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Abstract
Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and
malignant tumors. Macrophages accumulate in these sites and upregulate hypoxia-inducible
transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene
expression profile in primary human and murine macrophages changes markedly when they are
exposed to hypoxia for 18h. For example, they were seen to upregulate the cell surface receptors,
CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, VEGFA, interleukins 1β and 8,
adrenomedullin, CXCR4 and angiopoietin-2. Hypoxia also stimulated their expression and/or
phosphorylation of various proteins in the NF-κB signalling pathway. We then used both genetic and
pharmacological methods to manipulate the levels of HIFs 1α and 2α or NF-κB in primary
macrophages in order to elucidate their role in the hypoxic induction of many of these key genes.
These studies showed that both HIFs 1 and 2, but not NF-κB, are important transcriptional effectors
regulating the responses of macrophages to such a period of hypoxia. Further studies using
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experimental mouse models are now warranted to investigate the role of such macrophage responses
in the progression of various diseased tissues like malignant tumors.
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INTRODUCTION
Cells experience sustained periods of hypoxia in such diseased tissues as malignant tumors,
atherosclerotic plaques and arthritic joints.1–3 The predominant transcription factors mediating
the effects of hypoxia on gene expression are hypoxia-inducible factors (HIFs) 1 and 2.4,5
These consist of distinct, hypoxia-responsive α subunits and an identical, constitutively
expressed β subunit. In the presence of oxygen, the α subunits are hydroxylated by oxygen-
sensitive enzymes called prolyl hydroxylases (PDHs), which targets them for degradation by
a ubiquitin-proteasomal pathway.4 In hypoxia, HIFα subunits accumulate and translocate to
the nucleus, couple with the HIF-1β subunit and bind to hypoxic response elements (HREs) in
the promoters of various genes, activating their transcription.4,5

Macrophages accumulate in most ischemic diseased sites including tumors,6–9 where they
accumulate both HIF 1α and 2α,10,11 and upregulate HIF target genes like the potent
proangiogenic growth factor, VEGFA.12 There are conflicting views of the relative
contribution of each HIF to the regulation of hypoxic gene expression in these cells. Some
studies suggest that the main form of HIF upregulated by TAMs is HIF-2,11,13 and over-
expression of HIF-2α in normoxic human macrophages upregulates various pro-angiogenic
genes.14 However, human macrophages also markedly upregulate HIF-1α when exposed to
hypoxia in vitro and in tumors,10 and HIF-1α-deficient murine macrophages express lower
levels of such HIF-regulated genes as VEGF and the glucose receptor, GLUT1 in hypoxia than
their wild type counterparts.15

Interestingly, the exact contribution of HIFs 1 and 2 to the regulation of hypoxic gene
expression appears to vary between different cell types. HIF-1, for example, mediates the
induction of virtually all hypoxia-activated genes in mouse embryonic fibroblasts and human
breast tumor cells,16,17 whereas HIF-2 performs this function in renal tumor cells.17 This
depends partly on the cell-type specific expression of other transcription factors like Elk-1
which bind to the promoters of some genes conferring HIF-2 target specificity on them.18,19

Hypoxia may also employ another transcription factor, NF-κB, as two major components of
canonical NF-κB signaling, κB kinase β (IKKβ) and p65 (RelA) are activated when murine
macrophages experience short-term (≤4h) hypoxia. This then upregulates their expression of
both HIF-1α and various HIF target genes.20–22

In the present study, we show that exposure to hypoxia for 18h markedly upregulates a broad
array of tumor-promoting genes in primary macrophages, and then investigated the role of
HIFs 1 and 2 and NF-κB in this phenomenon.

MATERIALS & METHODS
Cells

Two forms of primary macrophages were used in this study: macrophages differentiated in
vitro from human peripheral blood (monocyte-derived macrophages or ‘MDMs’) or bone
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marrow-derived macrophages (‘BMDMs’) derived from bone marrow progenitors isolated
from wt mice or mice bearing deletions in the HIF-1α or HIF-2 α genes.

Isolation and culture of human MDMs—Monocytes were isolated from Buffy coats
(National Blood Service, Sheffield, UK) as previously described.10 50×106 mononuclear cells
was seeded in Iscove’s Modified Dulbecco’s Media (BioWhittaker UK Ltd, Wokingham, UK)
with 5% human AB serum (neat AB serum contains ~1 ng/ml human CSF-1) and 2mM L-
Glutamine (All from Sigma, Poole, UK) and incubated at 37°C, 5% CO2. After 2h, adherent
cells were washed and cultured for 7 days to allow differentiation into MDMs.

Isolation and culture of murine BMDMs—As previously described, 22 BMDMs were
isolated from the bones of wild type mice or mice bearing a targeted deletion of (i) the
HIF-1α gene in myeloid cells (2loxP/1loxP, LysM Cre/+ mice15) or (ii) the HIF-2α gene in
myeloid cells (2loxP/1loxP, LysM Cre/+ mice; HongxiaZ, Simon CS submitted).

Bone marrow aspirates were washed and resuspended in medium with 10% heat-inactivated
FCS (BioWhittaker UK Ltd, Wokingham, UK), 2mM L-Glutamine (Sigma), 100IU/ml
penicillin and 100μg/ml streptomycin (BioWhittaker UK Ltd, Wokingham, UK), murine
macrophage colony stimulating factor (M-CSF) (PeproTech Ltd, London, UK) and cultured
at 37°C, 5% CO2 for 7 days to allow macrophage differentiation. Their purity was assessed
after 7 days using an F4/80 antibody. Only BMDMS cultures of >90% purity were used in
subsequent experiments.

Successful deletion of HIFs 1 or 2α has been demonstrated previously using Southern and/or
immunoblotting assays of extracts from hypoxic BMDMs from the HIF-1α LysM-Cre
mice23 and HIF-2α LysM-Cre (H.Z. Imtiyaz & M.C. Simon, submitted) mice used in this study.

Normoxic and hypoxic cell cultures
Human MDMs or murine BMDMs were subjected to severe hypoxia (< 0.5% O2) or normoxia
(20.9% O2) in 5% CO2 humidified multi-gas incubators (Heto, Camberly, UK) for 18h.

siRNA treatment of human MDMs in vitro
siRNA duplexes for HIF-1α or HIF-2α were synthesized by Eurogentec laboratories. A
randomly scrambled duplex was synthesized as a negative control. The HIF-1α siRNA duplex
sequences were comprised of sense 5-CUGAUGACCAGCAACUUGAdTdT-3 and antisense
5-UCAAGUUGCUGGUCAUCAGdTdT-3. The HIF-2α siRNA duplex sequences were sense
5-CAGCAUCUUUGAUAGCAGUdTdT-3 and antisense 5-
ACUGCUAUCAAAGAUGCUGdTdT-3. The scrambled non-specific duplex sequences were
sense 5-AGUUCAACGACCAGUAGUCdTdT-3 and antisense 5-
GACUACUGGUCGUUGAdTdT-3. Transient siRNA transfections were carried out using
RNAifect as described by the manufacturer’s instructions (Qiagen, Crawley, West Sussex,
UK). Five-day human MDMs were washed and incubated in 100μl, siRNA complex for 48h.
Cells were then washed, fresh media added and cells incubated in normoxia or hypoxia for 18h
as described earlier.

RNA and protein extraction from human MDMs
Total RNA was prepared using RNeasy kit (Qiagen) according to the manufacturer’s
instructions and stored at −80°C. For protein extraction, cells were lysed with lysis buffer (50
mM pH 8.0 Tris-HCl, 150 mM NaCl, 1% Triton-X-100 and 1 protease inhibitor tablet (Roche,
Mannheim, Germany). Protein levels were measured using the BCA protein assay (Sigma
Aldrich Inc, Poole, Dorset, UK).
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RNA and protein extraction from murine BMDMs
Total RNA and protein isolation was prepared using NucleoSpin RNA/Protein kit (Macherey-
Nagel, Duren, Germany) and stored at −80°C for RNA and −20°C for protein. For HIF-2α −/
− BMDMs, whole cell extracts were prepared using RIPA lysis buffer (50mM Tris pH 8.0,
150 mM NaCl, 1% NP40, 0.1% SDS, 0.25% deoxycholate, 1mM EDTA) containing
phosphotase inhibitors (sodium fluoride 0.1 mM, sodium orthovanadate 1 mM, sodium
pyrophosphate 2 mM and β-glycerophosphate 10mM). Again, protein extracts were stored at
−20°C until used for immunoblotting.

Transcriptional profile analysis
Human Genome U133A plus 2.0 gene chip arrays (Affymetrix UK, UK) that detect 47,000
transcripts were used. Total RNA was reverse transcribed to generate cDNA libraries using
oligo dT and superscript II (Invitrogen, Paisley, UK). cDNA was amplified using MEGscript
T7 kit and cleaned using Gene Chip Cleanup (both Affymetrix, High Wycombe, UK). Labelled
cRNA was synthesized using Gene Chip IVT kit and then hybridized to the arrays following
the manufacturer’s instructions (Affymtreix, High Wycombe, UK). Gene chips were processed
using an Affymetrix GeneChip scanner 3000.

To verify the results obtained by using Affymetrix arrays, total RNA was extracted from 2
separate experiments, reverse transcribed, amplified and hybridized to Sentrix
HumanRef-8_V2 Bead Chip from Illumina (San Diego, CA, USA) according to the
manufacturer’s protocols. After washing and drying, the Beadarray was scanned using an
Illumina Bead Station 500X which employs SentrixScan Application V2.7.2 software. Illumina
Bead Studio software was used for quality control assessment and normalization of data using
the LOESS normalization method from BioConductor R packages.

Genes that were upregulated in both arrays by > 1.5-fold or downregulated by <0.67-fold in
hypoxia relative to normoxia were considered differentially expressed. One Affymetrix and
an Illumina microarray were conducted on RNA isolated from separate experiments. Their
combined use was considered to be the first level of screening for the most robust hypoxia
robust genes in human macrophages. Only mRNA species regulated by hypoxia on all arrays
were considered to be reproducibly regulated by hypoxia and worthy of further study. Using
this criterion, 148 genes were upregulated and 60 genes downregulated by hypoxia. A panel
of selected genes were then further analysed using real-time PCR.

Real-time-PCR
cDNAs was prepared from 1μg total RNA using SuperScript Synthesis kit (Invitrogen, Paisley,
UK) and amplified with TaqMan gene expression master mix and pre-designed gene probes
using a ABI 7900HT Sequence Detection System (Applied Biosystems, Warrington, UK). The
human TaqMan gene expression assay probes used were VEGF, IL-1α, IL-1β, IL-6, CXCL8,
CXCR4 (chemokine C-X-C receptor 4), adrenomedullin (ADM), STAT4, adenosine receptor
2A (ADORA2A) intercellular adhesion molecule 1 (ICAM1), heme oxygenase 1 (HMOX1),
Prolyl Hydroxylase 2 (PHD2), CITED2, Heat shock 70kDa protein 1B (HSPA1B) ADAM
metallopeptidase domain 8 (ADAM8) ERO1-like (ERO1L) matrix metalloproteinase 7
(MMP7), glucose transporter 1 (GLUT-1) and β-2-microglobulin as the endogenous control
(Applied Biosystems, Warrington, UK). The murine TaqMan probes used for murine homologs
of these were also supplied by Applied Biosystems, Warrington, UK. Real-time PCR cycling
conditions for both human and murine samples were 2 min at 50°C then 95°C for 10 min
followed by 40 cycles of 15 seconds at 95°C followed by 1 minute at 60°C. In addition, the
human NF-κB signalling genes were analysed using SyBr green real-time PCR. The primer
sequences used were NFKBIA fwd- TCGCAGTGGACCTGCAAAAT rev-
TGAGCTGGTAGGGAGAATAGC, IKKα fwd- CACCATCCACACCTACCCTG rev-
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CTTATCGGGGATCAACGCCAG, IKKγ fwd-CGTACTGGGCGAAGAGTCTC rev-
GGCTGGCTTGGAAATGCAG, NFKB1 (p50) fwd-TGCCAACAGATGGCCCATAC rev-
TGTTCTTTTCACTAGAGGCACCA, and Rel A fwd-TTGAGGTGTATTTCACGGGACC
rev-GCACATCAGCTTGCGAAAAGG. Real-time PCR was done using SyBr Green PCR
Master Mix, detected by ABI-Prism 5700 Sequence Detector and data processed using Gene
Amp software (Applied Biosystems, Warrington, UK) The murine TaqMan probes used for
murine homologs of Rel A and IKKβ were also supplied by Applied Biosystems, UK. The
threshold cycle (Ct) of all human and murine data was normalised against their respective
endogenous controls (unaltered by hypoxia). Real-Time PCR were analysed in RNA extracts
generated in 3–5 independent experiments and then fold changes in expression relative to
normoxic cells calculated with ΔCt values of the sample and reference gene using the formula
2−ΔΔCt.

Immunoblotting studies
Immunoblotting for human HIFs 1α and 2α were conducted as described previously10,11 using
1:1000 anti-human HIF-1α monoclonal antibody supplied by BD Biosciences, Oxford, UK or
1:1000 anti-human HIF-2α monoclonal antibody from Novus, Soham, UK. Both blots were
incubated with HRP-conjugated anti-mouse antibody (Dako, Copenhagen, Denmark) and
protein bands visualized using an enhanced chemilluminescence detection system (ECL)
(Amersham Biosciences, Buckinghamshire, UK). In all cases expression of β-actin was used
as a loading control. For NF-κB immunoblotting assays, an anti-human Phospho-NFκB p65,
total NF-κB p65, Phospho-IKKα/IKKβ or total IKKα/β (Cell Signalling Technology, Danvers,
MA) was used at a dilution of 1:500 or 1:1000 and incubated overnight at 4°C.

Cytokine release assay
Cell supernatants were centrifuged for 5 min at 400 g and filtered to eliminate cell debris and
then stored at −20°C. The levels of VEGF, IL8 and IL-1β in these supernatants were measured
using a BD FACS Array bioanalyzer (BD).

Role of NF-κB in hypoxic gene regulation in primary macrophages
This was investigated in two ways. First, human MDMs were exposed to a specific NF-κB
inhibitor, 4-Methyl-Nl-(3-phenyl-propyl)-benzene-1,2-diamine (JSH-23) (Merck Chemicals,
Nottingham, UK) which blocks translocation of phophorylated NF-κB (p65) to the nucleus of
cells and its subsequent activation of NF-κB gene targets.24 MDMs were exposed to medium
alone or medium containing 40μM JSH-23 (or the equivalent amount of the vehicle for JSH-23,
DMSO) for 1.5h, washed and incubated in normoxia or hypoxia for 18h. Normoxic MDMs
were also exposed to 10ng/ml rec. human TNF-α (PeproTech, London, UK) for 18h as a
positive control for NF-κB activation. RNA and nuclear proteins were then extracted from
parallel cultures of MDMS after these treatments for real-time RT-PCR and immunoblot
analysis respectively. Some cells were also fixed in 3% formaldehyde in PBS for 15 min,
washed and permeabilized with ice cold 100% methanol for 10 min and blocked with 5% goat
serum in 0.3% Triton x-100/PBS solution for 1 h. NF-κB p65 was detected using a rabbit anti-
mouse antibody (1:25, Cell Signaling Technology, Danvers, USA) followed by addition of
goat anti-rabbit Alexa-488 secondary antibody (Invitrogen, Paisley, UK) (1:250 dilution). Cells
were counter-stained with 300nM DAPI (Molecular Probes Inc.,) and then photgraphed on a
confocal fluorescent microscope (at x400 magnification). Twelve areas of cells were
photographed for each treatment group and the degree of nuclear p65 immunofluorescence (ie.
Alexa-488-labeled nuclei) in each DAPI-stained nuclei quantified using Analysis D software
(Olympus). The proportion of green fluorescence per nuclei was then calculated for all nuclei
in 5 fields of view/treatment. The number of all MDMs in each field of view containing
Alexa-488-labeled (p65+) nuclei was also counted. To confirm JSH-23 inhibition of NF-κB
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activity in hypoxic MDMs, EMS As for NF-κB binding to an NF-κB DNA consensus site were
conducted as described previously by us25 on lysates from MDMs exposed to nomoxia,
hypoxia or hypoxia plus JSH-23 (all in the presence of DMSO as the vehicle for JSH-23).
Protein extracts from parallel cultures of MDMs were also immunoblotted for HIFs 1 and 2α
(as described above).

The second approach was to infect MDMs with an adenovirus expressing a dominant negative
inhibitor of IKKβ to block phosphorylation/activation of p65/RelA. After 4 days in culture,
MDMs were exposed to 50ng/ml rec. human M-CSF for 24 h to stimulate upregulation of
integrin αvβ5 (required for adenovirus infection of macrophages26). The adv-IKKβDN and
control adv (Adv-GFP) (a gift from Dr Thorsten Hagemann, London) were E1/E3-deleted, of
the Ad5 serotype, and used to transfect MDMS as described previously.27 MDMS were
infected for 2h with 100 multiplicity of infection (MOI) of either adenovirus in serum-free
medium. The adenovirus was then removed and fresh medium containing 2% AB serum added.
MDMS were maintained for a further 2 days in culture and then exposed to hypoxia or normoxia
for 18h. This infection protocol markedly reduces the activity of p65/RelA in human
MDMS46 and human endothelial cells.28

Immunofluorescent labelling of IL-1β expressed by TAMs in hypoxic areas of murine 4T1
mammary tumors

Frozen sections of 4T1 murine mammary tumors were generated in a previous study.29 These
had been grown in the mammary fat pads of female BALB/c mice, and removed and snap
frozen 2h after injection of mice with the hypoxic cell marker, pimonidazole.29 Sections (7
μM) were blocked with FcR Blocking Reagent (Miltenyi Biotec, Surrey, UK) in TBS-0.05%
Tween 20 (TBST) for 30 min at room temperature and then incubated with rat anti-F4/80-
Alexa 488 (1 μg/mL, clone CL:A3–1; AbD Serotec, Oxford, UK), goat anti-mouse IL-1β (15
μg/ml; R&D Systems, Abingdon, UK) and rabbit anti-PIMO (1:4000, a gift from James
Raleigh) for 30 min at room temperature. Negative controls included substitution of primary
antibodies with species-matched, non-specific antibodies. Sections were then washed twice
and incubated in Donkey anti-goat-Alexa 568 (8 μg/mL; Molecular Probes, Eugene, OR, USA)
or Alexa 647-conjugated goat anti-rabbit (8 μg/mL; Molecular Probes) secondary antibodies
for 30 min at room temperature in the dark and 30nM DAPI (Molecular Probes) for 2 min.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed as described previously30 on gene lists
ranked by level of hypoxic gene induction (hypoxia/normoxia fold induction) separately for
both the Affymetrix and Illumina gene expression data sets. Correlations to the predefined
Curated and TFT: transcription factor targets gene set collections were analyzed with the
GSEA Pre-ranked tool using 1000 permutations. Further information regarding the gene sets
used in these analyses is available in the Molecular Signatures Database (MSigDB)
(www.broad.mit.edu/gsea/msigdb).

Statistics
All experiments were repeated 3–6 times. Statistical analyses were performed using the one
or two-tailed Student’s t test to determine statistical significance after checking the data for
normality (as appropriate). P values of <0.05 were considered statistically significant. All data
are expressed as means ± SEMs.
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RESULTS
Evidence of distinct transcription signaling in primary human macrophages experiencing
hypoxia

Hypoxic MDMs upregulated both HIF-1α and HIF-2α and this was markedly inhibited by prior
treatment with siRNA to either HIFα (Fig 1A). As in previous publications,31,32 genes were
defined as being differentially regulated in hypoxia if they exhibited >1.5 fold increase in gene
expression (Table 1) or downregulated if they showed <0.67 fold change (Table 2) compared
to normoxic cultures. A comparison of our human MDM microarray results (Tables 1 & 2)
with those obtained previously for related human myeloid cell types exposed to hypoxia
(monocytes and monocyte-derived dendritic cells31,32) shows that some genes were seen to be
regulated by all three cell types (upregulated: VEGFA, CXCR4, TNFα, TIMP1, PHD3,
Aldolases A & C, Enolase 2, TREM1, NCF1; downregulated: Cathepsin C). However, some
genes regulated by hypoxia in MDMs are not similarly regulated by hypoxia in these other two
cell types such as IL-1β, IL-12p40, Ang-2, endothelin 1, STATS 4 & 6, CCLs 3 & 5, CCR7,
HMOX1 & hsp70 (upregulated) and CD36, PECAM1 (CD31), HIF-2α & MHCII DMβ)
(downregulated) (Tables 1 and 2). A number of key genes were selected and their upregulation
confirmed using qRT-PCR (Table 1). Macrophages were also shown to express abundant
IL-1β protein in pimonidazole-stained (hypoxic) areas of murine 4T1 mammary tumors (Fig.
2C).

Genetic manipulation of HIFs 1 and 2α demonstrates the co-regulation of genes in primary
human macrophages experiencing hypoxia

The hypoxic accumulation of both HIFs 1 and 2α was ablated following transfection with
siRNA for either α subunits. Both VEGFA mRNA and protein were markedly increased by
hypoxia and this was significantly inhibited by siRNA for either HIFα subunit (Fig. 1B, left
and middle panels). It may appear that the hypoxic induction of VEGF mRNA is higher in
hypoxic macrophages treated with the scrambled control siRNA than in the ‘no siRNA’ group.
However, this failed to reach statistical significance. This was also the case for these 2 groups
in panels E, G, I and K of Fig. 3.

CXCL8 mRNA and protein release were also upregulated in hypoxic MDMS (Fig. 1C) and
while both HIFα siRNA treatments reduced hypoxia-induced CXCL8 mRNA, only the effect
of HIF-2α siRNA reached significance. However, both HIFα siRNA species significantly
reduced CXCL8 protein release (Fig. 1C). The inhibitory effect of HIF siRNA on the hypoxic
induction of both VEGF and CXCL8 appeared to be slightly greater at the protein than the
mRNA level.

Hypoxia also upregulated IL-1β mRNA and protein and this was significantly inhibited by
exposure to siRNA for either HIF α subunit (Fig 2A). We then investigated the role of HIFs-1
and 2 in the hypoxic regulation of several other genes listed in Table 1. The hypoxic
upregulation of mRNA for CXCR4, GLUT1, adrenomedulin (ADM) and STAT-4 was
significantly (p<0.05) reduced by HIF-1α or 2α siRNA (Fig. 3A, C, E & G). In contrast to the
other genes investigated, the hypoxic induction of adenosine A2a receptor (ADORA2A) and
ICAM1 mRNA was significantly (p<0.05) inhibited only by HIF-2α siRNA (Fig. 3I & K).

Transcriptional signaling in primary human MDMs experiencing hypoxia for 18h is
independent of NF-κB

(i) Gene Set Enrichment Analysis—To assess the likelihood of NF-κB playing a role in
hypoxic signal transduction in human macrophages we first searched our data for correlations
with several published gene sets relating to hypoxia-regulated regulated genes in other cell
types (eg. the ‘HYPOXIA_REVIEW’ gene set33 - Fig. 4, upper panels). This highlighted a
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significant degree of enrichment of known hypoxia-regulated genes in our array data, showing
that hypoxia induced gene expression changes in MDMs follow a consensus hypoxia gene
expression profile (Fig. 4 upper panels). This was evident for both the Affymetrix array data
(Normalized Enrichment Score (NES): 2.2; False Discovery Rate (FDR) q<0.001) and the
Illumina data (NES: 2.24; q<0.001). Table 1 shows that many genes upregulated by hypoxic
MDMs have previously been identified as NF-κB target genes. In the GSEA analysis, the
hypoxic MDMS array data also correlated significantly with several NFκB-related gene sets
(eg. the V$NFKAPPAB_01 geneset34 - Fig. 4, lower panels). Again, this was evident for both
the Affymetrix data (NES: 1.69, q=0.02) and the Illumina data (NES: 1.67; q=0.12).

(ii) Hypoxic upregulation of NFκB signaling in human macrophages: role of HIFs
1 and 2—The effect of exposure of human MDMs to hypoxia for 18h on NF-κB signalling
was then assessed. IKKβ and γ, IκBα, NF-κB1 (p50) and p65/RelA mRNA levels were
upregulated (and IKKα mRNA slightly downregulated) in MDMs exposed to 0.1 %O2 for 18h.
This hypoxic regulation (with the exception of IKKs α and γ) was inhibited using siRNA to
knock down either HIF-1 or 2α (Fig. 5A). Fig. 5C shows that, while there was a small hypoxic
induction of total IKKβ protein, the hypoxic upregulation of p65/RelA mRNA was not mirrored
by a similar upregulation of total p65/RelA protein, suggesting a differential effect of hypoxia
on mRNA versus protein expression for p65/RelA. By contrast, the phosphorylation of both
IKKα/β and p65/RelA was upregulated in hypoxic human MDMs (Fig. 5C).

(iii) Role of NF-κB in the transcriptional responses of human macrophages to
hypoxia—Fig. 6(A and B) illustrates the effects of the NF-kB inhibitor, JSH-23 on the
hypoxic induction of various genes in human MDMs. This shows that immunoreactive p65
was cytoplasmic in normoxic MDMs but transported to the nucleus upon exposure to TNFα
or 18h hypoxia. In both cases, this was significantly (P<0.05) inhibited by prior exposure to
JSH-23. EMSA assays confirmed the induction of NF-κB DNA binding in hypoxic MDMs,
and the inhibition of this by JSH-23 (Fig. 6C). JSH-23-treated cells also exhibited slightly
lower levels of HIFs 1 and 2α (particularly HIF-1α) than MDMs exposed to hypoxia alone
(Fig. 6C). We then investigated the effect of JSH-23 inhibition of NF-κB activity on the
induction of 8 hypoxia-regulated genes listed in Table 1. Exposure to TNFα for 18h
significantly (P<0.05) increased the expression of VEGF, CXCL8, G1UT1, STAT4 and
ADORA2A in a manner that was inhibited by JSH-23 (Fig. 6). Hypoxia significantly (P<0.05)
upregulated all eight genes studied (Fig. 6D) in a manner that was not reduced by prior exposure
of cells to JSH-23.

Infection of MDMs with adv-IKKβDN significantly (P<0.05) inhibited their TNFα–induced
expression of CXCL8 mRNA (Fig. 7A) as well as the nuclear accumulation of phospho-p65/
RelA by MDMS after 18h of exposure to hypoxia (Fig. 7B). The control adv vector had no
such effect. However, adv-IKKβDN blockade of hypoxia-induced phospho-p65/RelA failed to
reduce the hypoxic induction of VEGF, CXCL8, GLUT-1, CXCR4or ADM mRNA.

Hypoxic regulation of genes in primary murine macrophages: role of HIFs 1 and 2
BMDMs from HIF-1α−/− mice were only able to mount partial VEGFA and IL-1β responses
to hypoxia (Fig 1B, right panel and Fig. 2B). The hypoxic upregulation of CXCR4 and STAT4
was lost in HIF-1α null BMDMs (Fig. 3B & H). This contrasts with our aforementioned human
MDMs data showing that these were regulated by both HIFs 1 and 2 (Fig. 3A & G). The fact
that GLUT1 and ADM was reduced but not ablated in HIF-1α null BMDMs (Fig. 3D & F)
agrees with our finding that these 2 genes are co-regulated by HIFs 1 and 2 in human MDMs
(Fig. 3C & E). Also in agreement with the human MDMs data (Fig. 3I & K), the hypoxic
upregulation of neither the ADORA2A nor ICAM1 genes was inhibited in hypoxic HIF-1α
null BMDMs (Fig. 3J & L).
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Fig. 5B shows that hypoxic upregulation of IKKβ and p65/RelA mRNA levels was lost in
HIF-1α−/− BMDMs. Moreover, the hypoxic induction of phosphorylated p65/RelA was lost
in HIF-2a−/− BMDMs (Fig. 5D). Similar results were seen for HIF-1α −/− BMDMs (data not
shown).

DISCUSSION
Our data show that exposure to hypoxia activates a distinct transcriptional profile in primary
human macrophages, including the upregulation of VEGFA, ILs-1α and β, IL-8, STAT4,
ADM; the receptors, glucose transporter, GLUT1, CXCR4 and the adenosine receptor 2 A
(ADORA2). Some were seen to also be regulated by hypoxia in monocytes and immature
dendritic cells (VEGFA, GLUT1 and CXCR4).31,32 However, others like IL-1β, ADORA2 A
and STAT4 were only altered in hypoxic macrophages. These differences could be due to
variations in the severity and/or duration of hypoxia applied to cells,31,32 and/or may reflect
differences in the transcription factors employed by these 3 cell types in hypoxia. For example,
hypoxic human monocytes exposed to a similar level and duration of hypoxia as in the current
study failed to upregulate HIFs 1 and 2α but rather other transcription factors like ATF-4 and
Egr-1.35 Moreover, the ability to regulate hypoxic gene expression via HIFs is maturation-
linked in macrophages.36 Although dendritic cells accumulate HIF-1α in hypoxia,37 immature
forms of this cell type upregulate other hypoxia-responsive genes like CCL20 via upregulated
p50/p50 NFκB homodimers rather than HIFs.38 A study of the responses of such related
myeloid cell types to identical hypoxic conditions would be interesting but beyond the remit
of this study.

As macrophages are known to express receptors for both VEGF39 and IL-140, it is possible
that that during such exposure to hypoxia, their hypoxia-induced release might have then
stimulated the expression of other genes in macrophages (making it look as if they are also
directly upregulated by hypoxia when, in fact, the effect is indirect). However, hypoxic gene
expression by human MDMs is not reduced in the presence of either a neutralising VEGF
antibody or an IL-1 receptor antagonist (Fang H-Y, Murdoch C, Hughes R and Lewis CE,
unpublished observations).

We also show for the first time that genes encoding the two transcription factors, STATs (signal
transducers and activators of transcription) 4 and 6, are upregulated by hypoxia in
macrophages. STAT 4 and 6 are known to mediate the marked effects of two central
immunomodulatory cytokines, IL-12 and IL-4, respectively.41,42 It remains to be seen whether
their hypoxic induction could ‘prime’ macrophages to the effects of these cytokines.

Our HIF siRNA studies showed that both HIFs play a part in regulating the hypoxic induction
of the known HIF target genes, VEGF, GLUT1, CXCR4, IL-8 and ADM by MDMs.
Furthermore, hypoxic induction of these genes was reduced but not lost in murine macrophages
from HIF-1α−/− mice. Similar results were obtained for the hypoxic upregulation of VEGF
and ADM in murine HIF-2α−/− BMDMs (H.Z. Imtiyaz, M.C. Simon & colleagues, submitted).

The pluripotent cytokine, IL-1β, stimulates many steps in tumor progression43 and was
upregulated by hypoxic MDMs. We show that TAMs express abundant IL-1β in hypoxic areas
of murine mammary (4T1) tumors. The IL-1β gene promoter bears multiple HREs and is
transactivated by HIF-144,45 Our HIF siRNA knock down studies show that HIFs 1 and 2 co-
regulate the hypoxic induction of IL-1β in macrophages – a finding confirmed by the hypoxic
upregulation of IL-1β being only partially diminished in murine BMDMs from HIF-1α−/−
(Fig. 1) and HIF-2α−/− mice (H.Z. Imtiyaz, M.C. Simon and colleagues, submitted).

It remains to be seen whether HIFs 1 and 2 bind to different HREs on the promoters of the
above co-regulated genes or whether other, unknown mechanisms underpin the phenomenon
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of dual HIF responsiveness. Furthermore, as mentioned previously, this may vary between cell
types as HIF-1 has been shown to be the primary regulator of various genes in some cell types,
16,46 while other cells employ HIF-2 or both HIFs in their regulation.18,19,47 Interestingly,
when just one HIF was inhibited using siRNA the other did not appear to compensate for its
loss and maintain maximal hypoxic induction. It is known that many HIF-target genes have
multiple HREs. If, once HIFs 1 and 2 have bound to different HREs in a given promoter they
then co-operate, both might be required for maximal gene transcription.. This may be similar
to the molecular ‘co-operation’ that takes place between HIF-2 and Elk-1 on some gene
promoters.18,19

The complete knockdown of both HIFs 1α and 2α in MDMs failed to completely block the
hypoxic upregulation of most of the HIF-target genes discussed above. This suggests that other
transcription factors may also be involved in regulating their hypoxic induction. The
transcription factor, NF-κB, may be one such factor. This has been shown recently to be
activated in macrophages by short-term (2–4h) exposure to hypoxia, with the expression and/
or phosphorylation of IKKβ, IKBα and p65/RelA in macrophages, as well as the nuclear
translocation and DNA-binding activity of p65 being upregulated.20–22 There also appears to
be a close interplay between NF-κB and HIF-1 as p65/p50 heterodimers bind to the HIF-1α
gene promoter and drives its expression under hypoxia. Interestingly, HIF-2α is not upregulated
by NF-κB in murine macrophages during short-term hypoxia (4h).22 The present report shows
that p65 protein is phosphorylated and binds DNA in the nuclei of MDMs in hypoxia.
Furthermore we show that both HIFs 1 and 2 contribute to the maintenance of high levels of
p65 expression and phosphorylation in such cells.

As many of the genes we found to be markedly upregulated in human macrophages by hypoxia
had previously been identified as potential NF-κB target genes (Table 1 and Fig. 5), we
examined the role of p65 in the hypoxic upregulation of the most highly ones. Studies using
the synthetic inhibitor of nuclear translocation of p65, JSH-23,24 or an adenoviral inhibitor of
IKKβ showed that NF-κB is not essential for their induction during an 18h exposure to hypoxia.
The upregulation of HIF-1α in macrophages exposed to short-term hypoxia (4h) is partially
dependent on NF-kB22 so the fact that both HIFs 1 and 2α continued to be upregulated in JSH-
treated MDMs following hypoxia in our study suggests that, either p65 inhibition was
incomplete or that the accumulation of these sub units during a more sustained period (18h) of
hypoxia is independent of NF-κB.

While both forms of NF-κB inhibition resulted in the marked inhibition of TNFα-induced
CXCL8 (as well as other genes examined with JSH-23), it had no detectable effect on the
hypoxic expression of any of the genes examined. These data are supported by the recent
finding that that the hypoxic induction of several such NF-κB target genes in murine BMDMs
does not involve activation of NF-κB (H.Z. Imtiyaz & M.C. Simon, submitted).

Our data indicate that NF-κB signaling may not contribute to the induction of these genes by
macrophages in response to an 18h exposure to hypoxia. At first glance, this appears to contrast
with the finding that hypoxic induction of HIF-1α and various HIF target genes was diminished
in BMDMs from IKKβ−/− mice following exposure to short-term hypoxia (ie. 4h).22 However,
it may be that there is a switch from acute, NF-κB-dependent hypoxic responses in
macrophages that are critical for innate immunity (eg. bacterial infection) to an NF-κB-
independent, HIF-driven response to the chronic hypoxia present at sites like tumors. Clearly,
a detailed investigation of the role of NF-κB in the temporal and gene-specific responses of
macrophages to hypoxia is now warranted.

Taken together, our data show that when macrophages experience hypoxia for 18h it elicits a
profound change in their expression of various tumor-promoting genes. While this study
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provides invaluable insights into the basic repertoire of such macrophage responses, it should
be remembered that macrophages in hypoxic areas of complex tissues like tumors are a
heterogenous mix of cells including immature, monocyte-like cells and mature macrophages.
6 Moreover, the responses of these cells to hypoxia will also be influenced by a host of tumor-
derived signals like cytokines and enzymes. Further in vivo studies are now warranted to
investigate the role of hypoxic macrophage responses within the complex milieu of tumors.
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Figure 1. Role of HIFs 1α and 2α in the hypoxic induction of VEGF and CXCL8: insights from
siRNA knockdown studies and use of macrophages bearing a deletion in the HIF-1α gene
A: Immunoblots of HIF-1α or HIF-2 α in MDM lysates following their exposure to normoxia
(20.9% O2; ‘N’) or hypoxia (0.1% O2; ‘H’) for 18h, or hypoxia for 18h following exposure to
siRNA for HIF-1α (‘1 α’), HIF-2 (‘2α’), both HIFs 1α and 2α together (‘1 α +2 α’ or a scrambled
control (‘Scr’). Loading controls were β-actin. Below each gel picture is the densitometric
analysis of HIF expression relative to its β-actin loading control. B & C: Effects of HIF-1α and
2α knockdown on the hypoxic induction of VEGF (B) and CXCL8 (IL-8; C) mRNA and
protein. In the case of VEGF, gene expression was also assayed in normoxic and hypoxic
BMDMs from conditional knockout HIF-1 α−/− mice in vitro by qRT-PCR (right hand panel
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in B). It was not possible to do this for CXCL8 as this gene is not expressed in mice. Pooled
data from 6 replicate experiments are shown. * p<0.05 compared to corresponding normoxic
group; ^ P<0.05 compared to the scr siRNA/hypoxia group; + P<0.05 compared to
macrophages from wt mice exposed to hypoxia.
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Figure 2. Hypoxic upregulation of IL-1β by human MDMs in vitro and by TAMs in hypoxic areas
of murine mammary tumors: role of HIFs 1 and 2
A: IL-1β mRNA levels and protein release by human MDMs following their exposure to
normoxia (20.9% O2; ‘N’) or hypoxia (0.1% O2; ‘H’) for 18h, or hypoxia for 18h following
exposure to siRNA for HIF-1 α (‘1 α’), HIF-2α (‘2 α’), both HIFs 1 α and 2 α together (‘1 α
+2 α’) or a scrambled control (‘Scr’). B: Hypoxic induction of IL-1β mRNA by bone marrow-
derived macrophages derived from wt or HIF-1α−/− mice. C: Upregulated expression of
IL-1β by F4/80+ macrophages in pimonodazole-stained (ie. hypoxic; ‘H’) compared to
pimonodazole-unstained (ie. normoxic; ‘N’) areas of murine mammary (4T1) tumours (see
yellow arrows on the merged ‘H’ image). Pooled data from 3 replicate experiments are shown.
* p<0.05 compared to corresponding normoxic group; ^ P<0.05 compared to the Scr siRNA/
hypoxia group; + P<0.05 compared to macrophages from wt mice exposed to hypoxia.
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Figure 3. Role of HIFs 1α and 2α in the hypoxic induction of other key genes by macrophages
Panels A, C, E, G, I & K: hypoxic induction of mRNA for CXCR4, GLUT-1, ADM, STAT4,
ADORA2A and ICAM1 (as measured by qRT-PCR) following exposure of primary human
macrophages to normoxia (20.9% O2; ‘N’) or hypoxia (0.1% O2; ‘H’) for 18h, or hypoxia
following exposure to siRNA for HIF-1 α (‘1 α’), HIF-2 α (‘2 α’), both HIFs 1 α and 2 α together
(‘1 α +2 α’) or a scrambled control (‘Scr’). Panels B, D, F, H, J & L: hypoxic induction of the
same genes in murine BMDMs from wt and HIF-1α−/− mice. Pooled data from 3 replicate
experiments are shown. *p<0.05 compared to corresponding normoxic group; ^P<0.05
compared to the Scr siRNA/hypoxia group; +P<0.05 compared to macrophages from wt mice
exposed to hypoxia.
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Figure 4. Gene enrichment analysis to compare key genes upregulated by hypoxia in human MDMs
and known NF-κB -regulated genes
Hypoxia upregulated genes identified in two separate macrophage cultures using Affymetrix
or Illumina microarrays were ranked by level of hypoxia-mediated induction. The ranked gene
lists were then compared to both a previously published geneset for hypoxia-regulated genes
in tumour cells (the ‘hypoxia regulated’ gene set - top row) or genes previously shown to be
NFκB target genes (the ‘NFκB target’ geneset – bottom row) by geneset enrichment analysis.
The ‘hypoxia regulated’ gene set (top row) was significantly enriched in the hypoxic
macrophage geneset identified on both the Affymetrix (‘Array 1’; NES=2.2, q<0.001) and the
Illumina (‘Array 2’; NES=2.24, q<0.001) arrays. The NFκB target gene set (lower row) was
also enriched in the hypoxic macrophage geneset on both Affymetrix (NES=1.69, q=0.02) and
Illumina (NES=1.67, q=0.12) arrays.

Fang et al. Page 18

Blood. Author manuscript; available in PMC 2010 June 8.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Figure 5. Effect of hypoxia on the expression and/or phosphorylation of components of the
canonical NF-κB signaling pathway in MDMs: regulation by HIFs 1α and 2α
Panel A: Fold induction (hypoxia (0.1% O2)/normoxia (20.9% O2) of mRNA levels for
individual NF-κB signaling proteins in primary human MDMs. The contribution of both HIFs
1 and 2 to the regulation of many of these genes was also assessed using siRNA to knock down
the expression of each α subunit in MDMs. Panel B: effect of normoxia (N) or hypoxia (0.1%
O2; H) for 18h on the expression of mRNA for IKKβ and p65 in murine bone marrow-derived
macrophages from wt or HIF-1 α−/− mice. *p<0.05 compared to corresponding normoxic
group; +P<0.05 compared to macrophages from wt mice exposed to hypoxia. Panel C:
immunoblots showing the effect of exposure to normoxia or hypoxia (0.1% O2) for 18h on the
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levels of total and phosphorylated IKKβ and p65/RelA in primary human MDMs. Panel D:
effects of normoxic (N) or hypoxic (0.5% O2; ‘H’) culture on the level of total or
phosphorylated p65 protein in murine bone marrow-derived macrophages from wt or HIF-2α
−/− mice. Similar results were obtained using BMDMs from wt and HIF-1−/− mice (data not
shown).
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Figure 6. Inhibition of nuclear translocation of p65 has no effect on the hypoxic induction of various
genes in human MDMs in vitro
Panels A & B: Effect of the p65 inhibitor, JSH-23, (or its vehicle, DMSO) on the nuclear
translocation of p65 induced by TNFα or hypoxia by human MDMs. ‘N’ = normoxia; ‘H’ =
hypoxia (0.1% O2). The ‘% nuclear p65 immunofluorescence’ = the % of the total, DAPI-
stained (blue) area of MDM nuclei that was GFP+ (green). The figures at the base or just above
each bar represents the average % of all MDM nuclei immunofluorescent for p65 (panel B). *
P<0.05 w.r.t. ‘normoxia alone’ group; + P<0.05 w.r.t TNFα + DMSO group. ^ P<0.05 w.r.t.
hypoxia + DMSO group. Panel C: effect of JSH-23 on NF-κB binding and accumulation of
HIFs 1 and 2α in hypoxic MDMs (N = normoxia; H = hypoxia, H + JSH-23 = hypoxia following
JSH.23 treatment. All three groups received the vehicle for JSH-23, DMSO); (i) left panel:
electromobility shift assay showing NF-κB binding to a DNA consensus sequence, and (ii)
right hand panel: immunoblots for HIFs 1 and 2α. Panel D: Effect of JSH-23 blockade of p65
function on the fold induction of VEGF, CXCL8, IL-1β, CXCR4, GLUT-1, STAT4, ADM
and ADORA2A by TNFα or hypoxia. *P<0.05 w.r.t. ‘normoxia with DMSO’ alone; ** P<0.05
w.r.t. group indicated; $ P<0.05 w.r.t. TNF + DMSO group. Pooled data from 3 replicate
experiments are shown.
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Figure 7. IKKβ inhibition has no effect on the hypoxic induction of various genes in human MDMs
in vitro: use of a recombinant adenovirus expressing a dominant negative inhibitor of IKKβ (adv-
IKKβDN)
MDM infection with adv-IKKβDN (but not control adv) significantly inhibited both TNFα-
induced gene expression of CXCL8 (Panel A) and hypoxia-induced nuclear accumulation of
phospho-p65/RelA (Panel B) by human MDM. Panel C: Hypoxia significantly increased the
expression of VEGF, CXCL8, CXCR4, GLUT-1 and ADM mRNA in untreated and
adenovirally-infected MDM compared to respective normoxic MDM controls. However, there
was no significant difference in the expression of these genes between hypoxic MDM infected
with adv-IKKβDN or the control adenovirus. N=3. * P<0.05 w.r.t. respective normoxic group,
+ P<0.05 w.r.t TNFα + control adenovirus group.
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