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Abstract

Background: To identify molecular mechanisms underlying SCN5A-related sick sinus syndrome (SSS), a rare type of SSS, in
parallel experiments we elucidated the electrophysiological properties and the cell surface localization of thirteen human
Nav1.5 (hNav1.5) mutant channels previously linked to this disease.

Methodology/Principal Findings: Mutant hNav1.5 channels expressed by HEK293 cells and Xenopus oocytes were
investigated by whole-cell patch clamp and two-microelectrode voltage clamp, respectively. HEK293 cell surface
biotinylation experiments quantified the fraction of correctly targeted channel proteins. Our data suggested three distinct
mutant channel subtypes: Group 1 mutants (L212P, P1298L, DelF1617, R1632H) gave peak current densities and cell surface
targeting indistinguishable from wild-type hNav1.5. Loss-of-function of these mutants resulted from altered channel
kinetics, including a negative shift of steady-state inactivation and a reduced voltage dependency of open-state
inactivation. Group 2 mutants (E161K, T220I, D1275N) gave significantly reduced whole-cell currents due to impaired cell
surface localization (D1275N), altered channel properties at unchanged cell surface localization (T220I), or a combination of
both (E161K). Group 3 mutant channels were non-functional, due to an almost complete lack of protein at the plasma
membrane (T187I, W1421X, K1578fs/52, R1623X) or a probable gating/permeation defect with normal surface localisation
(R878C, G1408R).

Conclusions/Significance: This study indicates that multiple molecular mechanisms, including gating abnormalities,
trafficking defects, or a combination of both, are responsible for SCN5A-related familial SSS.
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Introduction

Sick sinus syndrome (SSS) was first described nearly 40 years

ago by Lown as a complicating arrhythmia following cardiover-

sion [1]. Today SSS (also called sinus node dysfunction, SND)

refers to abnormalities in sinus node impulse formation and

propagation, including sinus bradycardia, sinus pause/arrest,

chronotropic incompetence, and sinoatrial exit block [2]. SSS is

frequently associated with conduction system disease in the heart

and various supraventricular tachyarrhythmias, such as atrial

fibrillation and atrial flutter. When associated with supraventric-

ular tachyarrhythmias, SSS is often termed tachy-brady syn-

drome [2]. SSS accounts for approximately 50% of the million

permanent pacemaker implants per year worldwide [3]. SSS may

be associated with underlying cardiac disease conditions includ-

ing any form of acquired heart disease (e.g. coronary artery

disease, cardiomyopathies and valvular heart disease), and occurs

following surgical injury. However, SSS most commonly occurs

in the elderly in the absence of an apparent accompanying heart

disease [4].

Voltage-gated Na+ channels mediate the rapid upstroke of the

action potential in excitable tissues. Nav1.5, encoded by the

SCN5A gene, is the predominant isoform in the heart of higher

mammals [5,6]. Mutations in SCN5A have been linked to various

cardiac arrhythmic syndromes ranging from acute life-threaten-

ing tachyarrhythmias to bradyarrhythmias: the congenital long

QT syndrome subtype 3 (LQT3) [7,8], Brugada syndrome (BrS)

[9–11], isolated cardiac conduction disease (CCD) [12], and

sudden infant death syndrome (SIDS) [13].

Recently, a number of studies have linked genetic defects in

ion channels, including human Nav1.5 (hNav1.5), to familial

SSS. To date, fourteen SCN5A mutations have been associated

with this disease [14,15]. Although SCN5A-related familial SSS

is rare, reports have conclusively demonstrated that hNav1.5

plays essential roles in the excitation of atrial and ventricular

myocytes, and in impulse generation and propagation by the

sinus node [14,16–20]. Clinical data on SCN5A-related SSS are

strongly supported by several experimental results. Transcrip-

tion and expression of Nav1.5 mRNA and protein respectively

in the human peripheral sinus node was demonstrated recently
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by Chandler et al. [21]. Na+ currents were recorded in sinus

node pacemaker cells from both mammalian animals [14,22]

and humans [23]. Importantly, reduced Na+ channel expression

in the hearts of heterozygous SCN5A+/2 mice resulted in sinus

bradycardia, slowed sinoatrial conduction, and sinoatrial

exit block; these phenomena are also observed in SSS patients

[24].

Most of these SSS-related mutant channels have been

expressed by different heterologous host cells including mamma-

lian cell lines and Xenopus oocytes, and several loss-of-function

features have been identified [22]. However, electrophysiological

recordings have not yet been combined with biochemistry

techniques that enable quantitative estimation of the localization

of mutant channel proteins at the plasma membrane. Together,

these data would enable discrimination between electrical defects

of correctly targeted mutant channels and impaired subcellular

localization. Furthermore, none of the mutant channels has been

expressed by parallel systems in the same lab. Previous studies, for

example results for BrS mutation T1620M [25], suggest that loss-

of-function properties depend on the expression system chosen.

Similarly, minor defects were observed for the familial SSS-

related mutant channel D1275N when expressed by Xenopus

oocytes [17]; however, it has been speculated that more severe

defects might be observed upon expression by a mammalian cell

line [26,27].

In this study, we have investigated the molecular mechanisms

underlying loss-of-function of hNav1.5 mutant channels associat-

ed with familial SSS. The first aim was to investigate both the

electrophysiological properties and the plasma membrane

localization of thirteen mutant channels in HEK293 cells: This

would enable us to discriminate between protein targeting and

electrophysiological defects. The second aim was to compare the

electrophysiological properties of nine selected mutant channels

expressed by both HEK293 cells and Xenopus oocytes: This would

identify any dependence of results upon these commonly used

expression systems. Our results provide novel insights into the

multiplicity of molecular mechanisms underlying SCN5A-related

SSS, and hence a better understanding of genotype-phenotype

correlations for this rare channelopathy.

Results

Electrophysiological properties of mutant hNav1.5
channels in HEK293 cells

Thirteen hNav1.5 mutants previously identified in familial SSS

patients were expressed heterologously by HEK293 cells and

characterized by whole-cell patch clamp recordings. For ease of

description, these mutants were classified into three groups

according to the size of the whole-cell Na+ currents (Fig. 1).

Group 1 mutants (L212P, P1298L, DelF1617, and R1632H)

generated peak Na+ currents comparable to those observed for

wild-type hNav1.5 (Table 1, Figs. 1A and 2A). Group 2 mutants

(E161K, T220I, and D1275N) produced significantly reduced but

detectable whole-cell Na+ currents (Table 1, Figs. 1B and 3A).

Group 3 mutants (T187I, R878C, G1408R, W1421X, K1578fs/

52, and R1623X) did not produce any detectable Na+ inward

current (Fig. 1C).

A feature common to all group 1 mutants was a significant shift

of steady-state inactivation towards hyperpolarized potentials

(Table 1, Fig. 2C). This is likely to result in reduced channel

availability in patients’ cardiomyocytes. The largest shift of the

mid-inactivation potential was observed for R1632H (220.7 mV).

Shifts of 210.5 mV, 210.6 mV, and 28.9 mV were recorded for

L212P, DelF1617, and P1298L respectively. The left-shift of

steady-state inactivation was accompanied either by an unchanged

steady-state activation (P1298L, R1632H) or by a left-shift of

steady-state activation (215.0 mV for L212P, 26.8 mV for

DelF1617; Table 1, Fig. 2B). Left-shifts of steady-state activation

towards hyperpolarized potentials may partially antagonize loss-of-

function caused by reduced channel availability. Recovery from

inactivation by group 1 mutants was unchanged (L212P, P1298L),

slightly accelerated (DelF1617), or dramatically decelerated

(R1632H; Fig. 2D). Full recovery of R1632H at 2120 mV took

5 seconds. This suggests that most R1632H channels are

inactivated at physiological membrane potentials and normal

heart rates.

When considering inactivation time constants as a function of

the membrane voltage (Fig. 2E and 2F), we observed a second

feature common to all group 1 mutants: The voltage dependency

Figure 1. Representative HEK293 whole-cell current recordings for hNav1.5 and SSS-associated mutants. (A) Group 1 mutants
produced peak current densities similar to wild-type hNav1.5. (B) Group 2 mutants produced reduced currents. (C) Group 3 mutants produced no
current. Table 1 shows average peak current densities and statistics thereof.
doi:10.1371/journal.pone.0010985.g001
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of the inactivation process was reduced, resulting in a faster

current decay and hence loss-of-function at less depolarized

membrane potentials. In addition, DelF1617 and R1632H

displayed inactivation defects at more depolarized membrane

voltages and hence a potential gain-of-function mechanism

(Fig. 2F). For L212P, lower inactivation time constants at more

negative potentials can be at least partially explained by the

pronounced negative shift of the mid-activation potential by

215 mV (Fig. 2E).

In contrast to the clear hyperpolarizing shift of steady-state

inactivation seen with group 1 mutant channels, availability of

group 2 mutants was either unchanged (E161K, D1275N) or only

slightly reduced (shift by 25.6 mV for T220I; Table 1, Fig. 3C).

Steady-state activation curves were shifted by +19.8 mV and

+3.1 mV towards depolarizing potentials for E161K and D1275N,

respectively (Table 1, Fig. 3B). Positive shifts were not observed for

group 1 mutants. In addition to the reduced current densities, the

positive shifts of steady-state activation can be expected to further

impair excitability of cardiomyocytes [28]. Steady-state activation

was unchanged for T220I only. Recovery from inactivation for

group 2 mutants was unchanged (E161K), slightly decelerated

(T220I), or accelerated (D1275N; Table 1, Fig. 3D). We found

slightly reduced and unchanged voltage dependency of channel

inactivation time constants for T220I and D1275N, respectively.

For E161K, slower channel inactivation at potentials from 240 to

0 mV can be at least partially explained by the clear positive shift

by nearly 20 mV of the mid-activation potential (Fig. 3B).

Electrophysiological properties of hNav1.5 mutant
channels in Xenopus oocytes

In some previous reports, differences between electrophysiolog-

ical properties reported for the same hNav1.5 mutant channel

were attributed to the use of different expression systems [25].

Compared to Xenopus oocytes, HEK293 or CHO expression

systems are often considered more reliable because of their

mammalian origin and because of their cultivation at body core

temperature. Xenopus oocytes injected with mutant cRNA are

incubated for several days at 18uC, which may stabilize mutant

channels resulting in a partial restoration of functional surface

expression. In order to investigate whether similar electrophysiol-

ogy results would be obtained from mutant channels expressed by

Xenopus oocytes, we selected nine out of the thirteen SSS-related

mutations, injected oocytes with wild-type and mutant cRNA, and

measured whole-cell currents using the two-microelectrode voltage

clamp technique.

For all group 3 mutant channels tested (T187I, R878C,

G1408R, W1421X), we were unable to detect any Na+ current

even after injecting undiluted cRNA, supporting our data from

HEK293 cells. Neither the lower incubation temperature nor a

high cRNA concentration could restore functional expression. For

the other channel variants, classified upon expression by HEK293

cells as group 1 mutants (L212P, P1298L) or group 2 mutants

(E161K, T220I, D1275N), we also observed data similar to those

obtained from HEK293 cells (Fig. 4, Table 2). Only a few results

differed from those obtained from transfected HEK293 cells: First,

normalized peak currents obtained from oocytes were significantly

smaller for E161K, D1275N and even for P1298L, which was

classified as a group 1 mutant according to results from HEK293

cells (Figs. 1 and 4). For E161K, currents were clearly above

background but too small to ensure a reliable evaluation of

channel kinetics. Second, the mid-inactivation potential for

D1275N was shifted towards hyperpolarized potentials only for

oocytes, suggesting a contribution of reduced channel availability

to the patients’ phenotype. Third, recovery from inactivation by

L212P was decelerated in oocytes but not in HEK cells, indicating

that only the oocyte expression system revealed this potential loss-

of-function mechanism. Fourth, minor differences between the

two expression systems were as follows: a slightly altered slope of

the steady-state activation curve for D1275N channels in oocytes

only; a slightly altered slope of the steady-state inactivation curve

for P1298L channels in HEK293 cells only; and a slight increase of

the fast recovery time constant for T220I channels in HEK293

cells (compare Tables 1 and 2).

In conclusion, during comparisons between SSS-related mutant

channels and wild-type hNav1.5, most of the electrophysiological

parameters obtained from oocytes were not different from

respective results obtained from HEK293 cells (Tables 1 and 2).

Notably, for three out of the four mutant channels that showed

expression system-dependent properties, more severe loss-of-

function features were associated with oocytes: This suggests that

results from oocytes may account better for cardiac excitation

abnormalities observed in familial SSS.

Table 1. Electrophysiological properties of wild-type and mutant hNav1.5 channels in HEK293 cells.

Channel peak currrent Steady-state activation Steady-state inactivation Recovery from inactivation

density (pA/pF) k (mV) V1/2 (mV) n k (mV) V1/2 (mV) n tf (ms) Af ts (ms) As n

hNav1.5 2866.5679.8 6.960.2 234.760.7 23 26.460.1 281.460.7 24 6.960.3 0.8960.01 149.2611.8 0.1160.01 20

Group 1 mutants

L212P 2805.3676.7 8.060.3m 249.760.8m 22 25.560.1m 291.960.8m 28 7.560.4 0.8660.02 159.9612.1 0.1460.02 19

P1298L 2789.6684.0 7.260.2 235.260.6 19 26.860.1* 290.360.6m 24 7.460.3 0.9060.01 194.6617.0 0.1060.01 22

DelF1617 2687.8664.9 7.960.2m 241.561.2m 24 26.760.1 292.061.1m 25 6.060.4* 0.8060.01m 108.468.39* 0.1960.01m 18

R1632H 21105.66112.0 7.060.2 236.160.8 21 27.260.1m 2102.160.9m 25 114.3611.8m 0.2860.02m 695.8636.4m 0.7260.02m 23

Group 2 mutants

E161K 2203.7630.8m 9.060.1m 214.960.7m 19 26.660.1 279.960.9 21 6.560.4 0.8660.02 192.3647.8 0.1260.02 14

T220I 2533.8656.6* 7.360.1 235.760.7 25 26.560.1 287.060.8m 30 8.060.4* 0.8660.01 123.268.8 0.13760.01 21

D1275N 2575.0657.6* 6.860.2 231.660.8m 18 25.560.1m 279.660.6 21 3.960.1m 0.8960.01 140.4610.4 0.10760.01 23

*indicates p,0.05 versus hNav1.5.
mindicates p,0.01 versus hNav1.5.
doi:10.1371/journal.pone.0010985.t001

SCN5A-Related Familial SSS
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Figure 2. Electrophysiological properties of four group 1 mutant channels expressed by HEK293 cells. Individual parameters are
summarized in Table 1. (A) Peak current-to-voltage (I–V) relationships. Currents were elicited from the holding potential of 2120 mV to the test
potentials indicated. (B) Steady-state activation as a function of voltage. (C) Steady-state inactivation as a function of voltage. (D) Recovery from
inactivation. Normalized data were fitted to double exponentials yielding the fast and slow time constants listed in Table 1. (E, F) Time constant of
inactivation (th) as a function of voltage. Parameters were obtained from monoexponential fits. Error bars represent the mean 6 SEM.
doi:10.1371/journal.pone.0010985.g002
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Evaluation of the plasma membrane targeting using cell
surface biotinylation experiments

We performed cell surface biotinylation experiments in

conjunction with Western blotting using HEK293 cells transfected

with the thirteen familial SSS-related mutants. For each mutant,

the fraction of correctly targeted channel to the total cellular

channel pool was determined and normalised with the corre-

sponding fraction determined for wild-type from the same blot.

Each calculation was performed in (at least) triplicate to enable the

determination of statistically significant differences. Representative

Western blots are shown in Fig. 5; normalized cell surface signals

are shown alongside peak current densities in Fig. 6.

As expected from our whole-cell current measurements of

HEK293 cells, all group 1 mutants were present at the plasma

membrane in quantities similar to that for wild-type hNav1.5. For

group 2 mutants, which generated smaller whole-cell currents

Figure 3. Electrophysiological properties of three group 2 mutant channels expressed by HEK293 cells. Individual parameters are
summarized in Table 1. (A) Peak current-to-voltage (I–V) relationships. Currents were elicited from the holding potential of 2120 mV to the indicated
test potentials. (B) Steady-state activation as a function of voltage. (C) Steady-state inactivation as a function of voltage. (D) Recovery from
inactivation. (E) Time constant of inactivation (th) as function of voltage. Error bars represent the mean 6 SEM.
doi:10.1371/journal.pone.0010985.g003

SCN5A-Related Familial SSS
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(Fig. 1B), we noticed either reduced (D1275N, E161K) or

unchanged (T220I) cell surface signals when compared to wild-

type hNav1.5 (Fig. 6). For D1275N, the normalized cell surface

signal was reduced to 68.0%. Interestingly, this reduction in

channel number was in close agreement with the reduction of the

peak current density to 66.3%. For E161K, the cell surface signal

was reduced to ,70%, but peak current amplitudes were reduced

to ,30% (Fig. 6). Consequently, the reduction in current density

cannot solely be explained by the reduction in channel number at

the plasma membrane. T220I showed no change in cell surface

expression despite having a reduction in peak current to 61.6%

(Fig. 6). Together, these data suggest that altered single channel

properties are responsible for reduced whole-cell currents for both

E161K and T220I, a hypothesis that remains to be tested.

For the non-functional group 3 mutants we noticed two distinct

channel subtypes. First, normal surface localization was observed

for R878C and G1408R, suggesting that these mutations affected

channel gating or permeation properties rather than intracellular

channel maturation and trafficking. Second, very small fractions of

the mutant T187I and the shortened variants W1421X, K1578fs/

52, and R1632X were detected at the plasma membrane.

Consequently, these mutants are largely trafficking-deficient.

Discussion

This study evaluated cell surface localization of thirteen hNav1.5

mutant channels previously linked to familial SSS, and correlated

these data with the electrophysiological properties of the mutant

channels. Whereas several electrophysiological parameters for

some of the mutant channels have been reported by other groups,

little or no information was available on the contribution of

possible maturation/trafficking defects to losses-of-function for the

mutants. Hence, this study provides new mechanistic insight into

the pathogenesis of SCN5A-related familial SSS.

Loss-of-function mechanisms
This study revealed four distinct loss-of-function mechanisms for

the mutant hNav1.5 channels (Fig. 7): First, mutants R878C and

G1408R were correctly transported to the plasma membrane, but did

not form functional channels, suggesting a complete gating/

permeation defect. Our data on R878C and G1408R are in good

agreement with previous electrophysiological, GFP-labeling and

immunohistochemical studies that demonstrated surface localization

of non-functional channels [29,30]. Second, several mutant channels

(L212P, T220I, P1298L, DelF1617, and R1632H) with normal

presence at the plasma membrane displayed affected kinetics

(Tables 1 and 2). For example, R1632H exhibited normal surface

localization with peak current densities comparable to those for wild-

type hNav1.5 (Fig. 1A); however, the strongly reduced steady-state

availability in combination with a dramatically decelerated recovery

is likely to result in non-functional channels under physiological

conditions (Table 1, Fig. 2). This mutation was first reported by

Benson et al. who found similar electrophysiological defects in tsA201

cells [16]. Third, some mutant channels (T187I and all truncated

variants) were non-functional because of almost completely deficient

maturation/trafficking (Figs. 1 and 6). Previous studies on these

mutant channels also reported non-functional expression, but did not

specify trafficking-deficiencies [16,31]. For the truncated variants,

intracellular protein retention was not surprising. Interestingly, we

consistently observed a much weaker signal from the total cellular

extracts for W1421X (see the example in Fig. 5), suggesting that the

shortened channel proteins were subjected to enhanced intracellular

degradation. However for T187I, only a single amino acid exchange

led to a near-complete intracellular retention, whilst levels of the

intracellular T187I pool were comparable to wild-type hNav1.5

Figure 4. A comparison of normalized peak current amplitudes
for wild-type and mutant hNav1.5 channels expressed by two
different expression systems. Whole-cell currents were recorded by
the patch clamp technique (HEK293 cells) and by the two-microelec-
trode voltage clamp technique (oocytes) as described in ‘‘Methods’’.
L212P and T220I exhibited similar relative expression levels in both
systems. With E161K, D1275N, and P1298L, whole-cell currents,
normalized to hNav1.5 values, were significantly smaller for the oocyte
system (* indicates p,0.01). Channels classified as group 3 mutants
upon expression by HEK293 cells (T187I, R878C, G1408R, W1421X) did
not produce detectable Na+ inward currents in the oocyte system, even
upon injection of undiluted cRNA (data not shown).
doi:10.1371/journal.pone.0010985.g004

Table 2. Electrophysiological properties of wild-type and mutant hNav1.5 channels in Xenopus oocytes.

Channel Normalized Steady-state activation Steady-state inactivation Recovery from inactivation

peak currrent n k (mV) V1/2 (mV) n k (mV) V1/2 (mV) n tf (ms) Af ts (ms) As n

hNav1.5 1.0060.04 75 3.660.1 234.260.6 22 25.560.1 267.760.5 31 4.860.3 1.1660.02 159.3622.2 0.0960.01 24

L212P 1.0160.08 56 4.360.1m 246.560.5m 22 24.860.1m 282.160.3m 25 5.760.2* 1.1460.01 319.0644.3m 0.0960.01 24

T220I 0.7560.04m 62 3.760.1 235.160.4 24 25.660.1 273.560.5m 28 5.060.4 1.1760.02 115.4617.2 0.0760.01 15

D1275N 0.2860.03m 37 4.160.1m 232.260.4m 19 24.960.1m 271.260.6m 15 3.860.3* 1.1960.02 187.7625.9 0.0960.01 14

P1298L 0.5960.03m 47 3.860.1 234.360.3 21 25.460.1 276.960.5m 26 5.460.2 1.1660.01 229.9630.8 0.0960.01 21

*indicates p,0.05 versus hNav1.5.
mindicates p,0.01 versus hNav1.5.
doi:10.1371/journal.pone.0010985.t002

SCN5A-Related Familial SSS
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(Figs. 5 and 6). In a previous study on T187I, functional expression

could neither be restored by mexiletine treatment nor by co-

expression of the b1 subunit [31]. A screen for known protein motifs

in the affected S2–S3 linker in domain I was unsuccessful. We noticed

that the distal half of this linker that included threonine 187 is highly

conserved among voltage-gated Na+ channels. It is possible that this

linker region, which is located intracellularly, contains an unknown

ER export signal. Fourth, loss-of-function can also be attributed to

both a partial trafficking defect and alterations of channel kinetics, as

observed for E161K and D1275N (Tables 1 and 2). For E161K, the

reduction of the cell surface biotinylation signal was much less

pronounced than the reduction of the whole-cell current (Fig. 5),

suggesting impaired single channel properties even for correctly

targeted mutant channels.

Association of loss-of-function of hNav1.5 mutants to
familial SSS and to other cardiac excitation disorders

Classifications of hNav1.5 mutant channels according to current

densities or trafficking properties are less helpful when explaining

Figure 5. Representative Western blots showing Nav1.5 polypeptides purified from the surface of HEK293 cells by the
biotinylation/precipitation procedure (cell surface) and the Nav1.5 polypeptides in HEK293 cell lysates (total). Calnexin was used as a
control to demonstrate the absence of endoplasmic reticulum membranes in the isolated plasma membrane fraction.
doi:10.1371/journal.pone.0010985.g005

SCN5A-Related Familial SSS
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genotype-phenotype correlations in SCN5A-related familial SSS

because such reflections do not account for a possible age-dependent

onset of the disease, for other accompanying cardiac rhythm

disorders, or for additional risk factors that contribute towards SSS.

In Table 3, we summarize the distinct SCN5A genotypes, the

corresponding patients’ phenotypes, and major biochemical and

electrophysiological properties of the thirteen hNav1.5 mutant

channels investigated in this study. A strong correlation between a

defective hNav1.5 channel and familial SSS was found in patients

carrying compound heterozygous SCN5A mutations (P1298L/

G1408R, DelF1617/R1632H, and T220I/R1623X) [16]. These

patients experienced an early onset of SSS (Table 3), and no other

excitation disorders have been reported to date. In each of these

three cases, one of the mutants was characterized by mild loss-of-

function (P1298L, DelF1617, and T220I), whereas the second

mutant, produced from the other allele, can be considered as

either severely affected (R1632H) or non-functional (G1408R,

R1623X) [16]. This indicates that sinus node function is affected at

an early developmental stage when the total Na+ current is

reduced to less than 50% of its maximal value. The parents of the

patients, carrying only one of the six mutations and hence

producing a total of at least 50% of the maximum Na+ current

from the wild-type plus the affected allele, were either asymptom-

atic or presented with a mild cardiac rhythm disorder (first degree

AV block) [16]. Wild-type hNav1.5 channel activity plus the

residual Na+ channel activity of some of the mutants were

sufficient to maintain normal cardiac function. However, it must

be mentioned that more severe phenotypes were observed in

unrelated families carrying the heterozygous mutations G1408R,

T220I, or DelF1617 (Table 3) [29,32,33]. Moreover, the

heterozygous mutation R1623X caused a combination of BrS

and SSS in another patient [31]. In contrast to carriers of

compound heterozygous SCN5A mutations, the R1623X carrier

was already 65 years old when he experienced recurrent syncope

due to sinus arrest. Similarly, several carriers of other mutations

(T187I, R878C, W1421X, K1578fs, and E161K) investigated in

this study also presented with other cardiac rhythm disorders, such

as BrS, CCD, or AV block. Most of these patients were adults

when they developed signs of SSS (Table 3). Consequently, a

strong Na+ current reduction, arising from SCN5A haploinsuffi-

ciency, can result in sinus node dysfunction, but the disease

phenotype is accompanied by other cardiac excitations disorders,

and onset of symptoms occurs at a later ontogenetic stage.

Notably, dozens of other severe loss-of-function mutations in

SCN5A are known to cause BrS, CCD, or both [28]. However,

only a few mutations have been related to sinus node dysfunction,

suggesting that as yet unknown factors other than Na+ current

reduction and aging contribute to the development of SSS in

carriers of T187I, R878C, W1421X, K1578fs, and E161K.

The importance of other risk factors in SCN5A-related SSS

becomes obvious when considering the striking genotype-pheno-

type disassociation for L212P and D1275N carriers. Atrial

standstill exhibited by the L212P carrier, a three years old boy,

occurred only in combination with a connexin 40 (Cx40)

polymorphism [34]. The father of the index patient, an L212P

carrier lacking this Cx40 variant, exhibited normal sinus rhythm

[34]. The normal cardiac phenotype of this L212P carrier is in

good agreement with the normal trafficking and the mildly

affected electrophysiological properties of L212P channels

(Table 3). Similar observations were reported for D1275N [17]:

The study by Groenewegen et al. suggested a rare Cx40

polymorphism as a prerequisite for atrial standstill in D1275N

carriers [17]. However, D1275N was correlated in unrelated

families to sinus node dysfunction, arrhythmia, and ventricular

dilation [26], to atrial fibrillation, SSS, CCD, and DCM [32], and

to atrial arrhythmia and CCD [27]. The reasons for this spectrum

of disease manifestations are unknown, and it is hard to imagine

that the minor changes of channel kinetics associated with

D1275N are responsible for this variety. Recently, we found that

the common SCN5A polymorphism H558R enhanced trafficking

of D1275N [35]. Consequently, it is reasonable to assume that

several factors, such as polymorphisms in other cardiac genes,

gender differences, modulatory proteins of hNav1.5 [36], and/or

ageing and fibrosis, are important determinants in SCN5A-related

channelopathies, including familial SSS.

Limitations of this study
This study possesses a number of limitations. First, caution

should be taken when extrapolating the findings from this in vitro

Figure 6. Correlation between cell surface expression and peak
current densities for the thirteen SSS-associated mutant
channels. Normalized cell surface signals were obtained by dividing
the ‘‘cell surface’’ signal by the corresponding ‘‘total’’ signal; both
signals being obtained from the same Western blot (see Fig. 5). A ratio
obtained for a mutant was further normalized by dividing with the ratio
obtained for wild-type hNav1.5 again from the same blot. The mean
double-normalized cell surface signals shown were calculated from at
least three independent biotinylation experiments. * indicates p,0.05,
** indicates p,0.01.
doi:10.1371/journal.pone.0010985.g006
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study of HEK293 cells and oocytes to the more complex in vivo

conditions. A bridge to the human in vivo situation might be

provided by genetically modified mouse models that could possibly

provide further information. Second, this study was unable to

examine other contributing factors, such as the fibrosis, the

remodeling of ion channels, and the autonomic dysfunction that

occur as a result of ageing. Third, the effects of different b subunits

upon the biophysical properties and intracellular trafficking of the

Na+ channel a subunit have not been explored in this study.

Accessory b subunits are well-known modulators of voltage-gated

Na+ channels, and it is possible that the different b subunits exert

distinct effects on the SSS-associated mutant channels investigated

in this study.

Materials and Methods

Recombinant DNA procedures
Plasmid pSP64T-hH1 encoding hNav1.5 (also called hH1,

accession No. M77235) was kindly provided by Dr. A. L. George

(Vanderbilt University, TN, USA). For expression in HEK293

cells, the hNav1.5 cDNA was subcloned into the pIRES2-EGFP

expression plasmid (Clontech, CA, USA) using SalI/SmaI

restriction sites. All mutations were then introduced by site-

directed mutagenesis (QuikChangeH II XL Site-Directed Muta-

genesis Kits, Stratagene, CA, USA) according to the manufactur-

er’s instructions. DNA constructs were checked by restriction

digests and DNA sequencing.

Transfection and electrophysiological recordings using
HEK293 cells

A human embryonic kidney cell line (HEK293 cell line, CRL-

1573, supplied by American Type Culture Collection, USA) was

cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM,

Lonza, Belgium) supplemented with 10% fetal bovine serum

(Lonza, Belgium), 2 mmol/L L-glutamine, 100 units/mL penicil-

lin, and 100 mg/mL streptomycin. Cells were transfected using a

standard calcium phosphate precipitation method using 0.2 mg

DNA per 35 mm dish) for electrophysiological experiments, or

Lipofectamine (Invitrogen) using 1.5 mg DNA per 60 mm dish for

cell surface biotinylation experiments.

For electrophysiological recordings, HEK293 cells were tryp-

sinized 24 h after transfection and seeded onto a glass coverslip at

a density that enabled single cells to be identified. Whole-cell Na+

currents were recorded using the patch-clamp technique, a 200B

amplifier (Axon Instruments, Foster City, CA, USA), and with

patch pipettes fabricated from borosilicate glass capillaries

(1.5 mm outer diameter; Fisher Scientific, Pittsburgh, PA, USA).

The pipettes were pulled with a PP-830 gravity puller (Narishige,

Tokyo, Japan), and filled with a pipette solution of the following

composition (in mmol/L): CsCl 130, NaCl 10, HEPES 10, EGTA

10, pH 7.2 (CsOH). Pipette resistance ranged from 1.0 to 2.0 MV
when the pipettes were filled with the internal solution. The

perfusion solution contained (in mmol/L): NaCl 140, KCl 4,

CaCl2 1.8, MgCl2 1.0, HEPES 10, and glucose 10, pH 7.4

(NaOH). Series resistance errors were reduced by approximately

Figure 7. Summary of the molecular mechanisms underlying SCN5A-related familial SSS. (A) Proposed membrane topology of hNav1.5
showing the locations of the thirteen SSS-associated mutations investigated here. Compared to wild-type hNav1.5, the mutant channels produced
either similar (group 1, white), reduced (group 2, light grey) or no (group 3, dark grey) current. (B) Schematic representation of a sinus node cell and
the cellular mechanisms involved in SCN5A-related familial SSS. Early onset of familial SSS occurred (a) when two alleles were affected (compound
mutations P1298L/G1408R, DelF1617/R1632H, and T220I/R1623X) [16], or (b) when other risk factors were present (for example, a Cx40
polymorphism combined with L212P; Table 3) [34]. Notably, when wild-type hNav1.5 channels are expressed from the normal allele, most of the
mutants also caused other cardiac disorders like BrS, AV block, CCD or DCM, as observed for carriers of T187I, W1421X, K1578fs/52, and E161K (see
Discussion and Table 3). In most if not all of these cases, SSS onset relatively late.
doi:10.1371/journal.pone.0010985.g007
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70–80% with electronic compensation. Signals were acquired at

50 kHz (Digidata 1440A; Axon Instruments) and analyzed with a

PC running PCLAMP 10 software (Axon Instruments). All

recordings were made at room temperature (20–22uC).

Expression in Xenopus laevis oocytes
For in vitro transcription, the coding regions of all constructs

were recloned into the pSP64Poly(A) vector (Promega, WI, USA).

The preparation of oocytes from Xenopus laevis, in vitro transcription

and cRNA injection were performed according to established

procedures [37]. For current comparisons, the cRNA concentra-

tion for each variant was adjusted to ,0.04 mg/mL (40 and 60 nL

per oocyte) by dilution. After 3 days of incubation at 18uC in Barth

medium, the whole-cell hNav1.5 peak current amplitude was

usually between 0.5 and 6.0 mA. Measurements were repeated for

at least 5 different batches of oocytes. Whole-oocyte Na+ currents

were recorded with the two-microelectrode voltage clamp

technique using an OC725C amplifier (Warner Instruments,

Hamden, CT, USA), as previously described [37]. The glass

microelectrodes were filled with 3 mol/L KCl. The microelec-

trode resistance was between 0.2 and 0.5 MV. The bath solution

contained (in mmol/L): NaCl 96, KCl 2, CaCl2 1.8, HEPES 10,

pH 7.2 (KOH).

All experiments involving Xenopus laevis oocytes were prior-

approved by the local government office (Thüringer Landesamt

Weimar, Fachgebiet Tierschutz, no. 740-2684-04-02-73/96), and

conformed to both institutional and NIH guidelines [38].

Pulse protocols and evaluation of electrophysiological
data from HEK293 cells and oocytes

Steady-state activation was determined by applying test

potentials from 2120 to 50 mV in 5 mV or 10 mV increments

at a pulsing frequency of 0.5 Hz. Data were fitted to the

Boltzmann equation GNa = [1+exp(V1/22V)/k]21 where V1/2 is

the half-maximal voltage, k is the slope factor, and the Na+

conductance GNa is defined by GNa = INa,norm/(V2Vrev). Here,

INa,norm is the normalized peak current, and Vrev is the reversal

potential.

Steady-state inactivation was determined with a double pulse

protocol consisting of 500 ms prepulses from the holding potential

of 2120mV (or 2140mV for R1632H only) to voltages between

2140 and 220 mV (or 2160 and 220mV for R1632H only),

followed by a constant test pulse of 20 ms duration to 220 mV at

a pulsing frequency of 0.5 Hz. The amplitude of peak current INa

during the test pulse was normalized to the maximum peak

current INa,max and plotted against the prepulse potential. Data

were fitted with the Boltzmann function INa = INa,max[1+exp(V1/22

V)/k]21, where V is the test potential, and V1/2 and k are as

defined above.

Recovery from inactivation was determined with a double pulse

protocol consisting of 500 ms prepulses to 220 mV, followed by

variable recovery intervals at 2120 mV, and a constant 20 ms test

pulse to 220 mV at a pulsing frequency of 0.25 Hz (or 0.15 Hz

for R1632H only). The normalized peak current amplitude

(INa,norm = INa/INa,max) elicited by the test pulse was plotted against

the recovery interval. Data were fitted with 2 exponentials:

INa,norm = Af [12exp(2t/tf)]+As[12exp(2t/ts)], where t is the

recovery time interval, tf and ts represent fast and slow time

constants respectively, and Af and As represent fractional

amplitudes of fast and slow recovery components, respectively.

Cell surface biotinylation and Western blotting
Cell surface biotinylation was performed as described previously

[39]. Briefly, cell membrane proteins were labelled by incubation

(4uC, 30min.) with 1 mg/mL EZ-LinkTM sulfo-NHS-LC-Biotin

(Pierce, IL, USA). Cells were lysed by RIPA buffer (0.5% sodium

deoxycholate, 0.1% SDS, 1% Triton X-100, 50 mmol/L Tris,

150 mmol/L NaCl, and 1 mmol/L EDTA) in the presence of

cocktail protease inhibitors (Roche, IN, USA). Labeled cell-

membrane proteins were precipitated by incubating (4uC, over-

night) cell lysate (200mL) with streptavidin-agarose beads (150mL,

Amersham NJ, USA). The beads were recovered by centrifugation

(15000g, 15min., 4uC), and the supernatant was retained. The

beads were washed with RIPA buffer. Biotinylated cell membrane

proteins were eluted from the beads into Laemmli buffer by

rotation. Both the cell lysate (0.6%) and the purified biotinylated

cell surface proteins (50%) were analysed by SDS-PAGE (6%

acrylamide) followed by Western blotting as previously described

[39,40]. The anti-Nav1.5 antibodies (Alomone, Jerusalem, Israel)

ASC-013 and ASC-005 detected full-length and truncated

channels respectively. Antibody against the endoplasmic reticulum

protein calnexin was used in simultaneous control experiments to

verify that no cytosolic protein had been biotinylated during the

procedure. Results are presented as mean 6 standard error of the

mean (SEM). Statistical analyses were performed using the one-

way ANOVA test with significance being assumed for p,0.05.
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