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SUMMARY

High Gleason grade prostate carcinomas are aggressive, poorly differentiated tumors that exhibit
diminished estrogen receptor § (ERp) expression. We report that a key function of ERp and its
specific ligand 5a-androstane-3p,17p-diol (3p-adiol) is to maintain an epithelial phenotype and
repress mesenchymal characteristics in prostate carcinoma. Stimuli (TGF-p and hypoxia) that induce
an epithelial-mesenchymal transition (EMT) diminish ERp expression, and loss of ER is sufficient
to promote an EMT. The mechanism involves ERB-mediated destabilization of HIF-1a and
transcriptional repression of VEGF-A. The VEGF-A receptor neuropilin-1 drives the EMT by
promoting Snaill nuclear localization. Importantly, this mechanism is manifested in high Gleason
grade cancers, which exhibit significantly more HIF-1a and VEGF expression, and Snaill nuclear
localization compared to low Gleason grade cancers.

INTRODUCTION

The Gleason grading system for prostate carcinoma (PCa) is a key parameter that is extremely
valuable for assessing prognosis and choice of therapy (Gleason and Mellinger, 1974; Egevad,
2008a; Egevad, 2008b). This system is based on the grade of histological and cytological
differentiation within a tumor and provides a score that ranges from 1 (well-differentiated) to
5 (poorly differentiated). The combined total Gleason score for atumor, which is used to predict
prognosis, reflects the sum of the predominant and secondary grades observed in that cancer.
Grade 5 patterns are relatively uncommon and are more frequently found as tertiary foci
admixed with grade 4 and to a lesser extent with grade 3 cancers. The presence of tertiary grade
5 cancers within a tumor confers a poor outcome (Trpkov et al., 2009), most likely because
these cancers exhibit highly invasive characteristics in histological sections (Gleason and
Mellinger, 1974). For this reason, the International Society of Urological Pathology has
recommended that biopsy Gleason score be generated by adding tertiary grade 5 to the primary
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neuropilin signaling. These findings should facilitate our understanding of the mechanisms responsible for the aggressive behavior
exhibited by these high-grade cancers and the development of effective methods for their therapeutic intervention.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mak et al.

RESULTS

Page 2

score to provide a more accurate assessment of prognosis (Epstein et al., 2005). A key
biological issue that emerges from these observations is the molecular basis for the histological
differentiation and range of invasiveness that underlies the Gleason grading system. Although
high Gleason grade PCa is characterized by a de-differentiated morphology, the possibility that
the progression of Gleason grade reflects, in part, the differential expression of EMT pathways
has not been pursued rigorously.

The potential role of estrogen receptors (ERs) in regulating the epithelial-mesenchymal
transition (EMT) and aggressive behavior in PCa merits investigation. Although ERa can
regulate E-cadherin and the EMT in breast cancer (Dhasarathy et al., 2007; Wang et al.,
2007), breast and prostate are different with respect to ER expression and function (Morani et
al., 2008). In fact, ERa is predominantly localized in prostatic stroma where its effects on
epithelia are considered to be indirect (Prins and Korach, 2008). In contrast, ERB (Kuiper and
Gustafsson, 1997; Lau et al., 2000; Leung et al., 2006; Prins et al., 1998) is expressed in the
epithelial compartment of the gland and may regulate epithelial proliferation and differentiation
(Imamov et al., 2004). The expression pattern of ERpB in human PCa is of interest because there
is an inverse relationship between the expression of ERp and the progression of PCa to highly
aggressive Gleason grades (Leav et al., 2001; Zhu et al., 2004). Given these data, we
hypothesized that ER functions as a ‘gatekeeper’ of the epithelial phenotype and a repressor
of invasion and sought to elucidate the mechanisms involved in ERB-mediated regulation of
EMT in PCa.

ERPB1 sustains an epithelial phenotype and represses mesenchymal characteristics

Gleason grade 5 PCa is distinguished from grade 3 PCa by a merger of neoplastic glands and
cytological de-differentiation (Gleason and Mellinger, 1974) with diminished expression of
ERP (Horvath et al., 2001; Leav et al., 2001; Zhu et al., 2004), as well as E-cadherin (Gravdal
etal., 2007; Tomitaetal., 2000) (Figure 1A). Thus, we hypothesized that ER actually regulates
the EMT in PCa and that high Gleason grade cancers exhibit EMT characteristics associated
with diminished ERB1 expression. To address this hypothesis, we used PC3 cells initially
because these androgen-independent cells express E-cadherin and ERp, and exhibit epithelial
characteristics (Figure 1B). We focused on ERB1 because it is the only functional ER isoform
(Leung et al, 2006). Treatment of PC3 cells with TGF-B (Figure 1B) or exposure to hypoxia
(Figure 1C) resulted in the transition to a dispersed, fusiform morphology, significant loss of
E-cadherin and increased expression of vimentin and N-cadherin. These results were
substantiated by immunofluorescence microscopy (Figure S1). Similar data were obtained with
LNCaP cells (Figure 1D), which also exhibit epithelial features but are androgen-dependent,
indicating that the ability of microenvironmental stimuli to induce an EMT is independent of
androgen receptor status (Figure 1D).

A striking observation was that both TGF- and hypoxia markedly decreased ERB1 expression
without affecting ERa (Figure 1B-C) suggesting that loss of this ER promotes an EMT in PCa.
To assess whether ERB1 plays a causal role in the EMT, stable clones of PC3 cells were
generated that express an ERB1 shRNA and exhibit diminished ERB1 expression (Figures 2A-
B). These cells have a fusiform morphology, diminished E-cadherin and increased expression
of vimentin and N-cadherin in comparison to parental cells or cells that express a scrambled
SshRNA (Figures 2A-B). In contrast, sSiRNA-mediated repression of ERa did not affect
morphology (data not shown) or the expression of EMT markers (Figure 2C). Quantitative real
time-PCR (gPCR) revealed that loss of ERB1 increased expression of vimentin mRNA and
decreased E-cadherin mRNA significantly (Figure 2D). To establish that ERB1 regulates E-
cadherin transcription, we assayed E-cadherin promoter activity in cells that expressed either
ERpB1 shRNA (‘knockdown’ cells) and or a scrambled shRNA (control cells) using a reporter
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construct containing the E-cadherin promoter. As shown in Fig. 2E, ERB1 knockdown cells
had substantially diminished promoter activity compared to control cells.

Loss of ERB1 expression also resulted in a significant increase in migration and invasion
(Figure 2F), functions characteristic of an EMT (YYang and Weinberg, 2008). To exclude the
possibility of clonal artifacts during the selection of stable cell lines, we used an siRNA pool
for ERB1 that yielded similar effects on morphology and expression of mesenchymal markers
as did the shRNA (Figure 2G). These RNAI data were substantiated using PHTPP (Figure 3A),
a highly selective ERp antagonist (Compton et al., 2004). Treatment of PC3 cells with PHTPP
resulted in the acquisition of a spindle-shaped morphology, diminished expression of E-
cadherin and increased expression of N-cadherin and vimentin (Figure 3A). Collectively, these
data indicate that ERB1 expression is required to maintain an epithelial phenotype in PCa cells
and that an endogenous ERB1 ligand for is engaged in this process.

5a-androstane-3@, 17B-diol (3B-Adiol), an ERB ligand, sustains an epithelial phenotype and
impedes a mesenchymal transition in PCa cells

An important issue is the identification of the ERpB1-specific ligand that sustains an epithelial
phenotype and impedes an EMT in PCa cells. Although ERB1 binds estradiol-17p (Ey), there
is evidence that 3-Adiol, a metabolite of dihydrotestosterone, is the natural ligand of ERB1
in the prostate (Guerini et al., 2005). To evaluate the function of this ligand, PC3 cells were
treated with either DMSO or 3p3-Adiol for 3 days. As shown in Fig. 3B, 3p-Adiol treatment
resulted in a more compact, epithelial morphology, consistent with increased expression of E-
cadherin, and diminished expression of N-cadherin and vimentin. In contrast, treatment with
DMSO had no significant effect on either morphology or expression of EMT markers.
Moreover, cells treated with 3g-Adiol but not E; were unable to undergo TGF-B-induced EMT
as evidenced by morphology and expression of EMT markers (Figures 3C-D). We also
observed that 3p-Adiol prevented the dimunition in ERB1 expression that occurs in response
to TGF- stimulation (Figure 3D) suggesting that 3p-Adiol prevents an EMT by stabilizing
ERp1 and enabling it to function to sustain an epithelial phenotype. This hypothesis is further
supported by the observation that 3p-Adiol treatment did not affect expression of ERB1 mRNA
during TGF-B-induced EMT (Figure 3D) and that methylation of the ERB1 promoter, which
has been shown to regulate its expression (Zhu et al., 2004) did not change during this EMT
(data not shown). The specificity of 33-Adiol for ER(B1 in maintaining an epithelial phenoptype
is evidenced by the inability of this ligand to impede an EMT in cells lacking ERB1 (Figure
3E).

HIF-1a is destabilized by ERB1 via proteosomal degradation

Based on our findings that either loss of ERB1 expression or hypoxia induce EMT and that
hypoxia diminishes ERB1 expression, we assessed a possible relationship between ERp1 and
HIF-1. HIF-1a protein expression is low in PC3 cells but it increased markedly in response to
either hypoxia, TGF-p stimulation, knockdown of ERB1 with both ShRNA and siRNA, or
PHTPP (Figure 4A). However, expression of HIF-1a transcripts did not change under these
conditions (Figures 4A) suggesting that ERB1 destabilizes HIF-1a protein via proteasomal
degradation. To test this hypothesis, we examined HIF-a protein expression in control PC3
cells and ERB1 knockdown cells in either the absence or presence of the proteasome inhibitor
MG132. MG132 increased HIF-B expression dramatically in control cells but neither E, nor
3p-Adiol had an effect (Figure 4B). In comparison, the elevated level of HIF-1a in ERB1
knockdown cells was not affected by MG132, E, or 33-Adiol (Figure 4B). Importantly, control
cells but not ERB1 knockdown cells treated with MG132 converted from an epithelial to a
mesenchymal phenotype, as evidenced by morphology and expression of EMT markers (Figure
4C). These data strongly suggest that ERB1 destabilizes HIF-1a protein via proteasomal
degradation.

Cancer Cell. Author manuscript; available in PMC 2011 April 13.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 4

ERB1 and 3B-Adiol repress HIF-1-mediated transcription of VEGF-A

We hypothesized that VEGF-A is a HIF-1 target gene important for the EMT of PCa that is
regulated by 3p-Adiol/ERB1. To pursue this possibility, we assessed VEGF-A expression by
gPCR in either control PC3 cells or ERB1 knockdown cells and observed that ERB1 suppresses
VEGF-A expression significantly (Figure 4D). TGF-p also induces a dramatic increase in
VEGF-A expression (Figure 4D). Interestingly, 3p3-Adiol attenuated VEGF expression in PC3
cells and it prevented the ability of TGF-p to increase VEGF-A expression (Figure 4D). These
effects of 3p-Adiol were partially blocked by PHTPP further supporting the notion that the
interaction of 3p-Adiol with ERB1 represses VEGF-A expression. To confirm that ERp1
regulates VEGF-A secretion, we quantified VEGF-A expression in culture medium by ELISA.
Indeed, both TGF-B and loss of ERpB1 increased VEGF-A secretion markedly (Fig. 4E).

To elucidate the mechanism of how ERB1 suppresses VEGF-A expression, we measured
VEGF-A promoter activity in PC3 cells using a reporter construct containing the full-length
VEGF promoter, which contains an estrogen response element (ERE) and a hypoxia response
element (HRE) (Stevens et al., 2003). The latter element is a key regulator of VEGF
transcription (Liao and Johnson, 2007). The luciferase activity of this reporter construct was
significantly higher in ERB1 knockdown cells compared to control cells suggesting that
ERP1 is required to suppress promoter activity (Figure 4F). Cells treated with TGF-p also had
elevated promoter activity compared to untreated cells (Figure 4F). Interestingly, mutating the
ERE in this promoter construct increased luciferase activity supporting our hypothesis that
ERP1 acts as a repressor of VEGF transcription via the ERE (Figure 4F). Moreover, mutating
both the ERE and HRE abrogated the increase in transcription observed with the ERE mutant
alone (Figure 4F), arguing that the HRE contributes to the de-repression of transcription that
occurs when the ERE is mutated. We then examined the role of ERpB1 itself in regulating HRE-
mediated transcription of VEGF-A in hypoxia by expressing reporter constructs containing
only wild-type or mutated HRE and no ERE in both control and ERB1 knockdown cells. As
shown in Figure 4G, loss of ERB1 under hypoxic conditions stimulated transcription
significantly as compared to the control cells. However, promoter activity in both cell lines
was attenuated when the HRE was mutated. Together with the other data shown in Figure 4,
we conclude that ERB1 represses VEGF-A transcription directly using the ERE and indirectly
by destabilizing HIF-1a and repressing HIF-1-mediated transcription.

VEGF-A and Neuropilin-1 promote an EMT

The possibility that VEGF-A promotes an EMT is demonstrated by the finding that treatment
of PC3 cells with recombinant VEGF 45 resulted in a fusiform morphology (Figure 5A),
decreased E-cadherin and increased expression of N-cadherin and vimentin (Figure 5A). The
expression of ERB1 did not change indicating that the regulation of VEGF-A is downstream
of ERP1 signaling. Autocrine VEGF signaling in tumor cells is a non-angiogenic mechanism
that contributes to their autonomy and aggressive behavior (Bachelder et al., 2001; Bates et
al., 2003; Cao et al., 2008; Castro-Rivera et al., 2004). A key VEGF-A receptor implicated in
autocrine signaling is neuropilin-1 (NRP1) (Bachelder et al., 2001; Soker et al., 1998). In
contrast to VEGF-A, expression of NRP1 did not change in response to either EMT stimuli or
loss of ERB1 expression (data not shown). To elucidate the function of NRP1 during an EMT,
we generated NRP1 knockdown PC3 cells using shRNA (Figure 5B). Strikingly, cells with
diminished NRP1 expression were resistant to EMT induction by TGF-p treatment compared
to control cells as evidenced by their morphology and expression of EMT markers (Figures
5B).
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The activities of Akt and GSK-3B, which regulate the EMT, are controlled by ERB1 and 3-

adiol

Given that NRP1 can regulate Akt/GSK-3p activity (Bachelder et al., 2001) and that
GSK-3p impedes an EMT (Zhou et al., 2004; Bachelder et al., 2005; Yook et al., 2005; Yook
et al., 2006), we examined the relationship between ERB1 and GSK-3 activation.
Phosphorylation of GSK-3p on Ser9 by Akt inactivates its kinase activity (Doble and
Woodgett, 2003). Treatment of PC3 cells with TGF- or exposure to hypoxia resulted in a
significant increase in the relative phosphorylation of both Akt and GSK-3 as assessed by
immunoblotting (Figure 5C). Similar results were obtained with LNCaP cells and ERB1
knockdown cells (Figures 5C-D). These data indicate that ERB1 sustains GSK-3p activation
and that loss of its expression during an EMT activates the pAkt/pGSK-3p pathway. To show
that this signaling is ligand-dependent, cells were treated with either 3p-Adiol or PHTPP, and
subsequently analyzed for GSK-3 activation. Cells treated with 3p-Adiol had a decrease in
GSK-3p phosphorylation compared to control, whereas cells treated with PHTPP had a
significant increase in GSK-3p phosphorylation (Figure 5E). In contrast, E, did not affect
GSK-3p phosphorylation (data not shown). These data strongly suggest that 3p-Adiol is the
endogenous ligand for ERB1 that sustains GSK-3p activation.

Snaill nuclear localization is regulated by 3B-adiol/ERB1 and VEGF-A/NRP1

Given that Snaill expression in tumors often correlates with aggressive disease and poor
outcome (Blanco et al., 2002; Moody et al., 2005; Wu et al., 2009), we were surprised that
Snaill expression did not change in response to either TGF-B, hypoxia, VEGF-A, loss of
ERP1 or NRP1 (Figures 1, 2, 5). To assess the potential role of Snaill in the EMT, we used
siRNA to decrease its expression in ERB1 knockdown cells. Indeed, reduction of Snaill
expression caused a reversion to a more epithelial morphology and decreased the expression
of vimentin and N-cadherin with a concomitant increase in E-cadherin (Figure 6A). These
observations and the finding that Snaill stability and nuclear localization can be regulated by
phosphorylation and EMT pathways (Dominguez et al., 2003; Yook et al., 2005; Zhou et al.,
2004) prompted us to assess the intracellular localization of Snaill. Surprisingly, the EMT
induced by either hypoxia, VEGF-A or TGF-B was coincident with a significant translocation
of Snaill from the cytoplasm to the nucleus as assessed by immunofluorescence microscopy
using a Snaill Ab (Figures 6B-C). This conclusion was strengthened by the finding that loss
of ERP1 resulted in a significant increase in the nuclear localization of a GFP-Snaill construct
(Zhou et al., 2004) (Figure 6D). In contrast, treatment of PC3 cells with 3B-adiol reduced the
basal localization of Snaill in the nucleus significantly and it prevented the increase in Snaill
nuclear localization that occurs in response to TGF- stimulation (Figure 6E). Importantly,
treatment with LiCl,, a GSK-3p inhibitor, increased the nuclear localization of Snaill
significantly providing evidence that the signaling pathway that is repressed by ERB1 regulates
Snaill localization (Figure 6C).

HIF-1a/VEGF/Snaill Pathway is Manifested in High Gleason Grade PCa

A critical question that arises from our in vitro data is whether the expression of HIF-1a, VEGF-
A and nuclear Snaill correlates with Gleason grade in human PCa, and whether the expression
of these proteins correlates inversely with ERB1 in the same specimens as predicted by our
hypothesis. To address this question, we used a semi-quantitative analysis of IHC staining to
assess expression of these proteins in specimens from 30 PCa patients of which 20 were
Gleason grade 3 and 10 were grade 5. Expression of ERB1 was significantly higher in the nuclei
of grade 3 compared to grade 5 PCa (Figure 7A), confirming previous studies (Horvath et al.,
2001; Leav et al., 2001; Zhu et al., 2004). In marked contrast, however, we observed intense,
widespread nuclear HIF-1o expression in grade 5 cells that was significantly less in grade 3
cells (Figure 7B). Intense VEGF-A immunostaining was evident in Gleason grade 5 tumor
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cells when compared to grade 3 tumor cells, and semi-quantitative analysis of multiple
specimens revealed that this difference is significant (Figure 7C). This observation was
strengthened by gPCR analysis of VEGF-A expression from microdissected specimens of
human PCa, which demonstrated that grade 5 tumor cells had significantly higher VEGF-A
mMRNA expression than did grade 3 tumor cells (Figure 7D).

Our data on Snaill localization in vitro and its regulation by ERB1 prompted us to compare
Snaill nuclear localization in Gleason grade 3 and 5 PCa. In grade 3 PCa, only a scattered
number of positively stained nuclei were apparent. However, intense widespread nuclear Snaill
staining was evident in the majority of grade 5 tumor cells (Figure 7E) accompanied by a
decline in ERB1 expression. These results are consistent with the hypothesis that ERB1 restricts
Snaill to the cytoplasm but it becomes translocated to the nucleus when receptor levels decline.

We conclude from our data that a major function of the 3p-adiol/ERB1 complex in PCa is to
impede a mesenchymal transition and consequent invasive behavior by a mechanism that
involves its ability to destabilize HIF-1a and repress transcription of VEGF-A, which drives
an EMT by enhancing nuclear localization of Snaill (Figure 8). Most importantly, key features
of this pathway are manifested in high Gleason grade PCa.

DISCUSSION

Our data highlight a pivotal role for ERB1 and its natural ligand 3p-adiol in sustaining an
epithelial phenotype and repressing the acquisition of mesenchymal characteristics and
invasive behavior in PCa. The key mechanism that we elucidate to account for this function
of ERp1 is that it destabilizes HIF-1a and represses transcription of VEGF-A, a growth factor
that can promote an EMT (Wanami et al., 2008; Yang et al., 2006). The significance of our in
vitro data is strengthened by the fact that key components of this pathway we describe are
detected in high Gleason-grade PCa, which is characterized by highly invasive and aggressive
behavior. Moreover, other studies support the existence and clinical relevance of EMT-like
processes in PCa, e.g., (Acevedo et al., 2007). Of note, a recent study that compared gene
expression during prostate development to PCa suggested that those tumors with a transcript
profile consistent with branching morphogenesis, which involves EMT, were likely to be
invasive and have an early relapse after surgical resection (Pritchard et al., 2009).

We identify 3B-adiol, a 5a-DHT metabolite, as a specific ligand for ERB1 that mediates the
ability of this ER to sustain an epithelial phenotype and repress EMT and invasion. 3f-adiol
binds to ERp but not ERa or the androgen receptor (Kuiper et al., 1997). Interestingly, E,, a
ubiquitous ligand for both ERa and ERp, was ineffective in regulating E-cadherin and the
EMT. Our data also suggest that an important function of 3p-adiol is to maintain ERf
expression, an observation also made in normal rat prostate (Oliveira et al., 2007). These data
strengthen the hypothesis that 3p-adiol is the primary ligand for ERp in the prostate and that
its major function is to maintain a differentiated, epithelial phenotype. This conclusion is
supported by the fact that the concentration of 3p-adiol in the prostate gland is 100-fold higher
than that of E, (Voigt and Bartsch, 1986).

The key mechanistic finding in our study is that ERB1 represses VEGF-A transcription by a
complex mechanism that involves its ability to regulate two key response elements within the
VEGF promoter: the ERE and the HRE. This finding is distinct from studies demonstrating
that E, stimulates VEGF transcription in the breast and uterus (Buteau-Lozano et al., 2002;
Hyder, 2006; Stoner et al., 2004). Our data suggest that ERB1 represses VEGF transcription
directly via the ERE, a function that may require recruitment of co-repressors such as NCoR
(Giraultetal., 2003). Importantly, we also conclude that ERB1 represses VEGF-A transcription
indirectly by destabilizing HIF-10 and impeding HIF-1-mediated transcription of VEGF. This
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conclusion is supported by our proteasome inhibitor data and mutational analysis of the HRE
and ERE in the VEGF-A promoter, as well as the observation that ERf and HIF-1a can
associate physically (Lim et al., 2009).

We implicate VEGF-A as an ERB1-regulated HIF-1 target gene that links 33-adiol/ERB1 to
Snaill localization and the EMT. This function of VEGF-A in PCa cells is of interest because
the hypothesis that VEGF and its receptors impact the behavior of tumor cells directly is gaining
prominence (Bachelder et al., 2001; Bates et al., 2003; Cao et al., 2008; Castro-Rivera et al.,
2004; Su et al., 2006). The significance of our results is that we provide a mechanism for how
VEGF expression is regulated pathophysiologically by ERB1 and establish the relevance of
this mechanism to PCa by demonstrating that VEGF-A expression in PCa correlates with
Gleason grade. Moreover, our data indicate that the expression of HIF-1a, itself and HIF-1o.
target genes is associated with a mesenchymal, aggressive phenotype. We note also an
emerging relationship among ERB1, VEGF and hypoxia. Hypoxia selects for the survival of
more aggressive tumor cells (Brown, 1999) and it induces an EMT as shown here and
previously (Higgins etal., 2007; Lester etal., 2007). Hypoxia also stimulates VEGF expression
(Harris, 2002) and diminishes ERB1 expression as we demonstrate. Thus, hypoxia emerges as
one mechanism that facilitates the acquisition of mesenchymal characteristics in PCa cells by
suppressing ERB1 and stimulating HIF-1a-mediated VEGF expression. Interestingly, a recent
study concluded that cells from PCa patients with a poor prognosis exhibited a hypoxic
phenotype (Nanni et al., 2009).

The ability of ERpB1 to control NRP1 function by regulating VEGF-A expression establishes
a connection between this ER and VEGF receptor signaling. Since the seminal observation
that NRP1 can function as a VEGF receptor (Soker et al., 1998), studies have demonstrated its
functional importance in angiogenesis and cancer (Guttmann-Raviv et al., 2006). However,
the ability of NRP1 to regulate Snaill localization is unexpected and may contribute to the
reported association of NRP1 with PCa progression (Latil et al., 2000; Miao et al., 2000) and
tumor de-differentiation (Cao et al., 2008). Our observation that ERB1 can impact NRP1
function by controlling VEGF expression adds to our understanding of how this VEGF receptor
can be regulated in cancer. In addition, our identification of a VEGF-A/NRP1 pathway that is
regulated by ERB1, promotes an EMT and distinguishes high Gleason grade PCa may be
appropriate and feasible for therapeutic targeting. Adjuvant therapy aimed at targeting VEGF
(bevacizumab) is being used for the clinical management of several tumors (Ferrara, 2005) and
recent data suggest that NRP antibodies have the potential to have clinical efficacy (Caunt et
al., 2008; Gray et al., 2008; Pan et al., 2007). Although the overarching assumption had been
that such drugs function by blocking tumor angiogenesis, it is likely that they also target tumor
cells directly, and that patients with high Gleason grade PCa may benefit from such anti-VEGF/
NRP therapy.

The essence of our study is that 3-adiol/ERp1 sustain E-cadherin transcription and prevent
an EMT in PCa cells by sequestering Snaill in the cytoplasm. Although other transcription
factors that regulate E-cadherin may be important for PCa progression such as SIP1 (ZEB2)
(Kong et al., 2009), our data indicate that ERB1 regulates Snaill. The mechanism involved is
linked to the regulation of GSK-3p activity by 3B-adiol/ERB1, an enzyme that is critical for
regulating Snaill localization and stability and, as a consequence, the EMT (Bachelder et al.,
2005; Yook et al., 2006; Zhou et al., 2004). The mechanism we propose for the regulation of
Snaill by ERB1 is distinct from the regulation of Snaill by ERa in breast cancer, which involves
the ERa-dependent regulation of MTA3, a repressor of Snaill transcription (Fearon, 2003;
Fujita et al., 2003). ERa has also been reported to impede the EMT and invasiveness of breast
cancer cells by inhibiting the synthesis of RelB (Wang et al., 2007).

Cancer Cell. Author manuscript; available in PMC 2011 April 13.
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Our finding that Snaill localization is predominantly nuclear in Gleason grade 5 PCa but
largely cytoplasmic in grade 3 PCa is distinct from other studies that have shown that Snaill
expression but not localization in other cancers differs among tumor subtypes or stages, e.g.,
(Blanco et al., 2002; Moody et al., 2005). A potentially important and useful implication of
our data is that nuclear Snaill could serve as a biomarker to predict the propensity of a given
tumor to progress to advanced disease. This possibility is particularly relevant and timely given
the uncertainty and ineffectiveness of PSA screening in predicting outcome (Andriole et al.,
2009; Schroder et al., 2009).

In summary, our data contribute to an understanding of the molecular basis for the Gleason
grading system and suggest a mechanism that promotes for the aggressive and invasive nature
of high Gleason grade tumors.

EXPERIMENTAL PROCEDURES

Clinical specimens

Tissue samples of defined Gleason grades were obtained from the UMASS Cancer Center
Tissue Bank with approval of the Institutional Review Board (IRB) of UMASS Medical
School. The IRB granted a waiver for obtaining patient consent in accordance with NIH
guidelines because these were pre-existing, de-identified specimens. Tissue microarrays
containing Gleason grade 5 PCa were kindly provided by Dr M. Loda of the Dana Farber
Cancer Institute, Boston MA. Specimens were stained with Abs specific for ERB1 (Gene Tex),
E-cadherin (Abcam) and Snaill (Abcam), VEGF-A (R&D Systems) and HIF-1a (Novus).
Frozen specimens were microdissected by laser capture microscopy (Arcturus PixCell 2) as
described (Loric et al., 2001) to obtain pure populations of tumor cells of defined Gleason
grades. RNA was isolated from these specimens using the RNeasy kit (Qiagen). Additional
details on the clinical specimens used and method of analysis are provided in Supplementary
Experimental Procedures.

Cells and Reagents

The human prostate cancer cell lines (LNCaP and PC3) were obtained from American Type
Culture Collection (ATCC: Manassas, VA). TGF-p experiments were performed by incubating
cells with recombinant human TGF-B (5 ng/ml; Peprotech) for 3-4 days. For hypoxia
experiments, cells were grown in a Ruskinn Hypoxic Chamber (0.5% O; 5% CO,) for 18-20
hours. The psiSTRIKE™ U6 Hairpin Cloning System (Promega) was used for DNA-directed
shRNA expression using sequences optimized for ERB1 (Mak et al., 2006). Cells were also
transfected transiently with On-Target Plus SMARTpool siRNAs (Dharmacon, CO) for
ERp1, ERB and Snaill. These target sequences have been published by Dharmacon. Non-
targeting pools were used as negative controls. Lentiviruses (pLKO.1) containing the NRP1
shRNA Oligonucleotide ID TRCN0000063527 (Open Biosystems, Huntsville, AL) and
pLKO.1 empty vector or pLKO-GFP controls were generated and used to infect PC3 cells
following standard protocols. The reporter gene, p11w, which contains the wild type HRE
(hypoxia responsive element) and the mutated version, p11m fused to luciferase, were obtained
from ATCC. The E-cadherin promoter reporter gene (pGL2Basic-EcadK1) and GFP Snail WT
plasmids were obtained from Addgene. The Renillaluciferase plasmid was purchased from
Promega.

Biochemical analyses

Total RNA was isolated using the TRI reagent (Sigma) and reverse-transcribed to cDNA using
Superscript 1l reverse transcriptase (Invitrogen). Details on primers used and PCR methods are
provided in Supplementary Methods. For immunoblots, cells were extracted with RIPA buffer
containing EDTA and EGTA (Boston BioProducts) with a protease inhibitor cocktail, and blots
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were performed as described previously (Bae et al., 2008) using primary Abs against ERa,
ERP1, E-cadherin, N-cadherin, vimentin, Snaill, pAkt (Ser473), total Akt, pGSK3p (Ser9),
total GSK3p, NRP1, HIF-1a and B-actin, which were obtained from Santa Cruz BioTechnology
(CA), Sigma (MO), Abcam (MA) or Gene Tex, Inc. (CA). Estradiol-17f (E,), 3p-androstane-
diol (3p-adiol) and PHTPP were obtained from Tocris. The proteasome inhibitor MG132 was
obtained from Calbiochem. VEGF-A levels in culture medium were quantified by ELISA
(R&D Systems).

Snaill localization

For immunofluorescence microscopy, cells were maintained under the conditions described in
Fig. 3B, fixed with para-formaldehyde and incubated with a Snaill Ab (Abcam, MA) and a
fluorescein isothiocynate-conjugated secondary Ab (Jackson Immunoresearch, West Grove,
PA). Coverslips were mounted on slides with SlowFade Antifade reagent containing DAPI
(Molecular Probes). For localization of exogenous Snaill, cells were transfected with a GFP-
Snaill construct (Addgene) using Lipofectamine™2000 and analyzed as described above.

Analysis of VEGF-A promoter

The VEGF promoter was PCR amplified from human genomic DNA. The PCR amplified
fragment was confirmed by restriction mapping and cloned at the Xhol-Hind Il site into the
pGL3 basic vector (Promega). Site-directed mutagenesis was used to mutate the ERE sequence
from (AATCAGACTGACT) to (AACTGGACCAACT) and the HRE sequence from
(TACGTG) to (TAAAAG). Details on this analysis are provided in Supplementary
Experimental Procedures.

Luciferase assays

PC3 cells were transfected with the desired plasmids and the Renilla luciferase construct to
normalize for transfection efficiency. Relative Light Units were calculated as the ratio of Firefly
luciferase to Renilla luciferase activity (normalized luciferase activity). The protocol used for
transfection and measurement of luciferase activity has been described previously (Mak et al.,
2006).

Migration and invasion assays

Assays were performed using 6.5 mm Transwell chambers (8 um pore size) that had been
coated with either collagen | or Matrigel (BD Biosciences, Bedford, MA) for migration and
invasion, respectively, as described previously (Shaw et al., 1997). After 5 hours, the cells that
had translocated to the lower surface of the filters were fixed in methanol. The fixed membranes
were mounted on glass slides using Vectashield mounting medium containing DAPI (Vector
Laboratories, Burlingame, CA). Assays were quantified by counting the number of stained
nuclei in 5 independent fields in each Transwell.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ERpB1 and EMT of PCa

(A) Specimens of normal glandular epithelium, Gleason grade 3 and 5 PCa were stained for
E-cadherin and ERB1 and photographed. ERB1 is localized in the nuclei of basal cells in the
normal prostate and nuclei of grade 3 tumor cells (arrow). In contrast, nuclear ERpB1 staining
is absent in grade 5 PCa (arrow). The data are representative of 3 separate specimens for each
classification. Scale bars = 20 um. (B) PC3 cells were treated with PBS (con) or TGF-f for 3
days, photographed and extracts were analyzed for the expression of EMT markers and ERB1
by immunoblotting. PC3 (C) or LNCaP (D) cells were maintained in either normoxia (N) or
hypoxia (H) (0.5% O,) for 24 hrs, photographed and extracts from these cells were
immunoblotted as described above. Scale bars = 50 um. See also Figure S1.
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Figure 2. ERB1 Sustains An Epithelial Phenotype and Impedes EMT in PCa

(A) PC3 cells that express either an ERB1 shRNA (shERB1) or scrambled shRNA (shCon) or
parental cells were photographed. (B) Extracts of these cells were immunoblotted for ERp1
and EMT markers. (C) Extracts of PC3 cells that express either an ERa SiRNA (SiERa) or a
scrambled siRNA (Scr) were immunoblotted for E-cadherin, N-cadherin, ERa and ERB1. (D)
The relative expression of E-cadherin and vimentin was assayed in PC3 cells that stably express
either a control ShRNA or ERB1 shRNA by qPCR using PGK1 as an internal control. The data
represent the average of 2 experiments. (E) PC3 cells expressing a scrambled shRNA (Scr) or
an ERB1 shRNA (shERP1) were transfected with an E-cadherin promoter reporter construct
(Src+ and shERp1+) or pGL2 Basic vector as a control (Scr and shERB1) and assayed for
luciferase activity. The data represent the mean of Firefly luciferase activity normalized to
Renilla from 3 separate experiments (+SEM) with P-value (*) <0.05. (F) PC3 cells that express
either a control ShRNA (shCon) or ERB1 shRNA (shERpB1) were assessed for their ability to
either migrate or invade. The data represent the mean of 3 separate experiments (SEM) with
P-value (*) <0.05. (G) PC3 cells transfected with either control siRNA (siCon) or ERB1
SMARTpool siRNA (siERB1) and the parental cells were examined for morphology and EMT
marker expression after 3 days. Scale bars = 50 um.
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Figure 3. The ERB1 Ligand 3p-Adiol Sustains An Epithelial Phenotype in PCa

PC3 cells were incubated with either DMSO (Con), the ERB1 antagonist PHTPP (A) or 3p-
Adiol (B) for 3 days, and morphology and EMT marker expression were examined. PC3 cells
were treated with TGF-f in the absence or presence of estradiol-17f (E,) (10 nM) or 3-Adiol
(1 uM) and examined for morphology (C) and expression of ERB1 and EMT markers (D: left
panel). Cells treated in the absence or presence of TGF-$ were also examined for ERp1
transcripts by RT-PCR (D: right panel). ERB1 knockdown cells (ShERpB1) untreated or treated
with either 33-Adiol (1 uM) or E, (10 nM) were examined for morphology and expression of
EMT markers (E). Scale bars = 50 um.
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Figure 4. ERp1 Destabilizes HIF-1a Protein and Represses HIF-1-mediated transcription of VEGF-
A

(A) PC3 cells maintained in either normoxia (N) or hypoxia (H) for 24 hrs, treated with PBS
(Con) or TGF-B, transfected with control or ERB1 shRNA or siRNA, or treated with PHTPP
were analyzed for the expression of HIF-1a by immunablotting. * denotes a non-specific band.
HIF-1a. mRNA was detected by RT-PCR in TGF-B-stimulated cells and shRNA transfected
cells. (B) PC3 cells (scrambled control cells) or ERB1 knockdown cells were treated in the
absence or presence of MG132 (1 uM), 3p-Adiol (1 uM) or E, (10 nM) for 6 hours and
immunoblotted for HIF-1a. (C) PC3 cells (scrambled control cells) or ERB1 knockdown cells
were treated in the absence or presence of MG132 (1 uM) for 6 hours and photographed. Scale
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bars = 50 um. Extracts of the control cells treated with MG132 were immunoblotted for E-
cadherin, vimentin and B-actin. (D) PC3 cells expressing a scrambled shRNA (Scr) or an
ERP1 shRNA (shERp1) were analyzed for VEGF-A mRNA expression by gPCR (left graph).
PC3 cells were treated with PBS (Con) or TGF-f in the absence or presence of 3p3-Adiol (1
uM) or 3p-Adiol (1 uM) plus PHTPP (5 uM). After 3 days, cells were analyzed for VEGF-A
mRNA expression by qPCR (right graph). (E) VEGF-A secretion in culture medium from PC3
cells treated with PBS (Con) or TGF-p or transfected with control or ERB1 shRNAs was
quantified by ELISA. (F) Scrambled control cells (Scr) or ERB1 knockdown cells (ShERB1)
were transfected with a VEGF promoter reporter construct and luciferase activity normalized
to Renilla was measured (left graph). PC3 cells were transfected with a wild type VEGF
promoter reporter construct in the absence (Wt) or presence of TGF- (WT+TGFp).
Concurrently, cells were transfected with the reporter construct containing either a mutated
ERE (EREm) or both a mutated ERE and HRE (EREm/HREm) and normalized luciferase
activity was measured (right graph). (G) Scrambled control cells (Scr) or ERB1 knockdown
cells (shERp) were transfected either with a wild-type HRE reporter construct: Scr (Wt) or
ShERp (Wt) or with a mutated version of the HRE reporter construct: Scr (mut) or ShERf
(mut) under hypoxic conditions for 16-18 hours and normalized luciferase activity was
measured. All data are the mean of 3 separate experiments with SEM and P value (*) < 0.05
indicated.
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Figure 5. VEGF-A Promotes EMT and the VEGF Receptor NRP1 is Necessary for EMT and
Regulates GSK-3p Activity

(A) PC3 cells were grown in RPMI medium in the absence or presence of recombinant
VEGF;¢5 (50 ng/ml) for 24 hours. Cells were photographed and extracts were immunoblotted
to assess expression of EMT markers. (B) Photomicrographs of PC3 cells that express either
an empty vector (shCon), GFP shRNA (shGFP) or 2 different NRP1 shRNAs (shNRP1A and
shNRP1B) were treated with or without TGF-f for 3 days. Extracts from these cells were
immunoblotted for NRP1, as well as EMT markers. (C) Extracts from PC3 cells stimulated
with either TGF-B, normoxia (N) or hypoxia (H), or ERB1 knockdown cells (ShERB1) were
immunoblotted with Abs specific for pAkt (Ser473), pGSK-3p (Ser9), Akt, GSK-3p and -
actin. (D) Extracts of LNCaP cells maintained in either normoxia (N) or hypoxia (H) for 24
hrs were immunoblotted with the same Abs. (E) PC3 cells were treated in the absence or
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presence of 3p-Adiol or PHTPP and subsequently analyzed for phospho-GSK3, total
GSK3p and Snaill expression. Scale bars = 50 pm.
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Figure 6. ERp1 and EMT Regulate Snaill Nuclear Localization

(A) PC3 cells that express an ERB1 shRNA were transfected with either a control sSiRNA
(siCon) or Snaill siRNA (siSnaill), and analyzed for morphology and expression of EMT
markers. (B) Snaill was visualized by immunofluorescence microscopy in PC3 cells
maintained in either normoxia (N) or hypoxia (H) for 48 hrs. The photomicrographs shown
represent the merged images obtained from Snaill staining (green; FITC) and nuclear staining
(blue; DAPI). Note that in normoxia, Snaill staining is predominantly cytoplasmic and
excluded from nuclei. In hypoxia, however, Snaill localization in nuclei is evidenced by
‘whitish-blue’ staining. (C) The percentage of nuclei that had Snaill staining was quantified
in PC3 cells maintained in normoxia (N) and hypoxia (H), and in cells stimulated with TGF-
B or VEGF-A, as well as in PC3 cells in which ERB1 or NRP1 expression was depleted by
shRNA. Snaill nuclear localization was also quantified in PC3 cells treated with LiCl,, a
GSK-3p inhibitor. The data represent the mean of 3 separate experiments with SEM and P
value (*) <0.05 indicated. (D) PC3 cells that express either a scrambled shRNA (Scr) or
ERB1 shRNA (shERP1) were transfected with a GFP-Snaill construct. GFP and DAP1 were
visualized and the images merged. Note the nuclear localization of GFP-Snaill as evidenced
by the whitish blue staining that is associated with loss of ERB1 expression. The bar graph
represents the quantification of nuclear GFP-Snaill from 3 independent experiments (xSEM)
and P value (*) <0.05 indicated. (E) PC3 cells were treated with TGB-p in the absence or
presence of 3p-Adiol (1 uM) and nuclear Snaill was quantified. The data represent the mean
of 3 separate experiments with SEM and P-value (*) <0.05 indicated.
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Figure 7. HIF-1a/VEGF/Snaill Pathway is Manifested in High Gleason Grade PCa

Thirty specimens of human PCa including 20 Gleason grade 3 tumors and 10 Gleason grade
5 tumors were immunostained for ERB1 (A), HIF-1a (B), VEGF-A (C) and Snaill (E). Semi-
quantitative analysis of IHC staining was performed for all samples that assessed both the
percentage of cells stained and the intensity of the staining, and this analysis is reported as the
Quotient (Q) of these two parameters (£SD). The significance of the difference in Q between
Gleason grade 3 and 5 as determined by Students t test is shown for each bar graph.
Photomicrographs representative of the mean Q for each IHC staining are shown. (D)
Microdissected samples from grade 3 and grade 5 PCa were analyzed for the expression of
VEGF-A mRNA by qPCR and the data represent the average of 7 separate specimens for each
grade. Red scale bars = 25 pm; black scale bars =50 pum.
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Figure 8. Proposed model for how ERpB1 sustains an epithelial phenotype and represses a
mesenchymal phenotype

The interaction of ERB1 with its ligand 3p-Adiol represses an EMT by destabilizing HIF-1a
and inhibiting VEGF-A transcription. Stimuli that induce an EMT diminish ERB1 expression
resulting in increased VEGF-A expression and the consequent activation of a VEGF-A/NRP1
signaling pathway that inhibits GSK-3p and promotes Snaill nuclear localization.
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