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Summary
In the last decade, the planarian has become an increasingly tractable invertebrate model for the
investigation of regeneration and stem cell biology. Application of a variety of techniques and
development of genomic reagents in this system have enabled exploration of the molecular
mechanisms by which pluripotent somatic stem cells called neoblasts replenish, repair, and
regenerate planarian tissues and organs. Recent investigations have implicated evolutionarily
conserved signaling pathways in the re-establishment of anterior-posterior, dorsal-ventral, and
medial-lateral polarity after injury. These studies have significantly advanced our understanding of
early events during planarian regeneration, and have raised new questions about the mechanisms of
stem cell-based tissue repair and renewal.

Introduction
Freshwater planarians are non-parasitic flatworms (phylum Platyhelminthes). They are able to
repair and replace tissue that is lost or damaged after injury, as part of normal cellular turnover,
or during growth and degrowth in response to changing nutritional availability [1–4]. These
impressive restorative abilities are conferred, in part, by a population of pluripotent somatic
stem cells, called neoblasts, that are distributed throughout the mesenchyme of the planarian
body (Fig. 1A,B), and that differentiate into tissues and organs lost to injury. The molecular
mechanisms underlying planarian regeneration and neoblast dynamics have until recently been
poorly understood. However, the application of molecular and functional genomics
technologies has proceeded rapidly in planarians (Box 1), allowing increasingly systematic
analyses of a growing array of developmental [1,4–10] and physiological processes [11,12],
as well as other problems [13,14].

In order for injured planarians to regenerate in response to almost any amputation [3], robust
mechanisms must exist to re-establish anterior-posterior (A–P), dorsal-ventral (D–V), and
medial-lateral (M-L) axes after wounding. In the last two years, a number of investigations
have revealed roles for evolutionarily conserved signaling pathways in these critical early
events. Here, we survey these studies and discuss some of the unresolved questions that have
emerged.
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Recent technical developments have made planarians experimentally tractable

Planarians possess a rich history as an experimental subject, with rigorous studies dating
back to the late 1800s [1–3,7]. Starting in the 1990s, the application of molecular cloning,
immunohistochemistry, and other modern techniques initiated the re-examination of long-
standing questions derived from nearly a century of surgical, physiological, histological,
and ultrastructural investigations [1,10,15,16].

Experimental tractability of planarians has vastly increased in the past ten years due to a
number of achievements. The selection of a European species, Schmidtea mediterranea
[17], as a model planarian was made because of its small genome, diploid complement of
chromosomes (four), and extant asexual and sexual strains [1]. Transcriptome
characterization has been fruitful in S. mediterranea as well as the Japanese species Dugesia
japonica: ~78,000 S. mediterranea expressed sequence tags (ESTs) and ~7500 D.
japonica ESTs have been deposited in NCBI, the products of both published and
unpublished efforts [18–20]. S. mediterranea is also the first planarian species to have its
genome sequenced (Washington University Genome Sequencing Center, St. Louis, MO);
annotated genomic, transcriptomic, and phenotypic data are available in a publicly
accessible database [21,22]. Furthermore, gene expression can be assayed in situ [18,20,
23,24], neoblasts can be labeled, isolated, and analyzed using a variety of methods [25–
29], and assessment of gene function by RNA interference can be accomplished by injecting,
soaking, or feeding [30–33]. These developments represent a powerful toolkit that has
enabled the identification and functional analysis of genes that regulate axial patterning and
neoblast dynamics during regeneration.

Planarians maintain and regenerate anterior-posterior polarity
As the only mitotically active somatic cells, neoblasts proliferate at sites of injury to generate
the blastema, a mass of cells that differentiates into the tissues and organs lost by amputation
[1]. In order for these newly generated cells to be patterned correctly, mechanisms must exist
to reset polar axes after wounding; for example, if a tail is amputated, the positional identity
of “posterior-most” must be re-established in order for a new tail to regenerate properly. This
fact was appreciated by T. H. Morgan, whose hypotheses regarding morphogenetic gradients
and polarity were formulated in part to explain the appearance of two-headed planarian
regenerates: extremely thin transverse fragments would sometimes re-grow heads at both
cephalic and caudal amputation sites [1,3,34–37] (Fig. 2A).

In metazoans, Wnt proteins signal through their receptors via β-catenin-dependent
(“canonical”) and -independent (“non-canonical”) pathways to regulate embryonic A–P axis
formation as well as a variety of other processes [38–41]. Recently, three groups reported that
in planarians, RNAi-mediated knockdown of Smed-β-catenin-1 causes the regeneration of a
“posterior head” after tail amputation, replicating the two-headed phenotype that Morgan
observed [34,35,42] (Fig. 2A). These animals regenerate posterior cephalic ganglia (the brain)
and eyes [34,35,42], and even intestinal branches regenerate to form a single primary branch,
characteristic of anterior, not posterior, patterning [34,42] (Fig. 2B). Ectopic anterior structures
also appear in the uninjured regions of regenerating tail pieces [34] (Fig. 2C), in response to
small lateral incisions [35] (Fig. 2D), or even in the lateral flanks of uninjured animals [34,
35,42], indicating a role for β-catenin not only during regeneration, but also during normal
homeostatic tissue maintenance. Furthermore, Gurley et al. [34] indirectly demonstrated that
upregulation of β-catenin may be sufficient to promote posterior identity, since knockdown of
Smed-APC-1 (Adenomatous Polyposis Coli, a β-catenin inhibitor) results in a reciprocal
phenotype: the regeneration of posterior tissues after head amputation (an “anterior tail”).
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Candidate upstream regulators of β-catenin were identified by Petersen and Reddien [35], who
reported that the expression of several Wnt genes is re-established in small clusters of posterior
cells within 4–5 days after amputation. In a subsequent study, Adell and colleagues reported
that Smed-wntP-1, Smed-wnt11-2, and Smed-evi/wntless (necessary for Wnt secretion) are
required to varying degrees for proper specification of posterior fate [43]. Additionally, in both
D. japonica and S. mediterranea, knockdown of wntA results in posterior expansion of the
brain [43,44].

Wnt signaling pathways have been implicated during early stages of limb and tail regeneration
in zebrafish, Xenopus, and axolotl [45–48], during which their disruption inhibits the initiation
of regeneration, blastema growth, and proliferation of progenitor cells. By contrast, in
planarians blastema formation and growth appear to be normal in wnt and β-catenin knockdown
animals, suggesting that the primary role of these genes during planarian regeneration is to
regulate repatterning [34,35,42,43,49]. Taken together, the evidence suggests that Wnt
signaling (through β-catenin-dependent mechanisms) promotes posterior specification and/or
suppresses anterior identity in both intact and injured planarians. Since Wnt/β-catenin-
mediated regulation of A–P axis formation has been studied primarily in the context of
embryogenesis, observations in planarians (and other regenerating invertebrates such as
Hydra) support suggestions that such a role is ancient and broadly conserved [34,35,42,43,
49–53].

Questions pertaining to the role of Wnt/β-catenin signaling in planarians remain. For example,
both β-catenin and APC are transcribed rather ubiquitously [34,35,42] and are upregulated in
both anterior and posterior blastemas within 24 hours after amputation [34]. Since activation
of these genes might occur as a nonspecific response to injury, assessment of the spatial and
temporal regulation of APC, Wnt, and β-catenin proteins (for example, in which cells β-catenin
translocates to the nucleus) ultimately will be needed to understand the mechanistic details of
A–P axis re-establishment [50]. Additionally, other factors may regulate A–P polarity. For
example, treatment with a pharmacological inhibitor of gap junctions can, like β-catenin
knockdown, cause regeneration of posterior heads [54]. Likewise, a number of planarian Hox
genes are expressed differentially along the A–P axis, although functional roles for these genes
have not yet been reported [55–57]. Thus, although β-catenin is required to confer posterior
identity, multiple pathways may interact to regulate A–P axis formation and patterning [34].

Bone Morphogenetic Protein regulates dorsal-ventral patterning
Dorsal-ventral (D–V) patterning is also important for the organization of the planarian body
plan. Cephalic ganglia, nerve cords, the majority of ciliated epithelial cells, and the mouth
opening are ventral, whereas eyes, testes, as well as specific populations of pigment and
secretory cells are located in stereotypical positions along the D–V axis.

Bone morphogenetic protein (BMP) signaling regulates D–V polarity in metazoans, promoting
ventralization in vertebrates, and dorsal identity in invertebrates [58]. In planarians, the first
bmp homolog was isolated from D. japonica, where its expression in a dorsal stripe of midline
cells suggested a potential role in D–V or midline patterning [59]. Three recent studies
conducted in D. japonica [60] and S. mediterranea [61,62] assessed the roles of several BMP
pathway genes. These included a bmp2/4/decapentaplegic homolog [60–62]; Smed-smad1 and
Smed-smad4-1, members of a family of transcription factors that transduce BMP and
Transforming Growth Factor β (TGF-β) receptor signaling [61,62]; and smedolloid-1, the S.
mediterranea homolog of tolloid, an extracellular metalloprotease that potentiates BMP
signaling by inactivating Chordin/Short Gastrulation [61]. These groups reported
ventralization phenotypes such as the disappearance of dorsal markers accompanied by the
ectopic dorsal expression of ventral markers [61,62], dorsal duplication of cephalic ganglia
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and ventral nerve cords [60–62], as well as the duplication of lateral body margins (the “D–V
boundary”) [60,62] (Fig. 3A). Perhaps most dramatic was the propensity of animals to swim
on their (formerly) dorsal surfaces, accompanied by a nearly complete conversion of the dorsal
epithelium to a ventral-like, ciliated epidermis [61]. As with disruption of A–P patterning
(above), many phenotypes were observed in both regenerating and uninjured animals, revealing
a role for this signaling pathway in the maintenance of D–V patterning during normal tissue
homeostasis.

Other phenotypes suggest that BMP signaling may play roles beyond the regulation of D–V
patterning. A role in medial-lateral (M-L) patterning is supported by the fact that normally,
bmp expression shifts toward a lateral plane of injury, suggesting an early role in resetting the
position of the midline [59,61]. Consistent with this idea, bmp, smad, and smedolloid
knockdown animals fail to re-express lateral body margin markers after longitudinal
amputations [61], and lateral blastemas in these animals are severely reduced or absent [61,
62]. Furthermore, in animals that are cut transversely (i.e. in which heads or tails are
amputated), disruption of BMP signaling causes the production of indented anterior and
posterior blastemas [61,62]; in these misshapen blastemas, visual axon projections across the
midline are often absent or otherwise aberrant [61]. Even more dramatically, in long-term
bmp and smad RNAi experiments in uninjured animals, photoreceptors and their projections
to the brain are often inappropriately duplicated on either side of the midline [60–62].
Consistent with these phenotypes, BMP signaling has been shown to regulate midline
patterning during development in other organisms, for example in the mouse telencephalon
[63], in the zebra fish heart and viscera [64], and during axon guidance [65].

Although indented anterior/posterior blastemas and reduced/absent lateral blastemas may be
the output of disrupted early midline repatterning [61,62], these phenotypes also suggest that
BMP signaling might regulate neoblast proliferation. Smed-smad4-1 knockdown does not
affect neoblast proliferation 24 hours after transverse amputation [32]; the effects of Smed-
bmp4-1 knockdown on early proliferation have not been reported [32,61]. However,
knockdown of either of two planarian msx (muscle segment homeobox) transcription factors,
Djmsh1 or Djmsh2, delays the formation of the head blastema and interferes with the normal
dynamics of neoblast proliferation after injury [66]. Vertebrate MSX proteins are often
coexpressed with BMPs during development and regeneration, mediating some of their
activities [67–70]. Furthermore, recent evidence suggests that BMPs may function
mitogenically during vertebrate limb, tail, fin, and retina regeneration [69,71,72]. Thus, the
possibility that BMP signaling regulates proliferation in planarians warrants further
investigation.

An alternative explanation for some phenotypes is that they occur secondarily to D–V axis
disruption [61,62]. For example, Molina et al. [62] have proposed that the inappropriate
differentiation of cells with ventral identity in dorsal regions may lead to ectopic D–V
interactions, causing some phenotypes such as dorsal outgrowths and abnormal blastema
formation. This explanation is consistent with studies in which experimental juxtaposition of
dorsal and ventral tissues induces proliferation, blastema formation, and secondary axes [3,
73–75]. Further complicating interpretation, variability among bmp, smad, and smedolloid
phenotypes was reported. This may reflect the overlapping and non-overlapping roles of BMP
pathway components [60–62], some of which (for example, members of the noggin family of
BMP pathway inhibitors) have been identified only recently [76]. Given that cross-talk between
signaling systems regulating A–P, D–V, and M-L polarity is likely [48,50,58,77,78], further
analysis will be required to understand the multiple roles BMP signaling may play during
regeneration.
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On an interesting side note, Reddien and colleagues also reported that in thin lateral regenerates,
bmp-expressing cells appear even in irradiated animals [61]. Stem cell-independent induction
of gene expression has also been reported for a noggin-like gene in D. japonica [79].
Additionally, irradiation of either host or donor tissue does not abrogate the production of
ectopic outgrowths from D–V reversed transplants [75]. These results all suggest that
differentiated cells are capable of initiating or altering the expression of positional cues without
input from the neoblasts, a capability that may allow rapid repatterning in response to injury
[61].

Medial-lateral patterning and the central nervous system
Some planarian organs, most notably the central nervous system (CNS) and the gonads, are
duplicated laterally on either side of the midline. However, the mechanisms by which bilateral
symmetry is maintained and regenerated are poorly understood. In the cephalic ganglia of D.
japonica, homologs of orthodenticle and orthopedia homeobox-containing genes are
expressed in non-overlapping medial-lateral (M-L) domains, although the functional
significance of these expression domains is unknown [23,80].

Cebrià and colleagues recently identified two planarian genes whose function is critical for
proper patterning and regeneration at the midline [81,82]. Slit is a secreted extracellular ligand
for the Roundabout (Robo) family of receptors, functioning in vertebrates and invertebrates as
a midline repulsive cue for axons and dendrites [83]. Knockdown of Smed-slit causes
regeneration of cephalic ganglia and photoreceptors that are collapsed at the midline, as well
as inappropriate fusion of posterior intestinal branches (Fig. 3B) [81]. Ectopic neural tissue
also appears over time at the midline in uninjured Smed-slit(RNAi) animals, suggesting a role
for Slit in the normal homeostatic maintenance of CNS organization [81]. Smed-slit is
expressed in both dorsal and ventral midline cells, whereas roboA is expressed in the brain,
ventral cords, and early in the brain “primordia,” cells within the blastema thought to be among
the first neurons to differentiate after amputation [5,6,81,82]. Thus, the regeneration of
collapsed neural tissue (and the appearance of ectopic midline neuronal tissue in intact animals)
may reflect the inappropriate migration or differentiation of neurons that normally respond to
the midline as a repulsive boundary. Intriguingly, however, Smed-roboA knockdown results
in the growth of supernumerary pharynges with reversed A–P orientation, dorsal cephalic
outgrowths, and a reduced (or absent) anterior commissure connecting the two cephalic ganglia
(Fig. 3C) [82]. This production of ectopic tissue (pharynges and cephalic outgrowths) in roboA
(RNAi) animals correlates with the failure of the regenerated cephalic ganglia to re-establish
proper connectivity with the pre-existing ventral cords [82]. In other regenerating organisms,
deviation of nervous tissue can cause the growth of ectopic structures, and in urodele
amphibians, regeneration is dependent on the nervous system [5,82,84]. Smed-roboA(RNAi)
phenotypes support the possibility of a similar role for the planarian CNS in the general
coordination of patterning [5,82]. The identification of additional ligands and/or receptors will
be required in order to understand why slit and roboA phenotypes are not identical, and why
roboA knockdown causes reduction of the anterior commissure.

How are neoblasts instructed by patterning cues?
Roles for Wnt/β-catenin, BMP, and Slit-Robo signaling in A–P, D–V, and M-L patterning,
respectively, have been established by the studies outlined above. When axial patterning or
repatterning is disrupted, the most common result is production of ectopic differentiated tissues
-- anteriorized central nervous and digestive systems (wnt/β-catenin knockdown), dorsal
neurons and ectopic photoreceptors (BMP pathway disruption), and supernumerary pharynges
and dorsal outgrowths (roboA(RNAi)). These phenotypes imply that neoblasts are instructed
to differentiate inappropriately, raising a number of questions. How do neoblasts integrate
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positional information? Do they respond directly to positional cues, for example to a gradient
of secreted Wnt and/or BMP proteins? Or do the neoblasts respond indirectly to the axial
identity of differentiated tissues, for example to signals secreted by severed nerve cords? In an
uninjured animal, is neoblast fate restricted regionally? That is, do neoblasts themselves have
positional identity, or do extracellular cues act only during or after lineage restriction? Many
of the genes involved in re-establishment of polarity in planarians (β-catenin, APC, bmp2/4,
slit, roboA) are upregulated in blastemas [34,35,42,43,62,81,82], in which early markers of
neoblast differentiation are also expressed [85]. At least one of the 10 planarian Wnt receptor
genes (Smed-frizzled-4) is expressed in the blastema [34]; the identity and expression pattern
(s) of BMP/TGFβ receptors has not been reported. Identification of cells that co-express these
genes may provide clues to the genetic programs that incorporate positional information with
the control of neoblast dynamics.

Upregulation of patterning genes in the blastema also suggests that upstream components of
these signaling pathways, that is, those that link wound healing with blastema growth and
patterning, remain to be identified [3]. In planarians, knockdown of Djmsh1 or Djmsh2
(mentioned above) causes an overall reduction in the level of Djbmp mRNA [66], although a
specific role in the blastema has not been demonstrated. Similarly, in fetal mouse digits, both
Msx1 and Msx2 homeobox transcription factors are required for Bmp4 expression [70]. Also,
transgenic expression of noggin in the regenerating Xenopus tadpole tail prevents upregulation
of wnt3a and wnt5a, suggesting the possibility that BMP signaling may regulate Wnt
expression [48]. In planarians, the drastically different phenotypes in wnt(RNAi) and bmp
(RNAi) regenerates would seem to argue against such a hierarchy, but the regulatory
relationships between these pathways have not yet been investigated.

Conclusions
The potential to inform our understanding of both stem cell and cancer biology has led to
renewed interest in the molecular basis of regeneration in a variety of organisms [1,3,4,13,
84,86–90]. Recent studies have revealed that planarians maintain and regenerate polar axes by
employing evolutionarily conserved patterning mechanisms. Deeper understanding of the
utilization of positional information in regenerating organisms may provide additional insights
into the functions of secreted factors in adult stem cell niches [91,92], and may inform efforts
to direct the differentiation of embryonic or induced pluripotent stem cells in vitro. In addition
to determining the extent to which genetic programs of regeneration recapitulate those of
metazoan embryogenesis [45,67,93], a second major goal is the identification of novel
regulators [87]. Recently, larger scale approaches have identified hundreds of planarian genes
that are expressed in dividing and differentiating neoblasts [85,94], and that are required for
blastema growth, proliferation, and patterning during planarian regeneration [32]. Although
many questions remain, future investigations of this intriguing invertebrate will continue to
provide new perspectives on the initiation and maintenance of polarity, and the coordination
of somatic stem cells by positional cues in both regenerating and fully developed tissues.
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in situ hybridization; not all genes are coexpressed, indicating heterogeneity of the stem cell
population.
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Figure 1. Planarian neoblasts
(A) Distribution of neoblasts in an intact animal 24h after BrdU incorporation (green). S-phase
cells do not reside anterior to the photoreceptors or within the pharynx (asterisk), and fragments
amputated from these regions do not regenerate [1,25]. Dorsal view; anterior is to the left. Scale
bar, 0.5 mm. (B) In cross section (anterior to the pharynx), neoblasts (green) are distributed
mesenchymally around differentiated tissues such as the intestine (INT) and ventral nerve cords
(V). Enteric and outer body wall muscles are labeled in magenta. Scale bar, 0.05 mm.
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Figure 2. Patterning defects caused by β-catenin RNAi
(A) A transverse slice from a planarian normally regenerates an anterior head and a posterior
tail (middle right). Morgan observed that a very thin transverse slice (top right) sometimes
regenerates a head both anteriorly and posteriorly. Knockdown of β-catenin and other Wnt
pathway genes also results in regeneration of a posterior head in trunk fragments (bottom right).
(B) In β-catenin(RNAi) trunk regenerates, cephalic ganglia (green) and eyes are duplicated
posteriorly, while intestinal morphology (orange) is anteriorized (orange arrow). (C) and (D)
β-catenin knockdown also causes growth of ectopic heads along the flanks of regenerating tail
pieces (C) or at lateral incisions (D). Gray, regenerated tissue (A–D). Red lines = amputation
sites (A–D).
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Figure 3. Patterning defects resulting from knockdown of BMP pathway, slit, and robo genes
(A) When BMP signaling is disrupted by RNAi, normally ventral tissues develop/regenerate
dorsally. EPR, ectopic photoreceptor. CG, cephalic ganglia (green). DCG, dorsal cephalic
ganglia. VNC, ventral nerve cord (blue). DNC, dorsal nerve cord. DCE, dorsal ciliated
epithelial cells. (B) In trunk pieces (i.e. after amputation of both head and tail), Smed-slit
knockdown results in the regeneration of cephalic neural tissue that is collapsed at the midline
(green arrow), fused photoreceptors (red arrow), and posterior collapse of ventral cords (blue)
and intestinal branches (orange and orange arrow). (C) After head amputation, Smed-robo
knockdown results in regeneration of pharynges with reversed A–P polarity (purple arrow) and
ectopic dorsal cephalic outgrowths (green arrow), correlated with lack of VNC/CG
connectivity (blue arrow). Cephalic ganglia are also displaced laterally. Gray, regenerated
tissue (B–C). Red lines = amputation sites (B–C).
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