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ABSTRACT

Objective: Diffusion tensor imaging (DTI) quantifies Brownian motion of water within tissue. In-
flammation leads to tissue injury, resulting in increased diffusivity and decreased directionality.
We hypothesize that DTI can quantify the damage within acute multiple sclerosis (MS) white
matter lesions to predict gadolinium (Gd)-enhancing lesions that will persist 12 months later as T1
hypointensities.

Methods: A cohort of 22 individuals underwent 7 brain MRI scans over 15 months. DTI parame-
ters were temporally quantified within regions of Gd enhancement. Comparison to the homolo-
gous region in the hemisphere contralateral to the Gd-enhancing lesion was also performed to
standardize individual lesion DTI parameters.

Results: After classifying each Gd-enhancing region as to black hole outcome, radial diffusivity,
mean diffusivity, and fractional anisotropy, along with their standardized values, were signifi-
cantly altered for persistent black holes (PBHs), and remained elevated throughout the study. A
Gd-enhancing region with a 40% elevation in radial diffusivity had a 5.4-fold (95% confidence
interval [CI]: 2.1, 13.8) increased risk of becoming a PBH, with 70% (95% CI: 51%, 85%) sensi-
tivity and 69% (95% CI: 57%, 80%) specificity. A model of radial diffusivity, with volume and
length of Gd enhancement, was associated with a risk of becoming a PBH of 5.0 (95% CI: 2.6,
9.9). Altered DTI parameters displayed a dose relationship to duration of black hole persistence.

Conclusions: Elevated radial diffusivity during gadolinium enhancement was associated with in-
creased risk for development of a persistent black hole, a surrogate of severe demyelination and
axonal injury. An elevated radial diffusivity within active multiple sclerosis lesions may be indica-
tive of more severe tissue injury. Neurology® 2010;74:1694 –1701

GLOSSARY
ABH � acute black hole; CBH � chronic black hole; DTI � diffusion tensor imaging; FLAIR � fluid-attenuated inversion
recovery; Gd � gadolinium; MS � multiple sclerosis; NAWM � normal-appearing white matter; PBH � persistent black hole;
RD � radial diffusivity; ROI � region of interest; T1H � chronic T1 hypointensity; TBH � transient black hole.

In multiple sclerosis (MS), inflammation leads to variable myelin and axon injury.1 Tissue
destruction can increase the risk for worse relapse recovery, permanent disability, and future
disease progression.2-4 Diffusion tensor imaging (DTI) may serve as a quantitative measure of
tissue damage and provide information regarding the pathologic substrate.

Gd-enhancing lesions represent increased permeability of the blood–brain barrier with infil-
tration of inflammatory cells. Some Gd-enhancing lesions resolve with little consequence to the
tissue, while others progress to extensive and permanent parenchymal loss.5 Chronic T1 hy-
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pointensities (T1Hs), or chronic black holes
(CBHs), have direct histopathologic correlation
to severe tissue damage, based on degree of axon
loss and demyelination at autopsy.6,7 Acute
black holes (ABHs) are T1Hs with Gd enhance-
ment, observed on the concurrent noncontrast
T1-weighted scans.8,9 ABHs represent a hetero-
geneous group of lesions, with variable contri-
butions from edema, demyelination, and axonal
injury. A minority of ABHs will become persis-
tent black holes (PBHs) after 12 months of im-
aging follow-up; those that recover to become
isointense are designated as transient black holes
(TBHs).

The present study sought to determine
whether DTI at lesion onset would predict long-
term tissue damage associated with PBHs. In
animal studies of acute inflammatory lesions
within white matter tracts, directional (axial and
radial) diffusivities may serve as surrogates of
axon and myelin pathologies.10-13 Hypotheses
for the present study were that a drop in axial
diffusivity preceding Gd enhancement, and a
rise in radial diffusivity during or after Gd en-
hancement, would predict development of a
PBH.

METHODS Standard protocol approvals and patient
consent. All subjects provided informed consent, after approval

by the Washington University Human Research Protection Of-

fice/Institutional Review Board.

Study protocol. Seven brain MRIs were obtained over the

course of 15 months as part of a cohort study of rituximab

add-on therapy for breakthrough disease in MS. Included were

those with a relapse within the past 12 months and at least 1

enhancing lesion on 1 of 3 monthly pretreatment MRIs. Sub-

jects continued on their injectable therapy and received ritux-

imab after their third baseline/pretreatment MRI. Rituximab

was dosed at 375 mg/m2 IV for 4 weekly doses. MRI was ob-

tained at months �2, �1, 0, 3, 4, and 5 to determine whether

rituximab would decrease new enhancing lesions. A follow-up

MRI was obtained at least 12 months from the resolution of the

last enhancing lesion to determine whether a subsequent PBH

developed.

MRI protocol. Patients were imaged on a 1.5 T MRI scanner

(Sonata, Siemens Medical Solutions, Germany) using an

8-channel phased-array head coil. Axial DTI data were acquired

in 14 minutes using a single-shot spin-echo echoplanar imaging

sequence with diffusion encoding in 6 noncollinear directions, 6

averages, and a resolution of 2.5 � 2.5 � 2.0 mm3. Regions of

interest (ROIs) delineated on anatomic images were in register

with the DTI data, and ROIs defined on any anatomic image on

any scan session were transferrable to the DTI data on any scan

session. Details on the MRI sequences and coregistration

methods can be found in e-Methods on the Neurology® Web site
at www.neurology.org.

Region of interest analysis. Amira v4.0 (Visage Imaging)
was used for manual segmentation, DTI quantification, and clas-
sification of T1 hypointensities. ROIs were drawn on the T1W
postcontrast image, blinded to the black hole outcome measure.
When there was an acute black hole with Gd ring enhancement,
the entire region was segmented including the nonenhancing
acute T1H center, if a previous MRI confirmed no lesion prior
to the acute black hole. If a region of enhancement was adjacent
or peripheral to a preexisting black hole, as defined by an MRI
previous to enhancement, then that preexisting black hole was
not included within the ROI. Gd-enhancing lesions were ex-
cluded if excessively small (�16 mm3).

The mean Gd-region DTI in this population was examined
over time. To evaluate changes within individual Gd-enhancing
lesions, a DTI ratio standardized to an internal control value was
obtained by selecting the same region in the contralateral hemi-
sphere, based upon distance from midline on the b0 image. The
FA map was used to ensure that the contralateral control ROI
was in a region homologous to the lesion ROI. If the contralat-
eral ROI was not in the same homologous tract as the lesion, it
was shifted 1–3 mm. Adjustments were made blinded to the
outcome. To avoid partial volume effect, the FA map was also
used to exclude voxels bordering CSF or cortex.

The goal of selecting the contralateral control region was to
include an area of white matter that was normal as assessed on
the fluid-attenuated inversion recovery (FLAIR) image
(NAWM). Due to the presence of contralateral T2 hyperintensi-
ties (T2H), obtaining a corresponding NAWM ROI was not
possible in 35% of lesions. In order to preserve the power of the
study by not excluding lesions in which contralateral NAWM
was unobtainable, the control lesion ROI was categorized as to
whether it was pure NAWM or contained some T2H. These two
categorizations were then utilized as a covariate in the statistical
modeling to adjust for any confounding. The T1-hypointensity
was determined by visual inspection, compared to surrounding
normal appearing tissue.

Statistics. Mean DTI values were determined by a linear mixed
model to account for each subject contributing a variable number of
lesions, along with repeated measures over time. For modeling, DTI
parameters were transformed into a log scale for axial diffusivity and
radial diffusivity (RD), a square root scale for FA, and an inverse
scale for MD in order to form Gaussian distributions. Classification
of the control region as NAWM or T2H revealed an interaction
with all DTI parameters (p � 0.01), justifying the use of this covari-
ate within the linear mixed model. The clinical covariates of age,
disease duration, and Expanded Disability Status Score were as-
sessed in the model, did not contribute significantly, and were not
included. Clustered logistic regression was used to determine risk of
progression to a PBH, with covariates of lesion volume and months
of Gd enhancement.

RESULTS Demographics. Subject demographics are
presented in table 1. The 22 subjects had MS for a
median of 9.1 years with median Expanded Disabil-
ity Status Scale score of 4.4.

Longitudinal control ROI remained stable. Each Gd-
enhancing lesion ROI had a homologous ROI lo-
cated in the contralateral hemisphere. DTI
parameters of the control ROIs in the contralateral
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hemisphere did not change over 15 months (figure
e-1). This affirmed the feasibility of using the con-
tralateral hemisphere to standardize individual Gd-
enhancing lesion DTI measurements within brain
regions by the ratio of the lesion ROI vs the con-
tralateral ROI.

DTI parameters became altered during Gd enhance-
ment. Ninety-five Gd-enhancing lesions were identi-
fied (table 2). For all 95 Gd-enhancing lesions, RD
increased by 38%, FA decreased by 35%, and MD
increased by 21% compared to the corresponding
contralateral ROI (figure 1). Axial diffusivity was not
appreciably changed when evaluating all lesions re-
gardless of black hole outcome. Fifty-six percent of
lesions had at least 1 MRI prior to Gd enhancement.

At �1 and �2 months prior to enhancement, there
was a nonsignificant trend for progressive alteration
of RD, FA, and MD within the future lesion ROI.
Within 2 months after enhancement, these 3 param-
eters began to normalize toward preenhancement
baseline (figure 1).

DTI parameters predicted enhancing lesions that be-
came PBHs. RD, MD, and FA distinguished enhanc-
ing lesions that would become PBHs (table 3).
Compared to the �1 month prior to Gd enhance-
ment, mean and ratio of RD for lesions destined as
PBHs were significantly elevated at the time of en-
hancement (figure 2). After at least 12 months, RD,
both mean and standardized ratio, continued to sep-
arate the PBHs from isointense regions. RD in PBHs
remained elevated at 12 months compared to pre-Gd
enhancement baseline. Similarly, higher MD and
lower FA at time of Gd enhancement each predicted
black hole persistence at 12 months.

For lesions that enhanced for over 1 month, time
0 in the analyses above was based upon the month of
maximal Gd enhancement. Additional analyses de-
termined whether the discriminatory ability of DTI
upon Gd enhancement would remain valid if
monthly MRIs were not being obtained. If a random
month when the lesion was Gd enhancing was set as
time 0, PBHs continued to be predicted using RD
and MD (p � 0.05, modeling with 500 repetitions).

Only one subject displayed enhancing lesions
(n � 10) after rituximab therapy. In the event that
the timing of rituximab therapy affected the outcome
of ABHs, the analyses were also performed excluding
that subject. PBHs were still predicted at the time of
enhancement using the parameters of radial diffusiv-
ity ratio (p � 0.01), MD ratio (p � 0.001), and FA
ratio (p � 0.01).

DTI parameters demonstrated a relationship to time of
black hole persistence. To determine if a relationship
existed between degree of diffusivity abnormalities
and the length of time the black hole persisted, each
individual diffusion parameter measured at month 0
was assessed for a linear change over time. Radial
diffusivity (ANOVA p � 0.001), FA (p � 0.001),
and MD (p � 0.001) ratios demonstrated a signifi-
cant linear trend for increasing diffusivity and de-
creasing anisotropy with increasing time of black
hole persistence (table e-1).

Radial diffusivity predicts individual lesions at risk for
progression. Within this cohort, a Gd-enhancing le-
sion with a radial diffusivity ratio �1.4 had an OR of
5.4 (2.1–13.8) for becoming a PBH when each le-
sion was analyzed as an independent event. A radial
diffusivity ratio of �1.4 predicted progression to a
PBH at 12 months with a sensitivity of 70% (51%–

Table 1 Baseline subject demographics

Characteristics Values

No. 22

Age, y, median (range) 42.0 (33–53)

Gender 15 women, 7 men

Disease duration, y, median (range) 9.1 (2–23)

EDSS, median (range) 4.4 (2–6.5)

IFN�-1b SC, n 6

IFN�-1a IM, n 6

IFN�-1a SC, n 7

Glatiramer acetate, n 3

T2 lesion burden, mm3,
median (range)

20.5 (5.3–53.5)

T1 lesion burden, mm3,
median (range)

1.9 (0–25.1)

Gadolinium lesions, mm3,
median (range)

0.58 (0.1–10.2)

Abbreviations: EDSS � Expanded Disability Status Scale;
IFN� � interferon-�.

Table 2 Lesion characteristics

Characteristics Values (%)

Total GdE lesions 95

ABH 49 (53)

ABH resolved with Gd resolution 13 (14)

TBH resolved 1–3 mo 6 (6)

TBH resolved >3 and <12 mo 7 (7)

No black holes during Gd 46 (48)

PBH 28 (30)a

% Enhancement >1 mo 41 (43)

% Re-enhancement 5 (5)

Abbreviations: ABH � acute black hole; GdE � gadolinium
enhancing; PBH � persistent black hole; TBH � transient
black hole.
a Five PBHs arose from lesions that were not ABHs during
Gd enhancement, but became T1-hypointense the month
after Gd resolution.
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85%) and specificity of 69% (57%–80%) for an in-
dividual lesion. When each lesion was evaluated by a
clustered logistic model, controlling for the presence
of T2H on the contralateral side and repeated mea-
sures within subjects, the increased odds of becoming
a PBH at 12 months for radial ratio �1.4 remained
5.4 (standard error of 0.36 for the regression param-
eter). Additional covariates of lesion volume and Gd
enhancement for greater than 1 month were evalu-
ated, as both previously had been reported predictors
of conversion to a PBH.8 Radial ratio diffusivity with
the 2 additional covariates demonstrated that an in-
dividual lesion with a radial diffusivity ratio �1.4
had an OR of 5.0 (2.6–9.9) for becoming a PBH
(p � 0.0001, generalized estimating equations
model).

Drop in axial diffusivity did not predict progression to
PBH. No significant decrease in axial diffusivity prior
to or at the time of enhancement for the PBH group
was observed (figure 2), and no linear trend for in-
creasing risk of PBH with decreasing axial diffusivity
was found (ANOVA, p � NS).

DISCUSSION We tested the predictive power of
DTI at Gd enhancement for development of a PBH,

a surrogate marker of severe tissue injury. RD was
found to be a reliable and consistent parameter at the
time of enhancement to distinguish outcome (table 3).
A 40% elevation of RD within an individual enhancing
lesion, in comparison to the homologous region within
the opposite hemisphere, was associated with a 5.0-fold
risk for black hole persistence at 12 months (p �

0.0001). Likewise, a 40% elevation in RD predicted
persistence as a black hole with a sensitivity and specific-
ity of 70%. Furthermore, the degree of increase in RD
at Gd enhancement onset was correlated with the
length of time the black hole was observed. Thus, in-
creased RD, as it relates to a chronic black hole, may
suggest intense demyelination, axonal dropout, and
overall loss of tissue integrity.14

The significance of CBHs has been established by
autopsy and biopsy, wherein decreased axonal den-
sity, myelin loss, and matrix destruction have been
noted in comparison to T1 isointense areas.6,15,16 A
dose relationship between decreasing axonal counts
(by silver staining) and increasing degree of T1 hy-
pointensity has been shown.6 In addition, quantita-
tive imaging modalities have confirmed notable
abnormalities within black holes on a cross-sectional
basis. Magnetic resonance spectroscopy has demon-
strated a decreased NAA level, suggestive of axonal
injury/loss.17,18 Quantitative magnetization transfer
imaging has shown lower values for black holes, con-
sistent with demyelination.19,20 Diffusion imaging
studies have found an increase in water diffusion,
consistent with tissue breakdown, in black holes.21-29

A relationship between the burden of chronic black
holes and increasing disability has been established,
supporting its clinical relevance.30-33

DTI may provide complementary and additional
information to other MRI techniques in clinical
practice. Whereas T1 hypointensities and T2 hyper-
intensities are indicative of a threshold of increased
water content, DTI can assess structural hindrances
to the Brownian motion of water, providing infor-
mation more specific for tissue breakdown. DTI can
be implemented with current commercial software
packages and hardware. Whole brain coverage with
DTI can be achieved at a relatively high resolution
within a practical time.

Population mean lesion DTI value may be useful
for assessing a group of lesions over time, as in a
clinical trial. In this study, the mean RD, FA, and
MD for all lesions did distinguish PBH from tran-
sient black hole (table 3). However, DTI values vary
greatly throughout the brain, and the mean value has
limited practicality in lesions within individual pa-
tients. A solution is to standardize the DTI within
each lesion by having each subject serve as their own
control in a longitudinal assessment. The DTI ratio

Figure 1 Diffusion parameters over time in relation to gadolinium
enhancement, all lesions included

Radial diffusivity, mean diffusivity, and fractional anisotropy become altered at time of
maximum gadolinium enhancement (month 0). These diffusion tensor imaging parameters
return toward their month �1 baseline within 2 months (overlapping confidence intervals).
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of the lesion and a homologous region in the oppo-
site hemisphere has the advantage of not needing to
rely upon a normal control common atlas space. One
difficulty in using a comparative control atlas is that
patients with MS have variable degrees of region-
specific atrophy. Although coregistering the same in-
dividual over time can be done reliably, attempting
to warp the brain image of someone with MS onto a
normal brain would be associated with misalignment
errors. In the present study, regardless of whether the
contralateral hemisphere was normal or contained
T2H, either scenario found RD ratio to also be effec-
tive in predicting black holes.

As demonstrated in human optic neuritis, a drop
in axial diffusivity may be among the first measurable
DTI parameters to become altered within an acute
lesion, before tissue breakdown results in overall in-
creased diffusivity and decreased directionality.34,35

In the present study, axial diffusivity did not prove to
be as useful as radial diffusivity, and axial diffusivity
did not decrease. One explanation for the differences
between the 2 studies is that the usefulness of axial
diffusivity may be limited to tightly packed white
matter tracts with relatively limited interstitial space.
Subjects in this study had MS for median 9 years,
whereas in the study of acute optic neuritis, subjects
were assessed at demyelinating disease onset. Thus,
in the present study some enhancing lesions may
have occurred in regions of previous injury. A second
reason is that changes in brain diffusivity may occur
up to 4 months prior to enhancement, and the
present study had insufficient power to examine DTI
many months before Gd enhancement.36 A third rea-
son is that, unlike the optic nerve, Gd-enhancing le-
sions were located in multiple regions of CNS white
matter, including areas with low directionality and
crossing fibers. In regions of low directionality, there
may not be a robust principal eigenvector, and diffu-
sivity can increase in many directions.37

ABHs that became isointense demonstrated nor-
malization of diffusivity over time (table 3, overlap-
ping confidence intervals from month �1 to months
1 and 12), perhaps reflecting resolution of edema as-
sociated with the acute inflammatory infiltrate. Late
normalization of diffusivity may be due to remyeli-
nation, continued resolution of inflammation, or
both. However, only 7% of lesions fell into the late
resolution category (hypointense until �3 and �12
months), resulting in the study being underpowered
to test this hypothesis.

The limitations of this study include its modest
sample size and the unique type of MS patient stud-
ied. The 22 subjects enrolled had breakthrough dis-
ease with active lesions, long disease durations, and
higher Expanded Disability Status Scale scores than
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in many trials of relapsing MS. The incidence of de-
veloping PBHs in this group may be higher than in
patients with MS with early disease. Black holes are a
qualitative imaging parameter, and are not equiva-
lent to the gold standard of tissue histopathology.
However, obtaining tissue in living patients is im-
practical, and evaluating the temporal evolution of
acute inflammatory lesions blinded to the outcome
of PBH can still help establish a connection between
DTI and focal injury. Finally, re-enhancing lesions
might alter the T1H outcome if a second wave of
destructive inflammation were to develop after mea-
suring initial DTI. However, only 5 of the 95 lesions
in this study were noted to be re-enhancing, repre-
senting a minority of lesions that would be unlikely
to alter the result.

A future study should include the complete spec-
trum of MS subtypes, validation of the 40% increase
in radial diffusivity in another population, and
monthly DTI over a longer time period to better
define tissue alterations prior to enhancement and
after black hole resolution. Incorporating magnetiza-

tion transfer and spectroscopy with DTI would de-
fine the role of each modality over time, and in
relation to one another.38-40 Such studies should cor-
relate DTI parameters with clinical disability out-
comes, to determine if DTI can identify suboptimal
responses to treatment prior to clinical identification.

DTI may have value in clinical practice to probe
the structural integrity of new lesions that occur de-
spite therapy, such as in this study. DTI of active
lesions may be useful as a surrogate marker in clinical
trials of anti-inflammatory and neuroprotective
agents. Quantitative DTI may complement other
imaging techniques to assist in the assessment of new
therapeutics and in early determination of treatment
response.
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