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Abstract
The human superorganism is a conglomerate of mammalian and microbial cells, with the latter
estimated to outnumber the former by ten to one and the microbial genetic repertoire (microbiome)
to be approximately 100-times greater than that of the human host. Given the ability of the immune
response to rapidly counter infectious agents, it is striking that such a large density of microbes can
exist in a state of synergy within the human host. This is particularly true of the distal gastrointestinal
(GI) tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 × 1014

microorganisms. An ever-increasing body of evidence implicates the GI microbiota in defining states
of health and disease. Here, we review the literature in adult and pediatric GI microbiome studies,
the emerging links between microbial community structure, function, infection and disease, and the
approaches to manipulate this crucial ecosystem to improve host health.
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Role of microbial community composition in defining host health
The application of culture-independent tools has dramatically improved our ability to
interrogate the vast diversity of unculturable or fastidious microbial species present in disparate
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environments and has led to significant advances in our understanding of ecosystem
functioning [1–17]. Many of the tools developed for environmental microbial studies have
recently been applied to human samples, providing a more comprehensive view of our
microbial inhabitants in a number of discreet host niches, including the respiratory,
gastrointestinal (GI) and urogenital tracts [7,18,19–24]. Recent studies have demonstrated that
bacterial community composition is dramatically altered in diseases such as obesity and
periodontal disease, with healthy subjects typically exhibiting distinct, diverse and temporally
stable bacterial consortia at these sites when compared with patients displaying disease
symptoms [6,25,26,27–29]. A number of studies have also demonstrated that bacterial
community structure plays a key role in defining its functionality; compared with lean
individuals, obese subjects exhibit a dramatic tenfold shift in the ratio of Firmicutes to
Bacteroidetes (from 3:1 to 35:1), two of the major phyla present in the human GI tract [7]. This
altered community structure is associated with a shift in function, resulting in increased energy
harvest from ingested food; unexpended excess energy is deposited as adipose tissue [17]. Diet
is a complex confounding factor in such studies [30,31] in that it can dramatically impact the
composition of the gut microbial community [31]. A high-fat diet has been associated with an
increase in Firmicutes and Proteobacteria and a concomitant decrease in Bacteroidetes in both
wild-type mice and in isogenic resistin-like molecule-β animals that are resistant to high-fat-
induced obesity, indicating diet to be a key determinant of gut microbiome composition [31].
In humans, a high-fat diet resulted in a similar phylogenetic shift in the GI microbiome
associated with obesity [6]; this restructuring is largely due to dietary selective pressure, which
promotes organisms optimally poised to metabolize and import readily available carbon
sources, particularly simpler sugars, such as glucose, fructose and sucrose [32]. In support of
this, a separate study of C57BL/6J mice fed a high-fat/high-sugar Western diet exhibited GI
microbiome domination by the class Mollicutes (within the Firmicutes phylum), which was
associated with increased body fat and upregulation of metabolic pathways involved in the
import and fermentation of simple sugars and host glycans [32]. Interestingly, a high-fat diet
has also been shown to reduce the abundance of Bifidobacteria [33], which are traditionally
thought of as beneficial species in the gut microbiome.

The shifts in microbiome elicited by diet and other factors (described later) are key to host
health, particularly because the structure of the GI microbial population has been associated
with protection against pathogens. Recently, Dong and colleagues demonstrated that aseptic
mosquitoes (Anopheles gambiae), the natural vector for Plasmodium falciparum (the causative
agent of malaria), were susceptible to this parasite once their natural gut microbiome was
disrupted through antibiotic treatment [34]. This effect was ameliorated by feeding or injecting
the insects with live bacterial species, which was associated with a reduction in the number of
oocysts produced by P. falciparum [34]. The authors further established that this protective
effect was elicited indirectly through microbiome-dependent manipulation of the insect's
immunity, involving upregulation of several anti-Plasmodium factors and the antimicrobial
peptides cecropins 1 (Cec1) and 3 (Cec3), Defensin 1 (Def1), as well as other basal immune
response factors such as lysozyme c-1 [34]. Other murine studies have also examined gut
microbiome destructuring (mediated by antibiotic administration) and infection by GI
pathogens, and have also demonstrated a key role for native bacterial species in controlling the
behavior and physiology of infectious agents [35,36]. Following administration of antibiotics
that dramatically alter the composition of the gut microbiome, Salmonella enterica serovar
Typhimurium or Clostridium difficile-infected mice exhibit a supershedder phenotype (shed
>108 CFU/g of pathogenic cells in stool), resulting in rapid transmission of the infectious agent
[35,36]. These studies demonstrate the complexity of the host–microbiome interaction, and the
key role played by the microbial community in modulating the host immune response and
controlling the behavior and outgrowth of pathogenic species.
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The importance of microbial immunomodulation is further exemplified by a recent study
demonstrating that mice mono-colonized with a murine gut commensal anaerobe, segmented
filamentous bacterium (SFB), exhibited induction of CD4+ T-helper cells producing a Th17
cytokine (IL-22 and IL-17) profile [37]. Expression analysis of SFB-colonized mice
demonstrated an upregulation of serum amyloid A, which specifically induces a dendritic cell-
mediated Th17 cell-inducing environment in the gut. In addition, SFB colonization also
reduced the severity of Citrobacter rodentium infection; mice colonized with SFB did not
exhibit penetration of the colonic wall by C. rodentium and had significantly less colonic
inflammation when compared with noncolonized animals [37]. These findings are of particular
interest given recent reports that aberrant Th17 populations are associated with a number of
chronic diseases such as inflammatory bowel disease (IBD) [38], lupus, multiple sclerosis,
psoriasis, and rheumatoid arthritis (reviewed in [39]), disorders that are believed to be linked
to GI dysbiosis.

Prenatal microbial exposures & early immune development
Recent studies have suggested that predisposition to disease may, at least in part, be determined
in utero. Maternal exposure to environmental stimuli, particularly microbes during pregnancy,
appears to play an important role in postnatal immune functioning and, in particular, the
subsequent development of allergic disease [40–42]. Schaub et al. demonstrated that mothers
exposed to farms and farm animals during pregnancy were less likely to have children who
developed allergies and asthma (Figure 1) [43]. These prenatal exposures impacted immune
responses and were associated with increased number and function of cord blood T-regulatory
(Treg) cells, which are linked to lower Th2 cytokine secretion (increased Th2 cytokine
secretion is a characteristic of an allergic response). The authors speculated that maternal
prenatal exposure to farm-associated microbes could provide a form of natural immunotherapy,
potentially shaping the child's immune development during the gestational period. The work
of Ege and colleagues [40] provides further support for this hypothesis, demonstrating that
children whose mothers had been exposed to stables during their prenatal period, exhibited
higher expression levels of the innate immune components, Toll-like receptor (TLR2, TLR4
and CD14), which specifically recognize and facilitate response to both Gram-positive and
Gram-negative bacteria. Moreover, the authors demonstrated that this response was dose
dependent; for every extra farm-associated species the mother encountered, expression levels
increased by 1.16-fold [40].

The fact that these exposures mediate their effect via microbes is supported by the finding that
bacterial species such as Acinetobacter lwofii and Lactococcus lactis, isolated from farming
communities, have specifically been shown to reduce allergic responses in murine models
[44]. Both A. lwofii and L. lactis isolated from cow sheds demonstrated the ability to polarize
T-cell maturation towards a Th1 response by stimulating dendritic cell IL-12 production,
resulting in abrogation of allergic inflammation and improved airway responsiveness [44].
Thus, there is evidence for the potential of these farm-associated microbial species to
manipulate the immune response; however, whether they directly or indirectly (via maternal
immune manipulation) impact the immune response of the developing fetus remains to be
determined.

Protective prenatal exposures do not appear to be restricted to farm animals; maternal prenatal
exposure to household pets (cats and dogs) has also been shown to protect against allergic
disease development [42,45–47] and it is hypothesized that this protection is, as with farm
animal exposures, mediated via microbes. Pet exposure is associated with lower cord blood
IgE levels [47], which is particularly pertinent given the crucial role that IgE plays in fetal
immune system functioning [48] and that elevated cord blood IgE levels have previously been
associated with subsequent development of allergic disorders [49–51]. Wegienka and
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colleagues also demonstrated that exposure of nonallergic pregnant women to pets is associated
with increased Treg cell numbers [42], suggesting that the protective effect of pet exposure
against allergic disease development may be through the induction of Treg cell populations,
which are known to play a central role in immune homeostasis [43]. The concept that microbial
exposures are key to defining the developing immune response in utero is also supported by a
study demonstrating that maternal prenatal exposure to antibiotics (which dramatically impact
the human microbiome; see later) resulted in a dose-dependent increased risk for childhood
asthma [52].

Again, whether such prenatal exposures directly (via exposure of the developing fetus to
microbial products) or indirectly impact fetal immune response development is unclear;
however, a recent study suggests that microbial exposure can occur in utero and can impact
postnatal infant health. Amniotic fluid, which is typically sterile in healthy pregnant women
[53], has recently been shown to be a source of direct microbial exposure for the developing
fetus. Leptotrichia spp. and other related bacterial species were detected using culture-
independent molecular approaches in the amniotic fluid of women in preterm labor with a
strong dose-dependent relationship between bacterial abundance in the amniotic fluid and
gestational age at delivery [54]. A separate study also detected bacterial species in the amniotic
fluid of preterm pregnancies and further demonstrated that women in this study whose amniotic
fluid was PCR-positive for bacteria exhibited elevated levels of IL-6, histological
chorioamnionitis and funisitis, which were strongly associated with the development of
neonatal sepsis [53]. The authors did not comment on the causative agent of sepsis in these
neonates, making it difficult to determine whether prenatal exposures were directly or
indirectly responsible for the subsequent infection. Nonetheless, the study provides evidence
for direct in utero microbial exposure and the possibility that introduction of the developing
fetus to microbial products may play a role in shaping postnatal immune development.

Postnatal GI microbial colonization & immune response development
Prenatal maternal exposures clearly influence early infant immune responses and therefore
presumably also regulate postnatal microbial colonization, an area of research that has recently
become the focus of intense study. Exposures that shape the gut microbial community
composition have come under particular scrutiny (Figure 1). The diverse ecosystem of the
human gut microbiome encodes genes for essential functions that the human host is incapable
of performing, such as vitamin production and metabolism of indigestible dietary
polysaccharides [55–57]. Thus, the host immune system must strike a balance between
providing a favorable environment for this vital community while protecting against invasion
or outgrowth of pathogenic species. Insights into how the immune system initially develops
the ability to discriminate between harmful and beneficial microbial species is becoming more
apparent and appears to be based, at least in part, on both prenatal maternal exposures
(discussed earlier) and postnatal infant GI colonization events [56,58,59]. GI mucosal defense
and homeostasis are typically mediated by two distinct mechanisms, immune exclusion –
mediated by secretory antibodies at the mucosal surface – and immunosuppression to prevent
inappropriate responses to ‘friendly’ antigens by recognizing both pathogenic and commensal
bacteria via TLRs [60–64]. The ability to discriminate between microbial ‘friend’ and ‘foe’ is
primarily dependent on postnatal immune development, which is increasingly associated with
appropriate microbial colonization of the GI tract [59,65,66]. Studies of germ-free mice have
demonstrated deficiencies in immune development in the absence of GI microbial colonization
[67–69]. The importance of early microbial exposure is emphasized in a mouse study in which
neonatal mice were exposed to lipopolysaccharides (LPS) or ovalbumin [70]. Mice exposed
to LPS developed T-cell populations expressing CD25+ and IL-10 upon antigen challenge and
exhibited reduced airway hypersensitivity in comparison to those exposed exclusively to
ovalbumin (who demonstrated a strong Th1-dominated response [70]). Several other animal
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models and comparisons of human gut communities have reinforced the key role that
appropriate microbial colonization plays in gut-associated lymphoid tissue (GALT)
development [71], specific aspects of immune system development [14,72,73] and the integrity
of the mucosal barrier [69,72,74]. Culture-independent studies have provided greater insight
into the temporal fluctuations in bacterial community diversity as it develops during an infant's
first year of life, including dramatic decreases in diversity upon antimicrobial administration
[11]. However, by approximately 12 months of age, this gut community begins to resemble
that of an adult-like microbiome, dominated by the bacterial phyla Firmicutes and
Bacteroides and possessing members of the Proteobacteria, Actinobacteria and
Verrucomicrobia, amongst others [11]. Thus, it has been suggested that this initial period of
colonization, which coincides with immune response development, represents a crucial
window during which aberrations in colonization patterns may impact appropriate immune
maturation [75].

Much of the evidence for the link between early microbial colonization events in the GI tract
and subsequent development of immune disorders come from studies of asthma and allergy,
which are regarded as a failure in the development of a balanced immune response [42,75–
78]. The hygiene hypothesis, originally based on the observation that children with older
siblings exhibit a reduced incidence of allergic disease, was postulated to be due to exposure
to viral infections [79]. However, a more recent evolution of this hypothesis is that a lack of
exposure to microbes in early infancy due to improved living conditions leads to development
of a skewed immune response [80]. Recent studies provide strong evidence for a link between
early GI colonization events and the subsequent development of allergic disease [75,81]. A
microbiological examination of almost 1000 stool samples from 1-month-old infants
demonstrated that a high abundance of Escherichia coli was associated with the subsequent
development of eczema, while infants colonized with large numbers of Clostridium difficile
were associated with a higher risk for eczema, recurrent wheeze, allergic sensitization and
atopic dermatitis [75]. These data suggest that microbiome deviations, particularly outgrowth
of specific species even at this early stage of life, are associated with subsequent immune
disease development.

Key factors that impact gut microbiome composition in the early stages of infancy and which
have been associated with subsequent childhood asthma and allergy development include
Caesarian delivery (rather than vaginal birth), formula-based diet (in lieu of breast milk),
hospitalization, gestational age (preterm) and antibiotic administration [41]. These findings are
supported by several other investigations. An independent epidemiological study associated
antibiotic use in the first year of life with increased risk of atopy, the risk being greater in
subgroups of children who were breast-fed for 4 months or longer or had two or fewer pets in
the home [82]. The authors concluded that antibiotic use in infants could change the gut
microbiota, which may negatively impact immune system development and increase the risk
of atopy in specific groups of children [82]. A meta-analysis of studies on the mode of birth
and allergic diseases demonstrated a 20% increase in the development of asthma and allergy
in children delivered by Caesarian section compared with those delivered vaginally [81].
Vaginal delivery results in exposure to the maternal vaginal microbiome, typically composed
of commensal organisms commonly found in the lower GI tract [83]. These infants typically
possess higher abundances of certain Bifidobacterium and Bacteroides species, which have
been associated with health-promoting effects, including downregulation of inflammatory
responses [77,84,85]. In contrast, infants delivered by Caesarian section exhibit a delayed and
deviant GI bacterial community, dominated by Staphylococcus spp., Streptococcus spp. [86,
87] and C. difficile [41] (associated with an increased risk of allergic disease development
[78]). Indeed Penders and colleagues recently demonstrated that full-term infants born
vaginally at home, who were exclusively breastfed, exhibited the most ‘beneficial’ gut
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microbiota, characterized by high numbers of Bifidobacteria and reduced abundances of E.
coli and C. difficile [41].

As in adulthood, mode of nutrition also plays a key role in shaping the developing GI
microbiome over the first year of life. In addition to the nutritional support breast milk provides,
it also facilitates transfer of bioactive agents, for example, maternal secretory IgA, which
provides passive immunoprotection [88,89]. In addition, IgA has been shown to sequester
commensal species in the neonatal intestine and promote biofilm formation [88,89], an aspect
that has been argued to facilitate colonization by protective native gut bacteria (immune
inclusion) and prevent colonization by pathogenic species (immune exclusion) [90,91]. In
mouse studies, a reciprocal relationship between the concentration of maternal IgA and
bacterial colonization has been previously demonstrated, suggesting that breast milk IgA may
delay the development of a diverse gut microbiome [92], providing a window for the
development of protective biofilms of commensal organisms along the GI mucosa. Other
components of breast milk modulate the developing mucosal immune response, while the
presence of indigestible oligosaccharides promotes the growth of specific bacterial families
such as the Bifidobacteriaceae and may act as decoy ligands for pathogens, preventing their
mucosal attachment [93]. Thus the components of breast milk serve to both directly and
indirectly enhance mucosal barrier function and shape immune development [93]. In addition
to protection against allergic disease development, breastfeeding has also been associated with
defense against neonatal diarrhea [94], necrotizing colitis [95], obesity (meta-analysis is
provided in [96]) and Type II diabetes [97]. The fact that an association between early
nutritional status (which clearly impacts the developing microbiome) and subsequent
development of chronic adult diseases exists, argues strongly for the role of GI microbes in the
development and modulation of these disorders. It also demonstrates that predisposition to
these diseases may originate from initial GI colonization events and immune system
programming during the early years of life, suggesting a role for early GI microbial colonization
events in determining subsequent inflammatory disease outcomes.

Infants who are exclusively formula-fed exhibit altered GI microbiota with higher levels of E.
coli and C. difficile, two species that have previously been linked to the development of eczema
in infants [75]. Although it has been reported that there is no significant difference in the
numbers of Bifidobacteria detected in stools of exclusively formula or breast milk-fed infants
[41,98], the functional gene expression and type of Bifidobacteria present in infant stools has
been shown to differ according to feeding mode [99]. Klaassens and colleagues used a
Bifidobacterium mixed-species expression microarray to examine the differences between
infants who were exclusively breast- or formula-fed. They demonstrated that diet explained
44% of the expression profile variation in Bifidobacteria in formula- or breast-fed infants and
that each treatment group exhibited specific expression profiles [99]. For example,
glycobiome-associated enzymes were more highly expressed in breast-fed infants who
consume more diverse and complex breast milk oligosaccharides, providing these infants with
the increased potential to metabolize these sugars [99]. These results suggest that not only is
the presence and abundance of a specific microbial species or family important, but that
microbiome expression profiles are strongly influenced by external influences, such as mode
of feeding.

These and other studies have indicated that Bifidobacteria are beneficial to human health, which
is currently a contentious issue. Nonetheless, several Bifidobacterium species including
Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium infantis have
demonstrable anti-inflammatory properties that protect the epithelial cells from toxins [77,
100]. These three Bifidobacteria species have been shown to induce the anti-inflammatory
cytokine IL-10 [100]. In addition, soluble factors from B. breve inhibit LPS-induced TNF-α
secretion by immune cells [101] and reduce chemokine, other proinflammatory molecule
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release and epithelial chloride secretion putatively by targeting serine/threonine kinase activity
[102]. Sequence analysis of the commensal bacterial species Bifidobacterium longum, which
is highly abundant in the breast-fed infant gut, revealed the blueprint of an organism specialized
to competitively utilize the indigestible sugars in breast milk [103]. Possessing a high
abundance of Bifidobacteria also appears to be beneficial in old age. In a recent study,
Bifidobacterium species were isolated from Chinese centenarians from Bama, a village known
for having a substantially higher than normal proportion of residents over 100 years old who
exhibit a low occurrence of age-related inflammatory diseases. Compared with control animals,
mice that received daily supplementation with a Bifidobacterium adolescentis strain isolated
from the centenarians exhibited altered intestinal morphology, including a significant increase
in villus height and crypt depth, features believed to enhance digestive efficacy. In addition,
duodenal secretory IgA was significantly increased in animals receiving a high dose of this
strain (2 × 1010 CFUs daily) compared with controls [104]. In a separate study, Sjögren and
colleagues examined the relationships between mucosal and systemic immune responses and
a number of species that have been implicated in protection against, or development of, allergic
diseases [105]. They demonstrated that Bifidobacteria diversity was associated with
accelerated maturation of the mucosal secretory IgA system and that increased abundance of
Bacteroides fragilis at the early stages of GI colonization reduced LPS responsiveness [105].
Although the mechanism by which these species provide protection is not fully understood,
what is clear is that their loss, reduction or altered gene expression in the GI tract during the
critical early stages of immune maturation leads to the subsequent development of disease
[73,75,106,107]. Based on these and other observations, it is becoming increasingly clear that
early events in GI colonization, particularly those events that may alter this process, play a
crucial role in the development and maintenance of the host immune system and predisposition
to subsequent development of disease.

Diseases & disorders due to aberrations in the human gut microbiome
As discussed earlier, development of the GI microbiota over the first year of life appears to be
intimately linked to subsequent disease susceptibility. Aberrations in the adult gut microbiota
have also been associated with a number of diseases and disorders including allergic disease
development [73,75], colon cancer [14], and even progression and severity of HIV (Table 1)
[108]. Disruption of the gut microbiome, termed dysbiosis [18], is frequently accompanied by
overgrowth of pathogenic bacteria or fungi, in conjunction with significant loss of microbial
diversity or key functional groups [9,14,109–123] and an inflammatory response by the host
[9,39,115,121,123–125], which contributes to disease development [108]. Dysbiosis has been
associated with an imbalance between populations of inflammation-mediating T-helper cells
(Th1, Th2 and Th17) and anti-inflammatory Treg cells. Prolonged overproduction of Th1- and
Th17-associated cytokines has been linked with IBD (overproduction of Th1 for Crohn's
disease [CD] [126] and Th17 for both CD and ulcerative colitis [UC] [38,127]) and autoimmune
disorders such as lupus, multiple sclerosis, psoriasis and rheumatoid arthritis, while a Th2 skew
is linked with asthma, allergic disorders and UC (Figure 2) [39,128,129]. Such chronic
inflammatory responses set up a ‘vicious circle’, disrupting the GI microbiota [115],
eliminating subsets of beneficial bacteria and permitting opportunistic colonizers, typically
pathogens, to compete in this niche [115] and maintain a persistent inflammatory state.
Members of the Enterobacteriaceae, which includes Salmonella enterica serovar
Typhimurium, a bacterium linked to gastroenteritis [109,115,121], appear to use this strategy.
In an attempt to eliminate the pathogen, the host response disrupts the native gut microbiota,
providing the pathogen with the opportunity to proliferate [109], emphasizing the key role
microbiome homeostasis plays in protection against pathogen overgrowth.

Many of the diseases and disorders associated with adult gut microbiome dysbiosis exhibit an
overall reduction of bacterial diversity (which may, in part, be attributed to disease-related

Fujimura et al. Page 7

Expert Rev Anti Infect Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diarrhea) and appears to be a characteristic shared by the majority of chronic inflammatory
diseases (Table 1). To date, only colon cancer patients exhibit a significantly higher microbial
diversity compared with that of healthy individuals; however, these assemblages exhibit
dramatic temporal instability [14], an emerging characteristic of chronic inflammatory diseases
[25,26]. Scanlan et al. emphasized that although the microbial diversity was increased in colon
cancer patients, it was unclear which species proliferated, and suggested that the community
may be composed of a multitude of organisms capable of toxin production that outcompete the
native beneficial microbes [14].

It is beyond the scope of this review article to present an in depth discussion of all of the diseases
and disorders associated with gut microbiome dysbiosis. Instead we have presented a summary
in Table 1 and focus here on one, IBD, which encompasses many of the issues associated with
chronic inflammatory diseases. Characterized by chronic or recurrent inflammation of the GI
mucosa [130], the GI tract of the IBD patient appears unable to reprogram towards a
noninflammatory state even after depletion of the primary pathogen [131]. This suggests that
low levels of certain microbial species maintain a proinflammatory state, the microbiome is
irreversibly altered and incapable of appropriate reassembly, or a combination of these factors
contribute to this chronic inflammatory state. Interestingly, a recent study has proposed a role
for the appendix as a ‘safe-house’ for commensal bacterial species, which exist in protected
biofilms that may detach and serve to repopulate the GI tract following perturbation of the
natural microbiome [132]. Although it has previously been suggested that there are no
discernable long-term effects of appendectomies in westernized countries [132],
appendectomy has been associated with progression and severity of IBD [133]. The impact of
appendectomy (or indeed appendix colonization by inappropriate microbial species) on the
ability to ‘re-seed’ the GI microbiome, facilitating community reassembly following
perturbation, particularly in patients with inflammatory GI disorders, is an intriguing concept
that has not been comprehensively studied.

Crohn's disease and UC, the two main disorders associated with IBD, typically require care
for the length of the patient's life. Patients with CD suffer from patchy inflammation that may
occur anywhere along the GI tract and is characterized by large transmural ulcerations [134].
UC patients typically possess more superficial ulcerations restricted to the colonic mucosa and
inflammation that characteristically extends continuously from the rectum throughout the large
intestine [134]. Like other chronic inflammatory disorders, there are several risk genes
(IL23R, IL12B, HLA, NKX2–3 and MST1) associated with increased susceptibility to both CD
and UC [135]. Specific additional genetic components exclusive to CD such as NOD2/
CARD15, FcGRIIIA, ATG16L1 and IRGM [136–141] have been identified, however, risk genes
exclusive to UC remain poorly defined [138,142–145]. Several environmental factors have
been shown to impact progression and severity of the disease, including smoking, diet, drugs,
stress, appendectomy, geography and social status [133]. While aberrations in the gut
microbiota have been associated with IBD [131], its etiology and whether the associated
dysbiosis is a cause or result, remains to be determined [146,147]. Nonetheless, patients with
IBD typically exhibit lower GI bacterial diversity compared with healthy individuals [5,9,
14], an increase in E. coli [123], and lower counts of specific Firmicutes [9,112] and
Bacteroides species [111,118,148]. However it should be noted that some species of
Bacteroides have been shown to increase in relative abundance in CD patients [5], suggesting
that specific functions associated with particular species or strains may contribute to the niche-
specific pathophysiology of UC and CD.

At a functional level, the butyrate-producers, which belong to the Clostridium leptum group
of the Firmicutes, are less abundant in the GI microbiome of IBD patients. Butyrate is an
essential regulator of gene expression, inflammation, differentiation and apoptosis, and is a
major energy source for the mucosa-associated microbial community [149–151].
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Faecalibacterium prausnitzii, a butyrate-producing bacterium with anti-inflammatory
properties [122,123,147], is significantly reduced in abundance in the ileum of CD patients
[111,116,123,152] in parallel with increased numbers of E. coli [123]. This emphasizes the
key role a number of distinct bacterial species play in maintaining inflammatory homeostasis
and that loss of key functional organisms leads to pathogen overgrowth associated with chronic
inflammatory illness.

To further determine the basis for host health and disease, several groups have turned to high-
resolution functional profiling of microbial communities. Metabolomic studies are becoming
more prevalent in dysbiosis-related diseases; several metabolic pathways implicated in CD
have now been identified [153]. In addition to better understanding the pathogenesis of this
disease, these pathways are also useful for differentiating between patients and healthy
subjects. A total of 2155 discriminating phenotypes for ileal-specific CD, 3113 for colon-
specific CD and 2650 that were characteristic of healthy individuals were identified in this
study [153]. An independent study using metabolic profiling demonstrated lower levels of
butyrate, methylamine and trimethylamine in CD patients in comparison to UC patients [10].
In addition, elevated levels of amino acids in fecal samples were detected in IBD patients,
which implicated malabsorption (presumably a consequence of mucosal inflammation), as an
additional component of the disease [10]. In a separate functional profiling study, in vitro high-
resolution proton magnetic resonance spectroscopy was used to measure levels of amino acids
in the colonic mucosa of patients with active or inactive IBD and demonstrated that decreased
amino acid levels were associated with reduced carbohydrate and protein metabolism [154].
Probably due to a shift in GI microbiota composition, this aspect of active IBD may result in
lower energy and altered mucosal integrity. In comparison, samples from inactive IBD patients
exhibited comparable amino acid concentrations with healthy controls [154]. These studies
serve to highlight the complexity of IBD and the key role of microbial communities, functional
gene expression and host responses in inflammatory disease exacerbation and remission.

Manipulation of the GI microbiome: implications for host health
Antibiotic administration

While antibiotics have revolutionized our ability to combat infectious diseases, their
widespread use has led to a dramatic rise in the prevalence of antibiotic-resistant microbes,
and recent concerns have been raised regarding the potential for adverse effects on host
microbiota. In the process of eliminating the pathogenic agent, antibiotic administration
dramatically impacts the native microbial community, leading to an unintentional state of
dysbiosis [18]. The impact of these therapeutics appears to be more pronounced in infants 1
year of age or less, likely due to their influence on microbial colonization of the gut during the
initial stages of immune response development (discussed earlier). A study of clamoxyl
administration to mice demonstrated altered microbial colonization of the gut with the near
depletion of Lactobacillus species coinciding with a reduction in the total aerobic and anaerobic
bacteria, notably Enterobacteriaceae spp. and Enterococcus spp. [15]. In addition,
administration of the antibiotic downregulated expression of genes involved in antigen
presentation and the innate immune host defense [15], presumably because of changes in the
microbial colonization pattern of these animals. Palmer and colleagues demonstrated dramatic
decreases in GI bacterial community diversity upon the administration of antibiotics to infants
in the first year of life [11], which has specifically been associated (in a separate study) with
lower numbers of Bifidobacteria and Bacteroides [41]. These two bacterial genera appear to
be critical for immune development, and their loss has been associated with the development
of allergic disease, an aspect attributed to the antibiotic's effect on the gut microbiota [155].

Another aspect of gut microbiome manipulation by antibiotics is antibiotic-associated diarrhea
(AAD), which affects 11% of children in the USA, is more frequent in those who are less than
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2 years of age and appears to be dependent on the type of antibiotic received [156]. Surawicz
reported that the administration of broad-spectrum antibiotics that target anaerobic bacteria is
associated with a higher risk of AAD development [157]. Interestingly, a recent study
examining factors predictive of development of Clostridium difficile-associated diarrhea
(CDAD), including gut microbiome profiles, found that the resident microbiota and not the
class of antibiotic administered provided the highest predictive power for CDAD development
[4]. Despite the dramatic impact antibiotic administration has on the gut microbiota, the
community in healthy adults appears to be relatively resilient; once administration of antibiotics
has ceased, the gut microbiome largely returns to a pretherapy consortium after approximately
4 weeks [19]. However, subtle persistent changes were evident – a number of bacterial species
had not returned to preantibiotic levels 6 months post-treatment [19]. The impact of the loss
of these species on host health and the potential for long-term issues are currently unknown
[19]. In a murine study, following treatment with the antibiotic enrofloxacin, changes in three
key functions were associated with depletion of the bacterial gut community: loss of acetate
due to reduced microbial metabolism of sugars and polysaccharides; decreased
trimethylamine-N-oxide due to deficient microbial catabolism of choline (also associated with
CD [10]); and an increase in creatine due to a lack of microbial enzyme degradation [13]. In
addition, a loss of amino acids produced by microbial proteases, the reduction of metabolites
from lactate-utilizing microbes and an increase in urea from the depletion of microbial ureases
were also detected [13]. Therefore, although the microbial community may appear to return to
a community that largely resembles the pretreatment consortium, the possibility remains that
the impact of the loss of even a small number of specific microbial species may be more
profound at the functional level. Determining the impact of such subtle alterations necessitates
the use of high-resolution microbial community profiling tools, such as phylogenetic
microarrays, high-throughput sequencing and metabolomic or metaproteomic approaches to
determine the microbial community structure, function and host response.

Microbial/nutritional manipulation of the GI microbiome
Owing to the increased prevalence of diseases and disorders associated with gut microbiota
imbalances (Table 1) and the fact that traditional treatments such as antibiotic administration
appear to have the potential for long-term disruption, microbial manipulation of the host
microbiome to treat chronic diseases has become the focus of recent renewed interest.
Manipulation may be elicited through pro-, pre- or synbiotics. First suggested by Metchnikoff
in 1907 [158], probiotic therapy represents alteration of the gut microbiota by supplementation
with live microorganisms that function to inhibit pathogen adherence to the mucosa [159,
160], improve the intestinal epithelial and mucosal barrier function [161], produce bacteriocins
[162,163], increase IgA production [164] and downregulate proinflammatory cytokine
secretion [165–167]. Prebiotics, originally defined as nondigestible food ingredients that
improve host health by stimulating the growth or activity of colonic bacteria [168], have now
been reclassified to include components that are resistant to gastric acidity, hydrolysis by host
enzymes and absorption by the upper gastrointestine, are fermented by the gut microbiota, and
stimulate growth of microbial species beneficial to the host's health [169]. Finally, synbiotics
are supplements composed of a combination of both probiotics and prebiotics [168]. An
exhaustive review of the use of probiotics, prebiotics and synbiotics is beyond the scope of this
review; instead, we refer the reader to other excellent recent reviews on this topic [170,171]
and focus on their use in a limited number of cases to highlight efficacy and concerns associated
with these therapies.

Recent studies have demonstrated a direct link between the development of IBD and GI bacteria
[172,173], and probiotic therapies have become a focus for various GI dysbiosis-based
diseases. Successful use of probiotics for treatment of IBD appears to be dependent on the
bacterial strain used, the stage of disease progression and the type of pathology used for analysis

Fujimura et al. Page 10

Expert Rev Anti Infect Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Figure 3) [174]. Probiotics appear to be more successful for treatment of UC than CD,
however, probiotic intervention studies of CD patients have typically been small and few have
been randomized double-blind controlled trials [175,176], making it difficult to definitively
characterize probiotic efficacy in this patient population. However, there may be a
physiological basis for enhanced probiotic efficacy in UC patients. For example, defensins are
typically downregulated in UC patients, a feature that can be ameliorated by probiotic species
such as E. coli Nissle 1917 [177], but cannot be corrected in defensin-defective CD patients.
In addition, the ability of probiotic species to colonize specific niches along the GI tract may
be variable due to physiologically distinct features such as mucus coverage and the density of
antimicrobial peptide producing Peyer's patches at specific sites, potentially impacting their
efficacy in UC and CD patient populations.

A clinical trial testing the efficacy of probiotic preparation VSL#3 (a mix of eight probiotic
bacterial species) on patients with mild to moderately active UC, demonstrated the probiotic
treatment induced remission in significantly more patients than those treated with mesalazine
(5-aminosalicylic acid; standard of care [178]). Furthermore, 53% of patients who exhibited
persistent symptoms despite receiving mesalazine or corticosteroids for their UC exhibited
remission of symptoms following VSL#3 administration [179]. Bibiloni and colleagues also
reported that the bacterial species in the VSL#3 cocktail could be detected specifically at the
site of inflammation by molecular methods [179], suggesting a direct role for the probiotic
species in mucosal colonization and modulation of the local immune response. A separate study
reported that patients receiving VSL#3 had a significant reduction in UC symptom severity
following 6 weeks of daily supplementation and that more patients were in remission after 12
weeks compared with the placebo group [180]. A pilot study of UC patients receiving a
Saccharomyces boulardii-based probiotic demonstrated that 68% of the patients receiving the
fungal supplement reported remission of symptoms [181]. This probiotic also appears to be
promising for individuals with CD, where it has been shown to induce remission in significantly
more patients compared with those treated with mesalazine [182]. Probiotics also appear to be
promising for preventing and diminishing severity of necrotizing enterocolitis (NEC) in
neonates [183–189]. However, these trials have been criticized because the timing, dosage and
type of organisms were not optimal [184,186,187] and there were insufficient data to examine
the long- and short-term effects [184,186,189].

Insights into how probiotic supplementation may impact the gut microbiome has come from
a recent study of infants in the Trial of Infant Probiotic Supplementation (TIPS) study, in which
infants at high risk for asthma development are fed a probiotic species (Lactobacillus casei
Rhamnosus GG [LGG]) or placebo [190]. The bacterial community composition of stool
samples from a subset of infants in this trial were examined using a high-resolution microarray,
the 16S rRNA PhyloChip (Affymetrix, CA, USA) [191], which can detect approximately 8500
bacterial taxa (defined as strains or species that share ≥97% 16S rRNA sequence homology)
in a single assay. Although the investigators remained blinded to the identity of the samples,
clear differences in the abundance of LGG were evident and analysis of the data demonstrated
that a high abundance of the probiotic species was associated with a distinct bacterial
community in which many other known beneficial species, including members of the
Lactobacillaceae and Bifidobacteriaceae, were also present in high abundance [190]. These
communities were composed of species that were phylogenetically related, suggesting a high
level of functional redundancy, a characteristic previously associated with stable microbial
assemblages resistant to pathogen outgrowth [2,16]. By contrast, communities with low levels
of LGG tended to possess a more variable community composition and high abundances of
species previously associated with allergic disease development. Hence, it appears that the
beneficial effects of probiotic supplementation are not simply due to a high abundance of the
probiotic species itself, but rather to a restructuring of the gut microbiome toward a commensal
rich, functionally redundant consortium. Although not examined in this study, it is likely (based
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on previous studies [13,16]) that this large shift in community composition underlies altered
functional gene expression and impacts host immune response, a factor which may impact
asthma development, one of the primary outcomes being measured in this trial.

Federal regulation has recently been mandated for probiotic supplements because some
preparations do not comprehensively list the species present or contain additional species that
are potentially pathogenic [186], an aspect that has led to supplement variation in trials [184].
Although it must be stressed that adverse events involving probiotic supplements are rare, these
precautions are being implemented because their use has been linked to higher mortality rates
for ICU patients with pancreatitis [192] and Lactobacillus sepsis in immunocompromised
patients [193,194]. Negative effects have not been found in NEC probiotic trials, but this is
probably because the power of these trials is too small to detect side effects [189].

Prebiotics also represent a promising approach for the management of inflammatory diseases.
They have the advantage of promoting subsets of existing native GI bacterial community
members (e.g., Bifidobacteria) capable of degrading them and can increase production of
important anti-inflammatory compounds, such as butyrate, without the conventional caveats
of probiotic competitiveness or colonization efficiency. For example, oligofructose (enzymatic
product of hydrolyzed inulin) was found to increase butyrate production in both dextran sodium
sulfate (DSS) mice and humans [195,196], as well as limiting murine DSS damage and
accelerating the healing process [195]. Although the mechanisms remain unclear, prebiotic
germinated barley foodstuff has also been shown to significantly decrease IFN-γ expression
[197]. IFN-γ is known to induce colitis and the proinflammatory cytokine IL-6, and increase
TGF-β production (excess TGF-β has specifically been associated with colitis pathology
[197]). Thus, while there are clear functional effects of feeding prebiotic compounds, their
mechanism of action, which probably involves structural and functional shifts in the GI
microbiota due to the selective pressure of supplementation with complex carbohydrate
nutritional sources, remains to be fully elucidated.

Use of synbiotic supplementation is still in its infancy for GI dysbiosis, but some promising
signs are starting to emerge in colon cancer treatment. Synbiotic therapy enhanced apoptosis
in carcinogen-damaged cells and to genotoxic carcinogens in animal models [198,199] and
reduced the number of tumor and lesion occurrences [199–201] by moderating Peyer's patch
immune functions [200]. In humans, Rafter et al. reported that there were significant
differences in the levels of Bifidobacterium species in fecal samples from synbiotic-treated
colon cancer patients, but they did not find any effect on apoptosis, colonic inflammation or
tumor cell invasion [202]. Synbiotic approaches for IBD include a supplement and a fungal
probiotic therapy. A pilot study using a combination of B. longum and fructo-oligosaccharide/
inulin found that those subjects receiving the synbiotic had significantly reduced inflammation
compared with the placebo-treated group [203]. Synbiotics also appear to be promising in the
treatment of CD; a supplement of B. breve, B. longum and L. casei, and the prebiotic psyllium
was examined in ten CD patients who were not responding to standard therapies [204].
Although patients were permitted to choose when and how much of the synbiotic they self-
administered, six of the patients exhibited remission of symptoms with substantially reduced
CD activity [204].

Aside from genetic and environmental factors, given the broad interpersonal variability in the
human host GI microbiome and the capacity for a wide variety of potential perturbations to
this ecosystem, it is not surprising that a pre-, pro- or synbiotic therapy that demonstrates
efficacy in one patient population may not exhibit the same effect in another. Although initial
results are promising, randomized, large-scale studies with well-characterized patient
populations who are supplemented with controlled dosages of specific well-characterized
supplements, and whose samples are examined using high-resolution microbiome composition
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and functional analyses, are necessary to fully appreciate the therapeutic effects of GI
microbiota manipulation (Figure 3). In the current era where patient-tailored care is being
touted as the future of medicine, understanding the complex interactions between microbes
and immune response that underpin host health is fundamental to truly providing such a level
of care.

The overall indication is that gut microbial communities play a key role in the development of
inflammatory disease and that these communities are amenable to manipulation to prevent or
abrogate disease development. As the GI microbiome and specific pathways responsible for
improved host health continue to be identified with newly developed high-resolution culture-
independent tools, our understanding of the delicate balance between the human host and its
microbial inhabitants continues to unfold. With these insights, novel therapies may be
developed to restore or promote beneficial microbial communities to help combat a myriad of
chronic diseases.

Expert commentary
From the influence of prenatal and early postnatal microbial exposures on the developing
immune response to gut microbiome aberrations in adulthood associated with chronic
inflammatory diseases, recent studies of the human microbiome have revealed the complexity
of our dynamic relationship with microbes. Relatively recent changes in lifestyle, diet and the
use of antimicrobials are just some of the factors implicated in increased prevalence of a range
of inflammatory disorders that have a demonstrated basis in altered GI microbial community
structure and function.

Five-year view
Given the cumulative data and, in particular, the recent microbiome studies, the maintenance
of a diverse, functionally redundant microbial community encoding a core set of functional
genes appears key to human host health. Further mouse and human studies of microbial
community composition in parallel with immunophenotyping and long-term outcome
measures, in well-defined cohorts, are necessary to fully understand the role of the human
microbiome in defining states of health and disease. Given the microbiome initiatives
underway globally and the increasingly sophisticated tools to interrogate samples, a more
comprehensive understanding of the impact of therapeutics and other microbiome-
manipulating agents and their long-term effect on host health will be better defined. In parallel,
the development of culture-independent diagnostics based on these findings and using these
new profiling approaches will vastly improve diagnosis and permit surveillance of at-risk
populations.

Key issues

• The gastrointestinal microbiome is associated with host health status.

• Structure and composition of the microbiome defines functional gene expression
of the community, pathogen abundance and physiology, and the host response.

• Prenatal and early postnatal microbial exposures impact immune response
development and define predisposition to the development of inflammatory
diseases.

• Specific microbes have demonstrated roles in immune response modulation.

• Manipulation of the microbiome through pro-, pre- or synbiotic supplementation
may prove an alternative approach for improving host health status.
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Figure 1. Factors that influence the infant gut microbiome and early immune development
Exposure to farm animals and pets, vaginal birth and breast milk, all of which have a potential
microbial link, are putatively associated with a beneficial effect on the developing gut
microbiome and host immune response. Factors such as urbanization (lack of microbial
exposures), formula-only diet and antibiotic administration during the neonatal stage are
associated with the development of subsequent chronic diseases such as asthma and atopy,
putatively through the development of aberrant gut microbiomes.
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Figure 2. Consequences of immune system imbalances
Immune system homeostasis involves a regulated balance of inflammatory and anti-
inflammatory cells; however, skewed responses putatively through lack of microbial exposure
or outgrowth of pathogenic species may contribute to imbalances associated with the
development of chronic inflammatory disorders.
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Figure 3. Factors critical for successful probiotic, prebiotic and synbiotic trials
Consideration of interpersonal genetic and microbiome variations, standardized trials with
defined outcomes and characterized strains coupled with high-resolution microbial phylogeny,
microbiome functional profiles and host responses, are necessary to fully understand the
potential impact of microbiome manipulation through probiotic, prebiotic or symbiotic
supplementation.
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Table 1
Diseases and disorders associated with human gut microbiome aberrations

Disease/disorder Potential role of the microbiome Recent findings (2004–present)

Atopy and asthma • Pre- and postnatal microbial
exposures appear key to
appropriate immune development
[40,43,44,76,105,205–213]

• Mode of delivery and nutrient
uptake are important factors for GI
community development and
protection against subsequent
atopic disease development [11,
41,46,75,81,84,99,214–216]

• Mothers exposed to farm animals during pregnancy are less
likely to have children who develop asthma and allergies
[40,43,106,205,206,210]

• Early exposure to cat(s) and/or dog(s) is protective against
atopic diseases, presumed to be microbially mediated [42,
45–47,213,217,218]

• Infants born through the birth canal are exposed to and
colonized by specific Bifidobacteria and Bacteroides
species [41,84,215,216]

• Caesarian-delivered infants exhibit delayed GI microbiome
development; communities are dominated by
Staphylococcus spp., Streptococcus spp. [87],
Enterobacteria [219] and Clostridium difficile [41]

• A 20% increase in asthma prevalence is associated with
Caesarian birth [81]

• Breast-fed infants possess functionally distinct GI
microbiomes compared with formula-fed children [11,41,
46,73,75,99]

Candida infection • Depletion of gut microbiota
permits Candida albicans
proliferation and infection [114]

• Depletion of the gut microbiome through antibiotic
administration is associated with increased C. albicans
abundance and infection [114]

Celiac disease • Celiac disease patients exhibit GI
microbiome abnormalities
compared with healthy individuals
[117]

• Pediatric celiac disease patients have significantly higher
numbers of total bacteria, in particular Gram-negative
organisms, compared with asymptomatic patients and
healthy subjects [117]

• Bacteroides spp. and Escherichia coli were significantly
higher in celiac disease compared with healthy subjects;
abundance of these species returned to healthy levels in
asymptomatic patients [117]

• The ratio of Lactobacillus–Bifidobacteria species to
Bacteroides–E. coli was lower for celiac disease patients
[117]

• Metabolomic study identifies signature metabolic pathways
associated with celiac disease [220]

CC • High abundance of Clostridium
leptum and Clostridium coccoides
subgroups in CC patient GI
bacterial communities [14]

• Overall bacterial diversity increased for CC patients
compared with healthy controls [14]

• CC patients exhibited temporal GI bacterial community
instability compared with healthy controls [14]

• Microbial butyrate production is thought to reduce the
chances of CC development [3]

Type I diabetes • Interaction between the gut
community and innate immune
system may be a predisposing
factor for diabetes [221]

• Role in the development of insulin
resistance [222]

• Differential GI microbiomes are
present in DP, DR and ADP mice
[12,223]

• Metabolic profiling reveals a contribution of gut microbiota
to fatty liver phenotype in insulin-resistant mice [222]

• Bacteroides abundance higher in DP compared with ADP
[223] and DR mice [12]

• Higher abundance of Lactobacillus and Bifidobacterium
species in the gut microbiomes of DR compared with DP
mice [12]
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Disease/disorder Potential role of the microbiome Recent findings (2004–present)

Type II diabetes • Linked to obesity • Type II diabetes is considered a comorbidity of obesity
[224]

• Studies that examine the effects of the gut microbiota on
Type II diabetes are often included in those that study the
relationship between obesity and gut bacterial community
(e.g., [27,225,226–228])

• Gut microbiota may contribute to insulin sensitivity,
causing low-grade systemic inflammation, which may be
independent of obesity [229]

HIV • Gut microbiome dysbiosis may be
critical for pathogenesis [108]

• Dysbiosis and intestinal inflammation may be critical to
impairment of the GI microbial structure and function in
early stages of HIV infection [108]

• Low abundance of Bifidobacteria and lactobacilli detected
in gut microbiomes of early-stage HIV infection [108]

IBD • Immune response to gut microbial
community

• Composition of GI microbiota
contributes to inflammation [115,
121]

• Treg-promoting organisms
depleted; overgrowth of bacteria
that induce proinflammatory Th17
cell populations [39]

Crohn's disease (IBDC)

• Healthy individuals had higher bacterial diversity than
IBDC patients [5,9]

• Characteristics of GI dysbiosis include lower counts of
Clostridium leptum [119], Bacteroides uniformis [5],
Firmicutes [9,112] and Bacteroides [111,118], and higher
abundances of E. coli [110,123], Proteobacteria [112] and
Bacteroides ovatus [5]

• GI microbial community in IBCD patients exhibits greater
temporal instability compared with that of healthy
individuals [14]

• Lower number of Faecalibacterium prausnitzii, butyrate-
producing bacterium, found [111,116,123,152] in parallel
with increased E. coli abundance [123]

• Novel strains of E. coli with disease phenotypes reported
[110]

• Excessive amounts of IL-21 detected in IBDC patients; may
be a response to overinduction of Th1 cells by luminal
microbiota [230]

• Adherent-invasive E. coli found in higher abundance,
diversity and in more IBDC patients than healthy
individuals; higher variability of seropathotypes [116]

• Metabolomic analysis identifies 2155 discriminating
phenotypes for IBDC in the ileum, 3113 for IBDC in the
colon and 2650 for healthy individuals [153]

• IBDC patients exhibit differential tyrosine and
phenylalanine, bile acid and fatty acid metabolism [153]

• Metabolomic profile identified reduced levels of butyrate,
acetate, methylamine and trimethylamine in IBDC patients
[10]

• Elevated concentrations of amino acids detected in fecal
samples, implying malabsorption caused by inflammatory
disease [10]

• Lower levels of amino acids detected in patients with
activated IBDC [154]

Ulcerative colitis (IBDU)

• Microbial diversity lower when compared with healthy
individuals [119]

• Higher counts of E. coli reported for IBDU patients in
comparison to IBDC patients [119,231]
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Disease/disorder Potential role of the microbiome Recent findings (2004–present)
• Lower levels of Bifidobacteria [232] and Clostridium

coccoides [233] reported in comparison to healthy
individuals

• Differential Clostridium leptum and lactobacilli profiles
identified by DGGE analysis of IBDU and healthy subjects
[234]

• Lower levels of amino acids detected in patients with
activated IBDU [154]

IBS • Dysbiosis typically preceded by
infection, change in diet or
therapeutic administration (e.g.,
antibiotics) [18]

• Enteric infection may be one cause of IBS [18]

• Abnormal detection of hydrogen and methane in patients'
breath suggests changes in bacterial fermentation [18]

• Absence of Lactobacillus spp. and reduced Collinsella
abundance associated with IBS [113]

Gastroenteritis • Pathogenic species take advantage
of GI microbial community
disruption to elicit infection [109,
115,121]

• Suggested that Salmonella capitalizes on host disruption of
GI microbiome through immune response to this infectious
agent to proliferate and infect host [109]

NEC • Immature intestinal epithelial cells
may lead to proinflammatory
response upon microbial
colonization [235]

• NEC potentially due to abnormal
bacterial colonization of the GI
tract and lack of appropriate
commensal bacteria in the gut
[236]

• Bacterial community exhibits lower diversity in all preterm
infants, particularly NEC infants [237]

• NEC patients had higher abundance of
Gammaproteobacteria in the GI tract [237]

• Suggested that lower bacterial diversity may favor certain
dominant organisms, which proliferate with the
administration of antibiotics (standard of care for NEC
infants) [237]

Obesity • May be responsible for metabolic
endotoxemia and consequential
diseases from endotoxemia [27,
225]

• Involved in food storage and
energy harvest from food [2]

• Regulates peripheral metabolism
[1,2]

• Obese patients may depend on interspecies transfer of H2
between Archaea and Bacteria to increase energy uptake
[238]

• Obese individuals exhibit lower abundance of Bacteroidetes
and a higher abundance of Firmicutes compared with lean
people [7]

• Ratio of Bacteroidetes and Firmicutes reverts back to a
composition that resembles that of lean subjects following
a diet and exercise regime [7]

• Absence or presence of specific functional groups and not
bacterial species may be a more appropriate measure of the
differences between obese and lean people [16]

Rheumatoid arthritis • Treg-promoting organisms
depleted; overgrowth of bacteria
that induce Th17 cell populations,
leading to inflammation [39]

• Intestinal microbes associated
with etiology [122]

• Patients with rheumatoid arthritis had significantly less
Bifidobacteria and Bacteroides–Porphyromonas–
Prevotella group, Bacteroides fragilis subgroup and
Eubacterium rectale–Clostridium coccoides group species
[122]

ADP: Asymptomatic diabetes prone; CC: Colon cancer; DGGE: Density gradient gel electrophoresis; DP: Diabetes-prone; DR: Diabetes-resistant;
GI: Gastrointestinal; IBD: Inflammatory bowel disease; IBDC: Irritable bowel disease–Crohn's disease; IBDU: Irritable bowel disease–ulcerative
colitis; IBS: Irritable bowel syndrome; NEC: Necrotizing enterocolitis.
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