (8), which defines [G] based on K and experimentally
determined values ([H]; and [G]).

New J Chem. Author manuscript; available in PMC 2011 January 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hargrove et al.

Page 4

[Gl=

—(1-K[G]+K[H]p+ \/(I—K[Gl(+KIH]1)1+4KIG][
2K (8)

We now turn to analyzing the optical response as a function of known or measurable
parameters. In this case, we will discuss the derivation for an absorption experiment. Assuming
that all species present follow Beer's law, the absorbance of the equilibrium solution at any
given wavelength can be expressed as eqn (9), where A is the absorbance at the selected
wavelength; ey, £g, €Hg, are the molar absorptivities of the host, guest, and the host : guest
complex, respectively, at that wavelength; and b is the path length of the cell.

A=¢,,b[H]+£,b[ G]+£,,,b| HG] ©

In the case that the host is transparent at the selected wavelength, ey = 0, then egn (9) can be
simplified to eqn (10). Of course, the definition of which species is the host and which is the
guest is arbitrary.

A=g_b| G]+&,,b[HG] (10)

Under these circumstances, the binding study is usually performed such that the total
concentration of the guest ([G]y) is kept constant while the total concentration of the host
([H]y) is increased gradually. A titration curve is obtained by plotting the absorbance (A) at a
certain wavelength against [H];. Substituting eqn (6) and (8) into eqn (10) gives the final 1: 1
binding isotherm (egn (11)).

- bK[H
A=1¢g.b+ g DAL =
l+0.5{—(l—K[G]‘+K[H]|)+ \/(l—K[G]‘+K[H].)‘+4K[G]|}

> —(1-K[G]+K[H])+ ‘/(I_K[G]I+K[H]l)2+4K[G]1
2K (11)

In egn (11), the path length (b), the molar absorptivity of the guest (g), and the guest total
concentration ([G]y) are known values. The binding constant (K) and molar absorptivity of the
complex (eyg) can be determined using the titration data and nonlinear regression analysis.
For example, egn (11) can be used as the input for a user-defined function in the nonlinear
fitting function of Origin, which will then determine the values of K and ey from the best-fit
curve. In our analysis, we treat parameter eg as slightly adjustable, since molar absorptivities
are inherently dependent on a variety of experimental conditions (temperature, background
absorbance, etc.) and cannot always be measured with an accuracy that translates from
experiment to experiment. Varying this parameter, and related values in later analyses, greatly
improves the accuracy of these iterative methods.

It should be noted that the derivations described here are often based on experiments in which
certain species in the solution are transparent at the studied wavelength, such as the host in the
case of a 1: 1 binding stoichiometry. While such experimental conditions greatly simplify the
resulting algebra, they are not necessary for the application of our method. Because we define
each species concentration relative to a single unknown concentration, the omitted values can
be easily substituted into the original signal-vs.-concentration equation and the corresponding
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expression solved in a manner analogous to what is described. For example, in the case of a
1: 1 binding stoichiometry, egn (5), (6) and (8), which relate each species to [G], would be
substituted into egn (9), which relates the absorbance to the concentration of each species. This
substitution would result in a slightly longer final binding equation that can be input into the
nonlinear fitting function of Origin in the same manner as described for eqn (11). This approach
is applicable in all of the binding situations described here.

1: 2 Host : Guest binding

The binding of two guests to a single host molecule greatly complicates the thermodynamic
analysis as two binding constants (K; and K5) must be determined. Whereas 1 : 1 binding
derivations lead to a quadratic equation (eqn (7)), 1 : 2 binding derivations lead to a cubic
equation (eqn (22)). We have found that this latter equation is solved most easily using
Newton's iterative optimization method. As detailed below, we do this using a subprogram
(script) generated in-house with the commercially available Origin software program. This
script and the relevant equations are discussed below.

The derivation begins similarly to that of 1 : 1 binding. In this situation there are two equilibrium
equations (eqn (12), (13)), two binding constant expressions (egn (14), (15)), and two mass
balance equations (eqn (16), (17)).

H+G = HG (12)
HG+G = HG, (13)
K;=[HG]/([HI[G]) (14)
K>=[HG,]/([HG][G]) (15)
[H]=[H]+[HG]+[HG,] (16)
[Gl=[GI+[HG]+2[HG;] a7

As before, the first goal is to derive an equation dependent on only one unknown concentration,
and we again choose [G].

In a manner similar to the previous manipulation of egn (2), (3) and (5) to give eqn (6), eqn
(14)—(16) are combined to give egn (18)—(20).

[H],

[H]= 3
1+K1[G]+K K> [ G] (18)

New J Chem. Author manuscript; available in PMC 2011 January 1.
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(HG - —KIGIHL__
14K, [G]+K, K>[ G] (19)
K\ K>[G]*[H
(HG, |= 1 K>[ GI7[H], .
1+K,[G]+K, K>[ G] (20)

Substituting eqn (19) and (20) into eqn (17) yields egn (21), in which the only unknown
variables are [G], K1, and Ko.

+KILGJ+2K1KZLGJ2 H]
14K, [Gl+K, K> [G]2 1)

Rearranging egn (21) results in a cubic equation for [G], which for convenience we express as
eqgn (22).

A[GP+B[G?+C[ G]+D=0 (22)
Where

A=K K,
B=K+2K|K>[H]; — K1 K>[ G];
C=1+K [H], - K1[G];
D=-[G],

With the [G] dependent equation in hand, we again derive a relationship to the optical data.
Accordingly, eqn (23) is derived from Beer's law.

A=, bl H]+£,b[ Gl+&,,b[ HGl+&,,, b HG, ] 23)

As an example of derivation with the opposite absorbance pattern, we will now assume the
host has an absorbance and the guest is transparent at the observed wavelength. In this case, a
titration is usually performed by keeping [H]; constant and incrementally increasing [G];. As
a result, egn (23) can be simplified to eqn (24). By substituting egn (18)—(20) into eqn (24),
eqn (25) is finally obtained, in which the absorbance is dependent on only one concentration.

A=¢g,b[H]+¢,;bl|HG]+¢

HG

HGy b[ HGZJ

(24)
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A_s“b+s“GbK1[GJ+8“G2bK1 K>[GJ? H
1+K [ GI+K K> GI? (25)

An experimentally generated isotherm is obtained by plotting the absorbance at a specific
wavelength against the total guest concentration (A vs. [G];). Though the value of [G] in egn
(25) varies depending on [G]; (as described by eqn (22)), the solution can be readily approached
through an iterative data fitting procedure.

Specifically, we first apply Newton's method to iteratively determine numerical values for [G]
(eqgn (26), x = [G]). We herein summarize Newton's method to the extent we use it in the
determination of binding constants and related variables. In brief, the true value (x), the root
of the equation, is approximated using an iterative method based on egn (26). In the current
case, f(x) is the left side of egn (22), and f'(X) is its derivative. Since the root (x) is represented
by the x-intercept (y = 0), f(x,,) approaches zero as the estimated values (x,) become closer to
the true value. In this equation, an initial guess (n = 0) is used as the input to determine the first
iteration value (x1). The first iteration value (x1) is then used to determine x, and so on until
the second term of eqn (26) becomes very close to zero, at which point x,+1 equals xp,, and the
mathematically approximate value of x is found. This second term is often referred to as the
“step” by which iterative values approach the true value. While such an iterative method can
be very powerful, it should be noted that its success depends upon the judicious choice of the
initial guess for each parameter. The initial value must be reasonably close to the true values
in order for the step function to approach it reliably.

f(xn)
7 ) (26)

Xn+1=Xp —

With all of the necessary equations in hand, a script can be written in the nonlinear curve fitter
of Origin to numerically solve eqn (22) for [G] while fitting the data using eqn (25). This script,
shown below, fits a set of titration data in which absorbance (y in the script) is recorded as a
function of [G]; (x in the script).1! [G]; is used as the initial guess for [G] (i.e., Xo = [G]y):

A=K1*K2;

B=K1+2*K2*K1*Ht-K1*K2*x;

C=1+K1*Ht-K1*x;

D=-x;

for (G=x, step=1l; abs(step)>le-15; G=G-step){

Step=(a*G*G*G+b*G*G+c*G+d)/ (3*a*G*G+2*b*G+c) ; };

New J Chem. Author manuscript; available in PMC 2011 January 1.
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y=Ht*(EO+E1*K1*G+E2*K1*K2*G*G)/ (1+K1*G+K1*K2*G*G)

where K1, K2, EQ, E1, E2, Ht, x, and y represent Ky, Ko, eyb, epgb, eng2b, [Hli, [Gli, and
absorbance (A), respectively. Parameters EO and Ht (eyb and [H];) are known, though ey was
again treated as slightly adjustable. Values for x and y ([G]; and A) are read from a standard
data file by the program. This script sets up an IF/THEN statement in which the absolute value
of the step function is evaluated. As discussed in the context of eqn (26), the step is defined
(step=) as f(xn)/f'(xn) in which f(x) is the left side of eqn (22). If this value is significantly greater
than zero (abs(step) > 1 x 10~19), then another iteration is performed (G = G-step). Once the
step value is effectively zero for each data point, the resulting solutions for [G] are used to
determine the best fit curve with eqn (25), represented in the last line of the script. If the least
squares regression analysis yields a sufficiently low value, the process is complete. If not,
improved values for the unknown parameters (K1, K2, E1, and E2) are used in another cycle,
beginning again with the iterative determination of new [G] values. Given a set of estimated
initial values for K1, K2, E1, and E2, the program iteratively determines the parameter values
that best fit the experimental data. A similar situation is observed when H is transparent and
is described in the ESI.T

Indicator displacement

In an indicator displacement assay, a host is first allowed to complex with a dye (indicator, 1)
that displays a change in absorbance or fluorescence upon binding. The addition of guest then
displaces the indicator, leading to a reversal in the absorption or fluorescence spectrum (egn
(27)). The degree of displacement is used to calculate the affinity of the guest to the host
(Kg). This assay does not require the host or guest to undergo changes in its optical properties
in order to measure binding. In the situation presented here, the host : indicator complex as
well as the host : guest complex display 1 : 1 binding stoichiometries.

HI+G = HG+I (27)

Following the previous protocols, dye displacement systems involve two independent
equilibria (eqn (28), (29)), two binding constant expressions (egn (30) and (31)), and three
mass balance equations (eqn (31)—(33)).

H+G = HG (28)
H+I = HI (29)
K,=[HGI/([HI[G]) (30)
Ky =[HI]/([H][1]) 31)

TElectronic supplementary information (ESI) available: 1 : 2 Host : Guest Binding when Host is Transparent. See DOI: 10.1039/

h9nj00498;
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[H]=[H]+[HG]+[HI]) (32)
[Gl=[Gl+[HG] (33)
[I;=[1]+[HI] (34)

We again use these equations as a starting point to derive an equation involving only one
unknown concentration, and in this case we chose [H]. We therefore focus on eqn (32) and
seek to define all other concentrations in terms of [H]. Accordingly, combining egn (30)-(34)
yields eqgn (35)—(37).

HG]=—%——(G
[HG] 1+KG[H][ h (35)
[HI]= K[H) (1]
T 14K, [H] (36)
(1= —
1+K,[H] @

Substituting eqn (35) and (36) into eqn (32) in turn leads to eqn (38).

K;[H] L KilH] 1],

[Hl=[H]+ 1+K[H] U 1+K,[H] (38)

Eqn (38) is a cubic equation for [H], which can be rearranged to its polynomial form to give
eqgn (39).

A[H)?+B[H]*+C[H]+D=0 (39)

Where

A=K K,
B=K,+K,+K K,[1l;+K K ;[ G], — K,K,[H],
C=1+K,[1]+K;[ Gl — K,[H] - K;[H]
D= - [H],

New J Chem. Author manuscript; available in PMC 2011 January 1.
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Inatraditional indicator displacement titration, the total concentrations of the host and indicator
are kept constant, and the total concentration of the guest is incrementally increased. An
experimentally generated isotherm is obtained by plotting the absorbance at a specific
wavelength against total guest concentration (A vs. [G]y). Therefore, the next step in the
derivation is to relate the optical signal, absorbance, to [H] using Beer's law. Because it
simplifies the mathematics, the IDA analysis is usually performed using host and guest
molecules that are transparent at the observed wavelength. To the extent such an assumption
is valid, the absorbance can be related solely to the concentrations of the free indicator ([I])
and the complexed indicator ([HI]) as in egn (40). Substitution of eqn (36) and (37) into eqn
(40) yields final egn (41).

A=ég,b[1]+¢,,b[HI]| (40)

o
A=TrR [ &0 +Enb K HD "

As [H] varies at different values of [G];, Newton's method is again applied. Analogous to the
script for 1 : 2 binding, the user-defined script given below is based on egn (39) and (41) where
[H]; is used as the initial guess for [H]:

A=Ki*Kg;

B=Ki +Kg+Ki *Kg* I't+Ki *Kg*x-Ki *Kg*Ht ;

C=1+Ki*It+Kg*x-(Ki+Kg)*Ht;

D=-Ht;

for (H=Ht, step=1; abs(step)>1E-15; H=H-step){

step=(a*H*H*H+b*H*H+c*H+d)/ (3*a*H*H+2*b*H+C) ; };

y=1t*(Ei+Ehi*Ki*H)/(1+Ki*H)

where Ki, Kg, Ei, Ehi, Ht, It, x, and y represent K|, Kg, gb, eqib, [H]t, [11t, [G]t, and absorbance
(A), respectively. Parameters K, ) and g are determined by the titrationand 1 : 1 curve fitting
of the host and indicator alone prior to this analysis. Each of these values, however, is treated
as adjustable in accordance with previous discussions. [H]; and [l]; are treated as constants,
and the variables [G]; (x) and absorbance (y) are read from the data sheet by the program. Given

an estimated initial value for Kg, the program can iteratively find the value of Kg that best fits
the experimental data.

New J Chem. Author manuscript; available in PMC 2011 January 1.
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ee Measurement by dye-displacement

By using a chiral host (H*), enantiomeric excess (ee) of a guest can also be determined using
an IDA. In this situation, the complexation of a chiral host with two enantiomers of the guest
will lead to two diastereomers. The differing stabilities of these diastereomers in turn produce
different degrees of indicator displacement (eqn (44) and (46)). The signal at different ee's thus
depends upon the two equilibrium constants Kg and Kg as defined in egn (49) and (51). As
discussed in previous work,’ though these values could be determined independently, the most
accurate ee determination is achieved when Kg and Kg are calculated using iterative methods
based on titration data at varying ee values. We begin, as before, by defining the equilibrium,
binding constant, and mass balance expressions for this system (egn (42)—(55)).

Hx +1 = Hxl (42)
Hx + G, = HxG, (43)

H+I+G, = HxG,+I (44)

Hx + G, = Hx*G, (45)

H+I+Gy = HxG +1 (46)

K, =[H=I]/([H=][1]) (47)

Ko =[H=G, 1/([H=][ G, 1) (48)
K=K /K, =[HxG ][ 1]/([H=I][ G, ]) (49)
K =[H*G,1/([H*][G,] (50)

K =K /K,=[H=G ][ 1]/([H=1][ G,] (51)
[Hx] =[Hx]+[H=I]+[H=G,_|+[H=G;,] (52)

New J Chem. Author manuscript; available in PMC 2011 January 1.
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[Gl=[ G+ [HxGy] (53)
[G, =[G+ H*Gg] (54)
[Tl=[T]+[H=*I] (55)

In this derivation, we relate all concentrations to [H*I]. To begin, we combine eqgn (47), (52)
and (55) to give eqgn (56).

K =[H=I]/(([Hx]; - [H*G, | — [HxGq]
—[H+I)([T]; — [H+I])) (56)

We next need to define [H*Gg] and [H*Gg] in terms of [H*1]. Substituting egn (53) and (55)
into eqn (49) yields eqgn (57).

Ky =[H*G [([1], — [HI]/([(H«([ G, ], — [H*Gg 1) (57)

Eqgn (57) can then be solved for [H*GRg], which results in eqn (58). A similar process can be
used to derive eqn (59).

[HxGy 1=K [H=I[ G 1 /([T +(Ky — DIH*I]) (58)

[HxG =K [H=I][ Gg ] /([T]i+(Ks — D[HxI]) (59)

After substituting egn (58) and (59) into egn (56), the resulting equation is a 4th order
polynomial (eqn (60)).

A[H=I]*+B[H#I]>+C[HxI]>+D[ H+I]+E=0 (60)

Where

A=K(Kr—1) (Ks—1)

B =Kgr — 1 - [GrIKK|KR + Ks — [Gs]iK|Ks — KrKs
+ [Gr]iKIKRKSs + [Gs]iKIKrKs + [H*]iK (KR + Ks
—1- KgrKs) + [1iK|(2KR + 2Kg — 3 — KRrKg)

C = —[I{{Kr— 2 = 2[GR]{K|KR + Ks = 2[Gs]K|Ks

New J Chem. Author manuscript; available in PMC 2011 January 1.
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+ [GRrIiKIKRKS + [Gs]iK|KrKs + [1TiK (KR

+ Kg — 3) + [H*]iK|(2Kr — KrKg — 3 + 2Kg)]

D = —[I][1 + [1]K; + [GRIKIKR

+ [GsliKiKs — [H*]iK|(Kr + Ks — 3)]

E = [H*[113K,

While the previous examples monitored changes in the absorption spectrum throughout a
titration, any of our methods can also be applied when using fluorescence spectroscopy. We
present such a scenario here as an example of an additional application of our methods. We
first relate the fluorescence signal to the concentration of [H*1]. Assuming that the host and
guest have negligible fluorescence at the wavelength studied, the fluorescence intensity can be
described by eqgn (61) (1, the intensity of the excitation source; ¢, fluorescence quantum yield,;
&, molar absorptivity at the excitation wavelength; b, path length).12 The initial fluorescence
(Fo) is defined in egn (62). The corrected fluorescence (F/Fg) can then be derived from egn
(61) and (62), resulting in eqn (63). This equation can be further simplified to eqn (64) using
mass balance egn (55), in which the signal depends only on [H*I].

F=kb[1]+k, b[H*I] (k = 2.3 Iyge) 1)

When [H*]; =0,

Fo=kb[I], (62)
F/Fo=[11/[Tli+n[H=1]/[1]; (n = ky/k,) (63)
F/Fo=1+(n — 1)[ H=l]/[ 1], (64)

In this example, [H*1] of a given solution varies depending on eeg and [G];. Values for [H*I]
can be iteratively determined from eqgn (60) using Newton's method with 0.0001l; as an initial
[H*1] value. These results can then be used for the curve fitting of eqn (64), which ultimately
leads to the iterative determination of Kr and Kg (see below). Fluorescence intensity data (y)
is now collected in terms of eeg (x), not as a function of concentration as in our other examples.
Because the binding constants are expressed in terms of [Gr]; and [Gg];, these concentrations
must be related to [G]; according to the definition of ee (egn (65)—(66)).

[G,1,=0.5(1+ee,)[G], ©5)

[G,],=0.5(1+ee)[ G, (66)

Using egn (49), (51), (60), (64), (65), and (66), the following script can be generated.
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Grt=(0.5+x/2)*Gt; Gst=(0.5-x/2)*Gt;

Kr=Kgr/Ki; Ks=Kgs/Ki;

A=Ki*(Kr-1)(Ks-1);

B=Kr-1-Grt*Ki*Kr+Ks-Gst*Ki*Ks-Kr*Ks+Grt*Ki*Kr*Ks+

Gst*Ki*Kr*Ks+Ht*Ki* (Kr-1+Ks-Kr*Ks) + 1 t*Ki*(-3+2*Kr+

2*Ks-Kr*Ks);

C=-1t*(-2+Kr-2*Grt*Ki*Kr+Ks-2*Gst*Ki *Ks+Grt*Ki*Kr*Ks

+GSTK i *Kr*Ks+ I t*Ki* (-3+Kr+Ks) +Ht*Ki* (-3-Kr*(-2+Ks)

+2*Ks));

D=— It* It* (L+ 1 E*Ki+Grt*Ki *Kr+Gst*Ki *Ks—Ht*Ki * (-3+Kr+Ks)) ;

E=Ht*I1t*1t*1t*Ki ;

for (HI=1t*0.0001, step=1; abs(step)>le-14; HI=HI-step){

step=(a*HI " 4+b*HI*HI*HI+c*HI*HI+d*H1+e)/

(4*a*HI*HI*H1+3*b*HI*H1+2*c*H1+d) ; };

y=(1t-HI)/1t+n*H1/1t

where Grt, Gst, Gt, Kr, Kgr, Ks, Kgs, Ki, Ht, It, and HI represent [GR]:, [Gslt, [Clt, Kr: KR

Ks, Kgs, Ki, [H*]:, [1]t and [H*1], respectively. In this example, the first two lines define

variable relationships based on eqn (49), (51), (65) and (66). In a manner analogous to previous

protocols, the next section of script uses Newton's method to generate values for [H*I] based

on egn (60). Finally, the last line uses the generated values of [H*I] and eqn (64) to fit the data.

In this case, parameters [H*];, [1]; and [G]; are treated as constants, and the variables ee (x) and
fluorescence intensity (y) are read from the data sheet by the program. Parameters n and K| are

New J Chem. Author manuscript; available in PMC 2011 January 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hargrove et al.

Page 15

determined through titration and 1 : 1 curve fitting of the host and indicator alone prior to this
analysis. Unlike the case of traditional IDAs, these two experimentally calculated parameters
are treated as constants in the script so that Kr and Kg can be allowed to vary slightly. The
values of Kg and Kg can then be input into eqn (67), which relates the corrected fluorescence
signal directly to ee. The derivation of eqn (67) has been described by our research group.’

F/Fo—D[1 F/Fo-1
[H]t:( - ,(;—1 l ][+K(I(z/1—(lj~‘/F()])
Ky [Gli(1+eey)(1-F/Fo)
21(F/Fo)(K; =Ky )—(nK, —Kp)]
K [Gli(I+eep )(1-F/Fo)
2[(F/Fo)(K;—Kg)—(nK,—K()] (67)

By inputting the derived K and ¢ values and measured fluorescence intensity, eqn (67) can be
solved using a common graphing calculator to give accurate ee values.13 As previously
mentioned, while Kg and Kg can also be determined through displacement assays with pure
solutions of either the R or S guest, more accurate values of ee are obtained from eqn (67) when
the equilibrium constants are determined through the above iterative technique.

Conclusions

The measurement of binding constants is among the most fundamental tasks involved in many
supramolecular chemistry studies, and therefore the mathematical derivation of isotherms for
modelling complex equilibria is an important part of the field. Furthermore, optical
spectroscopy is one of the most commonly used experimental methods to determine binding
constants. Here, we have detailed several examples of the general strategy that our group uses
to model complex equilibria using experimental data obtained through optical means. The
approach commences by deriving equations that relate the concentration of each species in
solution to one unknown concentration. This derivation results in a polynomial whose order
depends upon the complexity of the binding process and whose real root is the concentration
of the single unknown species. When the polynomial is higher than second order, as in the
more complex equilibria involved in the formation of a complex with 1 : 2 host : guest
stoichiometry or associated with standard IDAs, Newton's method is used to solve this
polynomial. Then, using an equation that relates the optical data to the selected unknown
concentration, the binding constants and other unknown parameters are iterated to achieve the
best fit curve. This two-step iterative process can be performed with the commercially available
software Origin. Once the mathematical isotherm for a particular set of interrelated and
complex equilibria has been derived, and the script has been entered into Origin, the technique
allows binding constants to be determined quickly and accurately without having to rely on
the assumptions, such as [H] = [H]; or [G] = [G];, that are inherent in many other common
treatment methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Welch Foundation (grants F1151 and F1193 to E.VV.A.) and the National Institutes
of Health (grants GM077437 and EB00549 to E.V.A. and grant GM58907 to J.L.S.).

New J Chem. Author manuscript; available in PMC 2011 January 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hargrove et al.

References

1.

© 00 N O Ol b W DN

Page 16

Steed, JW.; Atwood, JL., editors. Supramolecular Chemistry. 2nd. John Wiley & Sons, Ltd.; West
Sussex, UK: 20009.

. Connors, KA. Binding Constants: The Measurements of Molecular Complex Stability. 1987.
. Gans P, Sabatini A, Vacca A. Talanta 1996;43:1739-1753. [PubMed: 18966661]

. http://www.originlab.com/

. Hirose K. J Inclusion Phenom Macrocyclic Chem 2001;39:193-209.

. Nguyen BT, Anslyn EV. Coord Chem Rev 2006;250:3118-3127.

. Zhu L, Zhong Z, Anslyn EV. J Am Chem Soc 2005;127:4260-4269. [PubMed: 15783208]

. Zhu L, Anslyn EV. J Am Chem Soc 2004;126:3676-3677. [PubMed: 15038696]

. Zhu L, Shabbir SH, Anslyn EV. Chem-Eur J 2007;13:99-104.

10. Acton, FS. Numerical Methods That Work. Harper & Row; New York: 1970.
11. The use of capital or lower case letters in scripts depends entirely on the preference of the user and

does not affect the calculations. In this case, capital letters were deemed necessary for clarity.

12. Lakowicz, JR. Principles of Fluorescence Spectroscopy. Plenum Press; New York: 1999.
13. The commercial software program Mathematic (http://www.wolfram.com) was used by our group to

both derive egn (67) and to calculate enantiomeric excess values from fluorescence measurements
using this equation.

New J Chem. Author manuscript; available in PMC 2011 January 1.


http://www.originlab.com/
http://www.wolfram.com

