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Abstract

Background: Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous
computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA
molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational
miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-
level precision. To our knowledge, there haven’t been reports about comprehensive strategies determining the precise
sequences, especially two termini, of these miRNAs.

Methods: In this study, we report an efficient method to determine the precise sequences of computationally predicted
microRNAs (miRNAs) that combines miRNA-enriched library preparation, two specific 59 and 39 miRNA RACE (miR-RACE) PCR
reactions, and sequence-directed cloning, in which the most challenging step is the two specific gene specific primers
designed for the two RACE reactions. miRNA-mediated mRNA cleavage by RLM-59 RACE and sequencing were carried out to
validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA.

Results: The efficiency of this newly developed method was validated using nine trifoliate orange (Poncirus trifoliata)
miRNAs predicted computationally. The miRNAs computationally identified were validated by miR-RACE and sequencing.
Quantitative analysis showed that they have variable expression. Eight target genes have been experimentally verified by
detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate.

Conclusion: The efficient and powerful approach developed herein can be successfully used to validate the sequences of
miRNAs, especially the termini, which depict the complete miRNA sequence in the computationally predicted precursor.
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Introduction

One of the most important developments in molecular biology

over the past two decades is the emerging picture of a new layer of

gene regulation under the control of small yet versatile RNAs [1].

Small RNA (sRNA) molecules are widely recognized as common

and effective modulators of gene expression in many eukaryotic

organisms. According to the current knowledge, sRNAs are

generally divided into several categories, including microRNAs

(miRNAs), short interfering RNAs (siRNAs), trans-acting siRNAs

(ta-siRNAs), natural antisense transcript siRNAs (nat-siRNAs), and

Piwi-interacting RNAs (piRNAs) in metazoans [2]. In plants,

microRNAs (miRNAs) are produced from partially complemen-

tary dsRNA precursor molecules [3,4]. These plant miRNAs are

the best-characterized sRNAs, and the pathways by which they are

generated and their roles in gene regulation have been well

documented [2,3,5]. Several hundred genes encoding miRNAs in

plants have been experimentally identified by the traditional

Sanger sequencing method, and increasingly more are predicted

by numerous computational methods. These methods mainly use

secondary structural information to search expressed sequence

tags (ESTs) and to mine the repository of available genomic

sequences [6–11], and they have obvious advantages, including

the quick prediction of a large number of miRNAs, low costs, and

the prediction of novel and non-abundant miRNAs that are

usually difficult to clone directly. However, the miRNA prediction

algorithms often cannot predict the accurate location of the

mature miRNA in a precursor with nucleotide-level precision.

Even though false-positive predictions have been minimized using

various scores and rank cutoffs, the precise sequences usually

cannot be determined and several candidate miRNA orthologs or

paralogues might be predicted for a specific miRNA. Unlike

protein-coding genes defined by start and stop codons, the ends of

miRNA molecules do not have characteristics that can be used to

define the mature miRNAs exactly. The determination of the

precise sequence of the mature miRNA, including the ends, is
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essential for downstream research applications in various organ-

isms, such as miRNA target prediction and further studies on

miRNA evolution, the regulatory role of miRNAs, and the

mechanism of miRNA biogenesis. Mutations in the seed region of

human miR-96 have a strong impact on miR96 biogenesis and

result in a significant reduction in miRNA targeting [12],

confirming that it is important to determine the precise sequence

of mature miRNAs before using them in further studies.

In previous studies, a combination of computational prediction

and experimental verification was used to identify miRNAs, in

which the experimental validation was mainly focused on

determining the expression of the miRNAs by the robust

techniques of RNA blotting and/or RT-PCR. Notably, these

two techniques can only confirm the existence and size, but not the

full precise sequence, of a miRNA predicted computationally.

With a greater number of new potential miRNAs predicted by

bioinformatics approaches and deposited in the miRBase

Sequence Database (http://microrna.sanger.ac.uk/sequences/),

the precise sequences of the homologs and/or orthologs of the

miRNAs cloned from model organisms need to be determined

before the initiation of further studies on their functions and

biogenesis. To our knowledge, no reports have employed a

comprehensive strategy to determine the precise sequences of the

miRNAs computationally predicted. We developed an integrative

approach combining the strategies of a miRNA-enriched library

preparation, 59 RACE and 39 RACE reactions, and sequence-

directed cloning, which made it possible to determine the

sequences of even the non-abundant miRNAs that are typically

difficult to clone directly. This is the first report of the validation of

the up- and downstream nucleotides flanking the last candidate

nucleotide in the predicted miRNA.

The method we developed comprises the following main steps: (i)

miRNA-enriched library preparation; (ii) 59 miR-RACE and 39

miR-RACE for accurate amplification of the 59 and 39 ends of a

miRNA; (iii) PCR product cloning and sequencing; (iv) real-time

PCR (RT-PCR) of the miRNAs using the primers derived from the

validated miRNA sequences; (v) cloning and sequencing of the RT-

PCR products for the validation of the PCR products. The

schematic flowchart of this strategy for precise miRNA sequence

determination is shown in Fig. 1. The innovative core steps in our

method are the two PCR reactions amplifying the 59 and 39 ends of

the miRNA, respectively, in which two specific primers cover both

parts of the candidate miRNA and adaptor. These two PCR

reactions are denoted as 59- and 39-miR-RACE based on their

similarity to the rapid amplification of cDNA ends (RACE)

technique. The efficiency of this method was validated well using

nine trifoliate orange, one of the most important rootstocks of citrus,

miRNAs (ptr-miRNAs) that were predicted computationally.

Results

Prediction of potential ptr-miRNAs
The method used in the computational identification of ptr-

miRNAs was similar with the methods used by Zhang et al. [6] and

Sunkar et al. [13], by which nine potential ptr-miRNAs (Table 1) were

predicted. Subsequently, we re-checked these candidate ptr-miRNAs

manually following our work on citrus [14], and the predicted

precursor secondary structures of these ptr-miRNAs, as an important

validation parameter for MIR genes, are presented in Fig. 2.

59 miR-RACE and 39 miR-RACE PCR products of ptr-
miRNAs

To amplify the 59 and 39 ends of the target miRNA, procedures

similar to the rapid amplification of cDNA ends (RACE) were

employed (Fig. 1B). The difference between our method and

traditional RACE lies in the gene-specific primers used (Table 2).

The two gene-specific primers were designed considering two

additional parameters. The first parameter was that the primers

covered 17 nucleotides of the candidate mature miRNAs, and

these 17 nucleotides were specific to the corresponding miRNA

and met the criterion for the minimum number of nucleotides of a

regular PCR primer. The second parameter was that mismatches

between the sequence of the specific primer and that of the end

sequence of the real miRNAs were allowed, and that these

mismatches should not influence the PCR amplification, similar to

the principle employed in site-directed mutagenesis [15,16] and in

the addition of restriction sites to the termini of amplified DNA

employed in recombinant DNA technology [17]. Furthermore, the

workability of the miR-59 RACE and miR-39 RACE reactions was

validated by the application of primers designed to have 1–3

nucleotides mismatched to the end sequence of the real miRNAs

(Supplementary Table S1; Supplementary Fig. S1). This suggested

the PCR reactions could allow the application of primers that

might have 1–3 nucleotides mismatches to the precise sequence of

the real corresponding miRNAs to be verified. We chose to use 17

rather than all of the nucleotides of the miRNA for primer design

based on the hypothesis that four or fewer nucleotides flanking the

last nucleotide in the predicted miRNA would vary, thus

maintaining at least 75% identity between the primer and the

miRNA orthologs, consistent with the conservation reported for

cloned miRNA homologs. This design would allow at most three

and four mismatched nucleotides and, if found to be true, should

be validated.

The GSP1 and GSP2 also included ten nucleotides of Poly(T) and

ten nucleotides of the adaptor sequence, respectively, for longer

primers of up to more than 21 nucleotides. These modifications

resulted in a high specificity and a better match between the

annealing temperatures of the specific primer and the opposite

reverse adaptor primer, which were the most technically challeng-

ing steps in this miR-RACE. By using one specific primer and one

reverse primer during PCR, the precise sequence of the end of the

miRNA opposite to the specific primer could be correctly amplified

and validated. In this study, the 17 nucleotides complimentary to

the miRNA were sufficient for the accurate and efficient PCR

amplification of the opposite ends, and the mismatches within the

gene specific primer (GSP) did not influence the aim of this work, to

PCR-amplify the two ends of the ptr-miRNAs (Fig. 3). The

anticipated sizes of the PCR products of the nine ptr-miRNAs were

estimated during the prediction of the ptr-miRNAs, and the identity

of these PCR products were validated by the subsequent cloning

and sequencing.

Cloning and sequencing of the 59 miR-RACE and 39 miR-
RACE PCR products

All the miR-RACE PCR products were cloned and sequenced,

and all of them yielded reliable sequences. For a relatively high

confirmation of the sequences of the cloned products, three clones

of each PCR product were sequenced. The sequences of each pair

of 59 miR-RACE and 39 miR-RACE PCR products of every one

of the nine ptr-miRNAs were spliced to generate the whole mature

miRNA sequences (Table 3).

The cloning and sequencing of the miR-RACE PCR products

were performed according to the instruction for the TOPO TA

cloning Kit (Invitrogen, USA). The sequencing results were also

used to confirm the predicted ptr-miRNAs and to identify the

precise end sequences of them (Table 3). The sequence identity

between the cloned and validated miRNA and the region in the

corresponding precursor was also used to confirm the success of

miRNA Sequence Determination
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the 59 miR- and 39 miR-RACE technique for the precise

determination of the miRNA sequences. The sequencing results

demonstrated that the ptr-miRNAs were conserved relative to

those of Arabidopsis and the Poplar (Table 3), but not all at the

100% identity level. The nine ptr-miRNAs analyzed in this study

exhibited more variation at the terminal nucleotides than in the

internal nucleotides of the miRNAs. This is in agreement with the

results obtained in a study by Seitz et al. [18]. A possible

explanation for the sequence variation across these small active

elements is that transcription and miRNA processing might

introduce differences at both ends and in the internal regions of

the miRNA. The sequence validation results also demonstrated

that the four conserved miRNAs (ptr-mir156, 164, 167, and 319)

were identical both in length and nucleotide sequence with their

orthologs in Arabidopsis, but the other five non-conserved miRNAs

varied in sequence at both internal and terminal nucleotides.

Figure 1. a. Determination of the precise miRNA sequence by 59 and 39 miR-RACE. (a) miRNA cDNA library construction. (b) Analysis of miRNA
59RACE and 39RACE. Sequences for the 59RNA adaptor, dT(30)RT primer, MirRacer 39 Primer, MirRacer 59 Primer, GSP1, and GSP2 are listed in Table 2.
doi:10.1371/journal.pone.0010861.g001

miRNA Sequence Determination
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Expression analysis of ptr-miRNAs
An expression analysis of the nine trifoliate orange miRNAs was

also carried out in this study for a more comprehensive and

efficient characterization of the miRNAs, using shared primers

and the same miRNA library, which has been one of the most

important works to be studied on miRNAs. After the validation of

the precise sequence of nine ptr-miRNAs, the primers for the RT-

PCR were synthesized (Table 2). The preferential expression of a

miRNA in specific tissues might provide clues about its

physiological function. All nine ptr-miRNAs exhibited expression

patterns (Fig. 4) similar to their orthologs in Arabidopsis and Poplar.

The majority of the miRNAs were expressed ubiquitously in all

tissues, and some were expressed in tissue-, species-, and/or

growth-stage-specific patterns. All of the RT-PCR reaction

products were cloned and sequenced for positive validation.

Identification of miRNA-guided cleavage of target
mRNAs in trifoliate orange

The highly exact complementarity between the ends of the

miRNAs and their substrate probably allows them to interact with

greater specificity to their substrate mRNAs without the need for

stronger complementarity throughout the miRNA or a larger

overlap. The differences in the miRNA sequences could influence

the directed-digestion sites on target mRNAs. If variation is

introduced in the terminal nucleotides of miRNAs, it is unclear

whether or not their function will also change. Most of the

Arabidopsis miRNAs have been shown to guide cleavage of their

target genes [19–21]. To verify the nature of the predicted ptr-

miRNA targets and to study how the ptr-miRNAs regulate their

target genes, RLM-RACE experiment was employed, which was

carried out in this study for better characterization of the ptr-

miRNAs predicted. It is also one of the most common and widely

used methods in the literatures [22,23] to support bioinformatics

data. All nine of the ptr-miRNAs guided the target cleavage, most

often at the tenth nucleotide, as expected (Fig. 5). From the precise

sequences of the ptr-miRNAs results, we know that the miRNA-

guided cleavage in trifoliate orange obeyed the principle that base-

paring to the 59 ‘seed’ region of the miRNA was the dominant

factor for the miRNA target recognition, and that the cleavage site

was mostly located at the tenth nucleotide, just 39 of the ‘seed’

sequence [24]. All the nine predicted targets were found to have

specific cleavage sites corresponding to the miRNA complemen-

tary sequences and might be regulated by the miRNAs in the style

of small interfering RNAs (siRNAs) [25] directing the cleavage of

mRNA targets with extensive complementarity to the miRNAs

[22].

Conclusions
Our study introduces a new, efficient strategy to verify the real

sequences of mature miRNAs that were predicted computation-

ally. Based on the sequencing results for a test set of miRNAs from

trifoliate orange, we further suggest that there could be variation

between the sequences of homologous miRNAs from different

plant species. Theoretically, it is easy to understand that miRNAs

could be changing during evolution across the plant kingdom. The

sequences generated via the miR-RACE PCR experiments

matched the predicted miRNA sequences located in the

corresponding precursors used for stem-loop prediction, and these

miRNAs were also complementary to the target sequences with

fewer than three mismatches in trifoliate orange (Fig. 5). This

suggests that the sequence variation of the miRNAs might not

have changed their function, since there may be enough

complimentarity remaining for these miRNAs to work on their
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target gene transcripts. The sequence variation of the miRNAs

could also be due to evolutionary factors.

In summary, this method functions as a complementary approach

to all of the computational miRNA prediction methods developed for

miRNA sequence determination, making it possible to clone an

interesting miRNA and study the conservation of that miRNA in the

plant kingdom. The results from the ptr-miRNA study suggest that it

is wise to validate the precise sequences of computationally predicted

miRNAs before initiating further experimental studies on the

miRNA. The method we proposed herein is a powerful tool for

miRNA sequence, especially miRNA termini, determination.

Theoretically, it is better to validate every one miRNA predicted

computationally for some further study on its regulation function, for

a different nucleotide may influence the function of it.

Materials and Methods

miRNAs, ESTs, cDNA, and mRNA sequences
All of the 1894 known plant miRNAs, which have been

validated by experimental approaches including direct cloning,

PCR, and/or Northern blotting [9,26], were obtained from

miRBase (Release13.0, March 2009; http://microrna.sanger.ac.

uk). All of the above miRNAs were clustered by CD-HIT-EST

[27] with c = 1, n = 8, d = 250, and g = 1. Only one mature

sequence was selected from each cluster in order to eliminate

closely related sequences; this approach generated 684 non-

redundant mature miRNAs. All 62,344 Poncirus trifoliata ESTs were

downloaded from the National Center for Biotechnology Infor-

mation (NCBI) GenBank EST database (March 2009; http://

www.ncbi.nlm.nih.gov/). All of these ESTs were screened against

the 684 known miRNAs. Citrus unigenes were obtained from the

C46 Database of HarvEST: Citrus 1.20, which displays 89

libraries and 229570 ESTs [14].

Software availability
The comparative software (BLAST-2.2.14) was downloaded

from NCBI GenBank. RNAfold was used to analyze the secondary

structure of the RNAs. BLASTX from the web site http://www.

ncbi.nlm.nih.gov/BLAST/ was used for the analysis of potential

targets [28]. Putative citrus miRNAs were first blasted against the

Harvest C46 Citrus unigene database on the Harvest Blast Search

web server. BlastN hits with fewer than four nucleotides

mismatches (plus/minus) were chosen as the candidate targets,

which were then searched in Citrus Harvest 1.20 program using

BlastX to obtain their putative functions [14].

Prediction of potential miRNAs
The outline of our prediction procedure is according to a

previously published method [6,13]. First, we took one known

miRNA from the reference set and aligned its seed region

(positions 2–8) to the ESTs on both strands. At each hit position, a

‘‘raw miRNA’’ that had the same length as the known miRNA was

extracted. Second, we took the known miRNA as a pattern and

used PatScan [29] to filter all of the raw miRNAs, allowing a

maximum of three mismatches between the known miRNA and

the raw miRNAs. For the high conservation of mature sequences,

particularly in the seed region [24], we stipulated that all of the

mismatches could only occur in the non-seed region. The

secondary structures of these sequences were predicted using

RNAfold [30]. Finally, we explored a series of criteria to filter the

sequences: (1) the predicted secondary structure had a high

negative MFE; (2) the predicted mature miRNAs had no more

than four nucleotide substitutions compared with other plant

mature miRNAs; (3) the mature miRNA could be localized in one

arm of the hairpin structure; (4) the RNA sequence could fold into

an appropriate stem-loop hairpin secondary structure; (5) no loop

or break in the miRNA or its opposite miRNA* sequences; (6) no

more than 6 mismatches between the predicted mature miRNA

sequence and miRNA* sequence in the secondary structure.

Prediction of potential targets of miRNAs
Based on a transcriptome analysis in Arabidopsis transgenic

plants over-expressing miRNAs, Schwab et al. [31] designed a set

of rules for predicting miRNA targets. These criteria included the

allowance for one mismatch in the region complementary to

nucleotides 2 to 12 of the miRNA, but not at the cleavage site

(nucleotides 10 and 11), and three additional mismatches between

nucleotide positions 12 and 21, but no more than two continuous

Table 2. Primers used for miR-59 RACE, miR-39 RACE, and real-time PCR.

Pt-miRNAs GSP1 (59R39) GSP2 (59R39) GSP3 (59R39)

ptrmir156 TTTTTTTTTTGTGCTCACTCTCTTCTG GGAGTAGAAATGACAGAAGAGAGTGAG TGACAGAAGAGAGTGAGCAC

ptrmir164 TTTTTTTTTTGCACGTGCCCTGCTTCT GGAGTAGAAATGGAGAAGCAGGGCACG TGGAGAAGCAGGGCACGTGCA

ptrmir167 TTTTTTTTTTTCAGATCATGCTGGCAG GGAGTAGAAATGAAGCTGCCAGCATGA TGAAGCTGCCAGCATGATCTGA

ptr-mir171 TTTTTTTTTTGGAGATATTGACGCGGC GGAGTAGAAATTGAGCCGCGTCAATAT TTGAGCCGCGTCAATATCTCC

ptrmir319 TTTTTTTTTTGGGAGCTCCCTTCAGTC GGAGTAGAAATTGGACTGAAGGGAGCT TTGGACTGAAGGGAGCTCCC

ptrmir482a TTTTTTTTTTCATGGGTGGAGTAGGGA GGAGTAGAAATCTTCCCTACTCCACCC TCTTCCCTACTCCACCCATGCC

ptrmir482b TTTTTTTTTTAATGGGAGGCATAGGGA GGAGTAGAAATCTTCCCTATGCCTCCC TCTTCCCTATGCCTCCCATTCC

ptrmir1446 TTTTTTTTTTTTGAAGCAGAGAGTTCA GGAGTAGAAAATCTGAACTCTCTGCTT ATCTGAACTCTCTGCTTCAA

ptrmir435 TTTTTTTTTTCCGACTCCAATTCCGGA GGAGTAGAAATTATCCGGAATTGGAGT TTATCCGGAATTGGAGTCGG

GSP1 is the specific primer for miR-59 RACE, and the underlined region base pairs with the 39 poly(A)n; GSP2 is the specific primer used for miR-39 RACE, and the
underlined region base pairs with the 59 adaptor; GSP3 is the specific primer used for miRNA quantitative real-time PCR (qRT-PCR).
doi:10.1371/journal.pone.0010861.t002

Figure 2. Predicted fold-back structures of the identified ptr-miRNAs. The mature miRNA sequences are shaded. The miRNA precursors may
be slightly longer than the sequences shown in this figure. Predicted fold-back structures of the identified ptr-miRNAs. The mature miRNA sequences
are shaded. The miRNA precursors may be slightly longer than the sequences shown in this figure.
doi:10.1371/journal.pone.0010861.g002
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mismatches within this region. By adopting these rules to predict

newly identified miRNA targets in citrus, we allowed one

mismatch between the positions 1 to 9 from the 59 end of the

miRNA, no mismatches for positions 10 and 11, and another two

mismatches between positions 12 and 21/24. The number of

allowed mismatches at complementary sites between miRNA

sequences and potential mRNA targets was no more than four,

and no gaps were allowed at the complementary sites.

Oligonucleotide synthesis and preparation
All the oligonucleotides used were purchased from Invetrogene

Technologies, and then were purified by desalting. All primers

used in this study are listed in Table 2.

Low molecular RNA extraction
Roots, Leaves, young shoots, flowers, and fruits (1 cm diameter)

were harvested from a seven-year-old trifoliate orange, and the

total RNA was isolated from 100 mg of these tissues using

TRIZOL reagent (Invitrogen, Life Technologies, Carlsbad, CA).

Low molecular weight RNA and high molecular weight RNA

were separated with 4M LiCl [14,32]. The small RNA fraction

was dissolved in 30 ml of RNase-free water. The concentration of

the RNA was measured by the UV-1800 spectrophotometer

(Shimadzu, Japan) and visually checked in a 2.0% agarose gel.

Construction and screening of a cDNA library of small
RNAs

We utilized the same procedure (Fig. 1A) to generate the

miRNA-enriched library that has been popularly used to clone

miRNAs and to measure the expression of miRNAs via RT-PCR

[33–35], in which 59- and 39-end adaptors were linked to the

miRNA molecules. Small RNAs were polyadenylated at 37uC for

60 min in a 50 ml reaction mixture with 1.5 mg of total RNA,

1 mM ATP, 2.5 mM MgCl2, and 4U poly(A) polymerase

(Ambion, Austin, TX). Poly(A)-tailed small RNA was recovered

by phenol/chloroform extraction and ethanol precipitation. A 59

adapter (59-CGACUGGAGCACGAGGACACUGACAUGGA-

CUGAAGGAGUAGAAA-39) was ligated to the poly(A)-tailed

RNA using T4 RNA ligase (Invitrogen, Carlsbad, CA), and the

ligation products were recovered by phenol/chloroform extraction

followed by ethanol precipitation. Reverse transcription was

performed using 1.5 mg of small RNA and 1 mg of (dT)30 RT

primer (ATTCTAGAGGCCGAGGCGGCCGACATG-d(T)30

(A, G, or C) (A, G, C, or T)) with 200 U of SuperScript III

reverse transcriptase (Invitrogen, Carlsbad, CA). Poly(A)-tailed

small RNA (10 ml total volume) was incubated with 1 ml of (dT)30

RT primer and 1 ml dNTP mix (10 mM each) at 65uC for 5 min

to remove any RNA secondary structure. The reactions were

chilled on ice for at least 2 min, the remaining reagents [56buffer,

dithiothreitol (DTT), RNaseout, SuperScript III] were added as

Figure 3. The 39 RACE and 59 RACE products of ptr-miRNAs
amplified by PCR are shown in an ethidium bromide-stained
agarose gel. The sizes of the molecular weight markers of the bottom
and the second from bottom bands are 50 bp and 100bp, respectively.
Lanes 1–9 are 39RACE products of ptr-miR156, ptr-miR164, ptr-miR167,
ptr-miR171, ptr-miR319, ptr-miR482a, ptr-miR482b, ptr-miR435, and ptr-
miR1446, respectively, and lanes 10–18 are the 59RACE products of them.
doi:10.1371/journal.pone.0010861.g003

Table 3. Alignment between ptr-miRNAs and their orthologs in Arabidopsis.

miRNA(59R39) Nucleotide order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

mir156 U G A C A G A A G A G A G U G A G C A C

ptr-mir156

mir164 U G G A G A A G C A G G G C A C G U G C A

ptr-mir164

mir167 U G A A G C U G C C A G C A U G A U C U G A

ptr-mir167

mir171 U U G A G C C G U G C C A A U A U C A C G

ptr-mir171b C U U C

mir319 U U G G A C U G A A G G G A G C U C C C

ptr-mir319

mir482 U C U U C C C U A C U C C U C C C A U U C C

ptr-mir482a A G

mir482 U C U U C C C U A C U C C U C C C A U U C C

ptr-mir482b U G

mir1446 U U C U G A A C U C U C U C C C U C A A

ptr-mir1446 A G U

mir435 U U A U C C G G U A U U G G A G U U G A

ptr-mir435 A C G

doi:10.1371/journal.pone.0010861.t003
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specified in the SuperScript III manual, and the reaction

proceeded for 60 min at 50uC. Finally, the reverse transcriptase

was inactivated by a 15 min incubation at 70uC. After the

preparation of the miRNA libraries from various organs and

tissues, we pooled similar quantities of these library samples for

further PCR amplification reactions.

Analyses of miRNA by 59miR-RACE and 39miR-RACE
The cDNA was amplified with the mirRacer 59 primer (59-

GGACACTGACATGGACTGAAGGAGTA-39) and the mirRa-

cer 39 primer (59-ATTCTAGAGGCCGAGGCGGCCGA-

CATG-39) to generate a pool of non-gene-specific product. These

miRacer primers are complementary to the 59 and 39 adaptors,

respectively. The conditions used for the amplification were

carried out for 25 cycles at a final annealing temperature of 60uC.

59miR-RACE reactions were performed with the mirRacer 59

primer and miRNA-gene-specific forward primers (GSP1), and 39

miR-RACE reactions were carried out with the mirRacer 39

primer and miRNA-gene-specific reverse primers (GSP2). GSP1

and GSP2 were complementary to 17 nucleotide length sequences

of the potential ptr-miRNAs and a piece of Poly(T) and 59 adaptor

(Fig. 1B, Table 2). In each case, a unique gene-specific DNA

fragment was amplified. After the amplification, the 59 RACE and

39 RACE PCR products were separated in a 2.5% agarose gel

with ethidium bromide (EtBr) staining. The gel slices containing

DNA with a size of about 60 bp (59 RACE product) and 87 bp (39

RACE product) were excised and the DNA fragments were

purified using an agarose gel DNA purification kit (Takara, Japan),

according to the manufacturer’s instructions. The DNA fragment

was directly sub-cloned with the TOPO TA cloning Kit

(Invitrogen, USA). Colony PCR was performed using the PCR-

specific primer pairs as above. The 59 RACE and 39 RACE clones

Figure 4. Relative expression levels of trifoliate orange miRNAs in different the trifoliate orange tisues of root, stem, leaf, flower,
and fruit. Each reaction was repeated three times and the template amount was corrected by 5.8 s rRNAs.
doi:10.1371/journal.pone.0010861.g004
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with PCR products of about 60 bp and 87 bp, respectively, were

sequenced. To check whether some mismatches between the

sequence of the specific primer and that of the end sequence of the

real miRNAs were allowed for workable PCR, we designed the

primers of miR164 for miR-59 RACE, miR-39 RACE (Supple-

mentary Table S1) that have 1–3 nucleotides being mismatched to

the end sequence of the real sequence of miR164, the reaction

using ptmir164 primers (GSP1, GSP2) were used as control.

Figure 5. Mapping of the mRNA cleavage sites by RNA ligase-mediated 59 RACE. Each top strand (black) depicts a miRNA complementary
site, and each bottom strand depicts the miRNA (red). Watson-Crick pairing (vertical dashes) and G:U wobble pairing (circles) are indicated. The
arrows indicate the 59 termini of mRNA fragments isolated from citrus, as identified by cloned 59RACE products, with the frequency of clones shown.
Only the cloned sequences that matched the correct gene and had 59 ends within a 100 nt window centered on the miRNA validation are included
(Table 1). The miRNA sequence shown corre (1 out of 4 PCR clones) is indicated in lower case and corresponds to the most common miRNA
supported by the miRNA PCR. RNA ligase-mediated 59RACE was used to map the cleavage sites. The partial mRNA sequences from the target genes
were aligned with the miRNAs. The numbers indicate the fraction of cloned PCR products terminating at different positions. Pt-SPL9 (accession
FJ502237), Pt-SPL13 (accession FJ502238), Pt-NAC1 (accession FJ619349), Pt-ARF8 (UC46-16450), Pt-SCL6 (accession GQ505957), Pt-TCP4 (GQ505958),
Pt-GRAS (accession FC901464). Pt-SPL9 (accession FJ502237) was similar to AT2G42200 (NM_129782) SPL9 (squamosa promoter-binding protein 9); Pt-
SPL13 (accession FJ502238) was similar to AT5G50670 (NM_124445) SPL (squamosa promoter-binding protein); Pt-NAC1 (accession FJ619349) was
similar to AT5G61430 ( NM_125536) ANAC100 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 100); Pt-ARF8 (UC46-16450) was similar to
AT5G37020 (NM_001085203) ARF8 (AUXIN RESPONSE FACTOR 8); Pt-SCL6 (accession GQ505957) was similar to AT4G00150 (NM_116232) SCL6
(scarecrow-like transcription factor 6); Pt-TCP4 (GQ505958) was similar to AT3G15030 (NM_180258) TCP4 (TCP family transcription factor 4); UC46-
36616 was similar to AT1G12220 (NM_101094) RPS5 (RESISTANT TO P. SYRINGAE 5); Pt-GRAS (accession GU072592) was similar to IPR005202
(XM_002318667) GRAS71 (GRAS family transcription factor).
doi:10.1371/journal.pone.0010861.g005
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Real-Time PCR of miRNAs
The template for RT-PCR was the miRNA-enriched library

mentioned above. To amplify the miRNA from the reverse

transcribed cDNAs, we used the miRNA sequence as the forward

primer (Table 2) and the mirRacer 39Primer as the reverse primer.

RT-PCR was conducted with the Rotor-Gene 3000 (Corbett

Robotics, Australia) and the Rotor-Gene software version 6.1 [36].

For each reaction, 1 mL of diluted cDNA (equivalent to about

100 pg of total RNA) was mixed with 10 mL of 26 SYBR green

reaction mix (SYBRH Green qRT-PCR Master Mix; Toyobo,

Osaka, Japan), and 5 pmol each of the forward and the reverse

primers were added in a final volume of 20 mL. The conditions for

the PCR amplification were as follows: polymerase activation at

95uC for 1 min, then 95uC for 1 min, followed by 50 cycles of

95uC for 15 s, 95uC for 15 s, 60uC for 20 s, and 72uC for 20 s.

The fluorescence signal was measured once every 1uC. Negative

PCR controls (no cDNA template) were prepared to detect

possible contamination. The specificity of the primer amplicons

was checked by a melting curve analysis. The CT values were

converted into relative copy numbers using a standard curve [37].

The 5.8S rRNA was previously used as a reference gene in the

qPCR detection of miRNAs in Arabidopsis [38]. The data were

analyzed with an R2 above 0.998 using the LinRegPCR program

[39].

Modified 59 RNA ligase-mediated RACE for the mapping
of mRNA cleavage sites

Total RNA was extracted from the leaf, stem, root, flower, and

fruit tissues of an adult trifoliata orange tree using Trizol reagent.

Poly(A)+ mRNA was purified from all kinds of pooled tissue RNA

using the PolyA kit (Promega, Madison, WI), according to

manufacturer’s instructions. A modified procedure for 59 RNA

ligase-mediated RACE (RLM-59RACE) was followed with the

GeneRacer Kit (Invitrogen, CA), as described previously [14,19].

The PCR amplifications were performed using the GeneRacer 59

primer and the gene-specific primers (Table 4). Nested PCR

amplifications were performed using the GeneRacer 59 nested

primer and the nested gene-specific nested primers (Table 4). The

amplification products were gel purified, cloned, and sequenced,

and at least 15 independent clones were sequenced.

Discussion

To our knowledge, even though quite numbers of methods have

been developed for computational prediction of miRNAs, the

disadvantages of them in that the precise sequences of miRNAs

usually cannot be determined and several candidate miRNA

orthologs or paralogs might be predicted for a specific miRNA

(e.g. the prediction of ptr-miR482 in this study) haven’t been

overcome experimentally. miR-RACE was the first experimental

approach reported to overcome this problem, in which some

challenging steps were employed.

From the amplification of the 59 and 39 ends of the miRNAs to

be studied, the two gene-specific primers (GSP1, GSP2) were used

to amplify their opposite ends well for their accurate end

sequences. However, the ends complementary to the specific

primers could not be amplified accurately due to the amplifications

were determined by the primers designed. When the potential

miRNAs predicted computationally were several nucleotides

different from the true-to-type validated, the sequence corre-

sponding to the specific primers were amplified exactly the same

with those of the primers. This was due to the mismatches between

primers and the true-to-type mature miRNAs, even though these

mismatches were allowed for successful PCR amplification [40].

The specific primers covered 17 nucleotides of the candidate

mature miRNAs was put forward both for relative high specificity

of the primer to be designed to the corresponding miRNA and for

meet of the criterion for the minimum number of nucleotides of a

regular PCR primer. From our study and the identity level of plant

miRNA orthologs, the number of 17 nucleotides of the miRNA

chosen for primer design was workable and reasonable in

determining the nucleotides flanking the last nucleotide in the

predicted miRNA for this design would allow at most three and

four mismatched nucleotides.

Even though all the ptr-miRNA sequence validation results

were the same as those predicted computationally, it did not mean

all the computational miRNA prediction methods can give the

accurate sequences of potential miRNAs identified. The evolution

of miRNA and parameters used in the prediction can influence the

miRNA prediction. Sometimes, several potential miRNAs were

predicted for a miRNA family [8]. We have also found the end

sequence of some miRNAs predicted computationally in grapevine

(Vitis vinifera) and apple (Malus domestica) were 1–3 nucleotides

different from their corresponding true-to-type ones by this newly

developed method (data not shown). The situation of the result

that the termini nucleotides of ptr-miRNAs validated were the

same as the predicted ones in this study can be explained as that

the computational prediction method employed was powerful

enough and can identify the true-to-type miRNAs at relative high

efficiency, and not many ptr-miRNAs were predicted and

Table 4. Primers used for modified 59 RLM-RACE mapping of the miRNA cleavage sites and putative ptr-miRNA target genes.

miRNAs
Putative
targetsA

Target
protein

Conserved gene in
other plants (E-score) Gene-specific primer Nested gene-specific primer

ptrmir156 FJ502237 Pt-SPL9 AT2G42200 (3e-41) TTAAAGGGACCAATGAATCTGCTGGTTGGAGT ACAGGTTGAGCGACGGATTTGGTATGG

ptrmir156 FJ502238 Pt-SPL13 AT5G50670 (9e-49) CTCCCAATGAAAGGGAATTGTTTGAG GGTATCACTGGCTGCGGACCCATCAT

ptrmir164 FJ619349 Pt-NAC1 AT5G61430 (4e-103) TCAATAATTCCAAAGACAATCAAGGGCTACT AGGGCTACTGGGCCAGCAGAACTTG

ptr-mir167 UC46-16450 Pt-ARF8 AT5G37020 (3e-162) ATGACGGTCACTTACTCCCATGGGTCGT CAAGCAGTAGGAGACAAATCTTAACACAC

ptrmir171 GQ505957 Pt-SCL6 AT4G00150 (1e-37) GCATAAGAGAAGCCCACTGCCCACCAT ATCGGTGAGATTTCGGAGAAAGATTTGTAAGC

ptrmir319 GQ505958 Pt-TCP4 AT3G15030 (1e-59) ATGGCGAGAATCAGAGGAAGCAGAGGA CATCTTCGCCTTGGATTCGTGCTGG

ptrmir482a UC46-36616 Pt-PRS5 AT4G10780 (1e-06) GAGCTCCCGGGATCTCGAATCTTCTGAGTATACT TCTTGGATTTTCTCCAAGTTGGCATC

ptrmir1446 GU072592 Pt-GRAS IPR005202 (2e-141) TTCGAAGGCGGCGTGGCGTTGGC CGCGGTTGGCGAGGCTTTCGAT

AThe target genes include two P. trifoliate orange unigenes (UC46-16450, UC46-36616) from the citrus EST database (Version 1.20 of HarvEST: Citrus, http//harvest.ucr.
edu) and the deposited in NCBI.

doi:10.1371/journal.pone.0010861.t004
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validated. However, this does not influence the efficiency and

workability of miR-RACE. With more miRNAs needed to be

validated, some miRNAs that have some nucleotides different

from their corresponding true-to-type could be verified.

Supporting Information

Figure S1 The 59 RACE and 39 RACE products generated

using primers (Table S1) with 1–3 nucleotide mismatched to ptr-

miR164 were run in an ethidium bromide-stained agarose gel.

The sizes of the molecular weight markers of the bottom and the

second from bottom bands are 50 bp and 100bp, respectively.

Lanes 1–4 are 59RACE products from the PCR reactions in which

primer ptr-miR164m3 (GSP1), ptr-miR164m2 (GSP1), ptr-

miR164m1 (GSP1), and ptr-miR164 (GSP1) were used as one of

the two primers needed, respectively, and lanes 5–8 are the

39RACE products of primer ptr-miR164 (GSP2), ptr-

miR164m1(GSP2), ptr-miR164m2 (GSP2), and ptr-miR164m3

(GSP2).

Found at: doi:10.1371/journal.pone.0010861.s001 (0.20 MB TIF)

Table S1 The primers with nucleotides mismatched to

ptmiR164 used in the verification of the workability of them in

miR-RACE PCR amplifications and the partial sequences of the

PCR products.

Found at: doi:10.1371/journal.pone.0010861.s002 (0.03 MB

DOC)
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4. Mallory AC, Bouché N (2008) MicroRNA-directed regulation to cleave or not to
cleave. Trends in Plant Science 13: 359–367.

5. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P,

Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational
inhibition by plant miRNAs and siRNAs. Science 320: 1185–1190.

6. Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation
and divergence of plant microRNA genes. Plant J 46: 243–259.

7. Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2006) Computational
identification of microRNAs and their targets. Computational Biology and

Chemistry 30: 395–407.

8. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N,
Aubourg S, Vitulo N, Jubin C, et al. (2007) The grapevine genome sequence

suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:
463–467.

9. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for

microRNA genomics. Nucleic Acids Res 36: D154–D158.
10. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, et al. (2008) Criteria

for annotation of plant microRNAs. Plant Cell 20: 3186–3190.
11. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved

microRNAs in large number of diverse plant species. BMC Plant Biol 8: 37.
12. Mencı́a Á, Modamio-Høybjør S, Redshaw N, Morı́n M, Mayo-Merino F, et al.

(2009) Mutations in the seed region of human miR-96 are responsible for

nonsyndromic progressive hearing loss. Nature Genet 41: 609–613.
13. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel

and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol
8: 25.

14. Song C, Fang J, Li X, Liu H, Thomas Chao C (2009) Identification and

characterization of 27 conserved microRNAs in citrus. Planta 230: 671–685.
15. Carter P (1986) Site-directed mutagenesis. Biochemical Journal 237: 1–7.

16. Peng RH, Xiong AS, Yao QH (2006) A direct and efficient PAGE-mediated
overlap extension PCR method for gene multiple-site mutagenesis. Appliedl

Microbiology and Biotechnology 73: 234–240.

17. Kovalic D, Kwak JH, Weisblum B (1991) General method for rapid direct
cloning of DNA fragments generated by the polymerase chain reaction. Nucleic

Acids Res 19: 4560.
18. Seitz H, Ghildiyal M, Zamore PD (2008) Argonaute loading improves the 59

precision of both MicroRNAs and their miRNA strands in flies. Curr Biol 18:
147–151.

19. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Claevage of Scarecrow-like

mRNA targets directed by a class of Arabidopsis miRNA. Science 297:
2053–2056.

20. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant
microRNAs and their targets, including a stress-induced miRNAs. Molecular

Cell 14: 787–799.

21. Sunkar R, Zhu JK (2004) Novel and Stress-Regulated MicroRNAs and Other

Small RNAs from Arabidopsis. Plant Cell 16: 2001–2019.
22. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, et al. (2003) P1/HC-Pro,

a viral suppressor of RNA silencing, interferes with Arabidopsis development and

miRNA function. Dev Cell 4: 205–217.
23. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172

down-regulates glossy15 to promote vegetative phase change in maize. Pro Natl
Acad Sci USA 102: 9412–9417.

24. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by

adenosines, indicates that thousands of human genes are microRNA targets. Cell
120: 15–20.

25. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by
21-and 22-nucleotide RNAs. Genes Dev 16: 1616–1626.

26. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006)
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids

Res 34: D140–D144.

27. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

28. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 31: 3406–3415.

29. Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic

data. Trends in Genet 13: 497–498.
30. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, et al. (1994) Fast

folding and comparison of RNA secondary structures. Monatshefte für Chemie
Chemical Monthly 125: 167–188.

31. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, et al. (2005)
Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527.

32. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, et al. (2005)

Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:
78–91.

33. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny
RNAs with probable regulatory roles in Caenorthabditis elegans. Science 294:

858–862.

34. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs
involved in RNA silencing. FEBS Lett 579: 5830–5840.

35. Berezikov E, Cuppen E, Plasterk RHA (2006) Approaches to microRNA
discovery. Nat Genet 38: s1–s7.

36. Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004) Identification of 20

microRNAs from Oryza sativa. Nucleic Acids Res 32: 1688–1695.
37. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time

quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:
e179.

38. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by
real-time PCR. Biotechniques 39: 519–525.

39. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free

analysis of quantitative real-time polymerase chain reaction (PCR) data.
Neuroscience Lett 339: 62–66.

40. Hutschison CA, Philipps S, Edgell MH, Gillham S, Jahnke P, et al. (1978)
Mutagenesis at a specific position in a DNA Sequence. Journal of Biological

Chemistry 253: 6551–6560.

miRNA Sequence Determination

PLoS ONE | www.plosone.org 11 June 2010 | Volume 5 | Issue 6 | e10861


