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Abstract

We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the
Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high
level of divergence in the histone interacting repression domains of the two proteins suggested that determinants
distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural
analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and
characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is
not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40
repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat
domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is
characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model
system for studying the functional divergence of WD40 repeat domains.
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Introduction

The Saccharomyces cerevisiae Ssn6/Tup1 complex has been

extensively studied and serves as a model co-repressor that is

required for transcriptional regulation of a variety of genes,

including genes involved in mating, stress and metabolic pathways

[1–3]. The metazoan Gro/TLE proteins are functional homologs

of Tup1 that are encoded by several genes, some of which are

alternatively spliced to create further variety within the family of

co-repressor proteins. Gro/TLE proteins regulate many processes

such as embryonic development and they are also important in the

context of adult human disease [4–6].

The budding yeast Ssn6/Tup1 complex consists of one copy of

the Ssn6 protein and four copies of Tup1, which in turn consists of

three functional domains. The N-terminal domain of Tup1

mediates oligomerization and interaction with Ssn6, putatively

through insertion of the N-terminal helix bundle into a cavity in

Ssn6 [7–9]. The middle region of the protein is required for its

repressor function and interaction with the N-terminal tails of

histones, and the WD40 repeat domain, found in the C-terminal

region, forms a seven-bladed propeller-like structure that consti-

tutes a highly conserved protein-protein interaction domain found

in various classes of proteins in evolutionary distant organisms

[10–12]. The Ssn6/Tup1 co-repressor complex does not have

intrinsic DNA binding properties but associates with target genes

through interaction with DNA-binding transcription factors. It

subsequently interacts preferentially with the hypo-acetylated N-

termini of histones and represses transcription through changes in

nucleosome positioning, interaction with components of the

Mediator complex and recruitment of factors involved in

repression, such as histone deacetylases (HDACs) [13–17].

In the fission yeast Schizosaccharomyces pombe, gene duplication has

resulted in two genes encoding Tup1 homologs – tup11+ and

tup12+. We have previously shown that tup11+ and tup12+ play

distinct roles under some conditions, such as CaCl2 mediated stress

[18]. However, the mechanistic basis or the functional differences

between the Tup11 or Tup12 proteins is not known. Under

normal growth conditions on rich media, Tup11 and Tup12

interact with each other and can interact with Ssn6 independently

of each other [18]. Under the same conditions, the Tup11, Tup12

and Ssn6 co-localize on chromatin throughout the genome, even

on genes for which they play differential roles [19]. The ability to

affect target genes differentially in context of a common complex

might involve the histone binding properties of the repression

domain. The conservation between S. pombe Tup11 and Tup12

within this region is even lower than the conservation between

either protein and their Tup1 homologues in a range of distantly

related fungal species [18]. We hypothesized that the high degree
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of variation in this region of the proteins might be the result of

positive adaptive selection, leading to repression domains with

differential affinities for particular histone tails and/or their post-

translationally modified versions. Here we use phylogenetic and

functional approaches to investigated which regions of Tup11 and

Tup12 underlie their divergent functions.

Results

The tup11+ and tup12+ genes are conserved in fission
yeasts

Genome sequencing of the fission yeasts, S. japonicus and S.

octosporus [GenBank: AATM01000000, ABHY02000000], allowed

us to show that the duplication that gave rise to tup11+ and tup12+

in S. pombe is conserved in other fission yeasts. To determine the

gene structure of the genes as well as whether they are expressed,

we RT-PCR amplified and cloned cDNA corresponding to tup11+

and tup12+ from both S. japonicus and S. octosporus using primers

derived from the respective genome sequences. The expression of

both genes in these fission yeast species suggests that the two genes

may have diverged functions as has been shown previously for S.

pombe. Phylogenetic analysis of full-length protein sequences

derived by translation of the cDNA sequence showed that the

sequences sort into two clades equivalent to S. pombe Tup11 and

Tup12 (Fig. 1A). The topology of the clades, showing the closest

relationship between the S. pombe and S. octosporus sequences,

reflects the species phylogenetic tree derived from analysis of

mitochondrial DNA sequences [23].

To test whether the divergent central repression domain might

be responsible for the functional difference between Tup11 and

Tup12 as suggested previously [18], we compared the relative

sequence identity within the N-terminal (N), Middle (M) and C-

terminal (C) domains. If sequence variation in the M domain

accounts for the functional difference between Tup11 and Tup12

we would expect to see much greater M domain sequence

conservation within the groups of Tup11 and Tup12 proteins than

between them. Fig. 1B shows that The M domains of Tup12

proteins tend to be more similar to each other than to Tup11 M

domains but that no such trend is seen for Tup11 proteins. This

would be consistent with the acquisition of a common Tup12-

specific function but the M domain of Tup11 seems rather to have

accumulated a high level of neutral variation of little or no

significance for distinction between Tup11 and Tup12. The

domain that most clearly fulfills the above expectation is the C

domain that is clearly more conserved within the Tup11 and

Tup12 groups than between them. The N domain is intermediate.

In summary, phylogenetic analysis gives strongest support to the

C-terminal WD40 repeat domain as a determinant of divergent

Tup11 and Tup12 functions.

In vivo functions of Tup12 are partly conserved between
species

The interpretation of the phylogenetic analysis assumes

conservation of Tup11 and particularly Tup12 functions in the

different fission yeasts. To test this we tested the ability of tup12+

from both S. japonicus and S. octosporus to complement the CaCl2
sensitivity phenotype associated with S. pombe strains lacking

Tup12. tup11+ from S. octosporus was also tested as a negative

control. Fig. 2 (left panels) shows that tup12+ from S. octosporus

complements the Tup12 defect on CaCl2 similarly to S. pombe

tup12+ while tup12+ from S. japonicus complements less efficiently.

As expected, S. octosporus tup11+ does not complement at all and

Figure 1. Phylogenetic relationships between Tup11 and Tup12 proteins in fission yeasts. (A) Dendrogram of Tup11 and Tup12 proteins
from different fission yeast species, based on ClustalW alignment of full-length translated protein sequences. S. cerevisiae Tup1 is used as the
outgroup. (B) Cross comparison of similarity between N-terminal domains (N), middle regions (M) and C-terminal domains (C) of budding and fission
yeast Tup proteins. The numbers in each box correspond to in the percentage identity of amino acid residues for each pair wise comparison of
aligned protein domains. The following protein regions were compared: S. cerevisiae Tup1 residues 1–89 (N), 90–317 (M), 318–713 (C), S. pombe
Tup11 residues 1–87 (N), 88–286 (M), 287–614 (C), S. octosporus Tup11 residues 1–87 (N), 88–271 (M), 272–601 (C), S. japonicus Tup11 residues 1–87
(N), 88–303 (M), 304–630 (C), S. pombe Tup12 residues 1–104 (N), 105–259 (M), 260–586 (C), S. octosporus Tup12 residues 1–88 (N), 89–228 (M) 229–
555 (C), S. japonicus Tup12 residues 1–88 (N), 89–249 (M), 250–576 (C).
doi:10.1371/journal.pone.0011009.g001

WD40 Repeat Domain Divergence
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none of the strains are sensitive to lower concentrations of CaCl2
(0.1 M). We conclude that Tup12 has a conserved role in the

response of fission yeasts to CaCl2 stress but that this is most

clearly conserved between the S. pombe and S. octosporus, which are

more closely related. No growth defects were observed on sorbitol

plates (Fig. 2, right panels), demonstrating that the CaCl2
sensitivity phenotype is specific for CaCl2 and not just due to

general osmotic sensitivity.

The C-terminal domain of Tup12 contains important
determinants of Tup12 specific function during CaCl2
stress

To investigate directly whether the M domain is sufficient to

account for the functional differences between Tup12 and Tup11

during CaCl2 stress, we constructed a S. pombe Tup11/12 hybrid

protein in which the M domain of Tup12 was replaced by the

corresponding domain of Tup11. The hybrid protein was

expressed in a S. pombe strain lacking both tup11+ and tup12+ to

allow testing of the overall functionality of the hybrid protein as

well as its Tup12-specific functionality. Fig. 3A shows that the

hybrid protein (Tup12-11-12) is generally functional because it can

efficiently rescue the low-level CaCl2 sensitivity (#0.1M) that can

be rescued by expression of either Tup11 or Tup12. Importantly

however, the hybrid can also rescue the high-level CaCl2
sensitivity ($0.2M) that can be rescued by expression of Tup12

but not Tup11. The expression level of the hybrid protein is

similar to that measured for Tup12 (Fig. 3B). Therefore, there is

no support for the hypothesis that the divergent M domain

accounts for Tup12 specific activity during CaCl2 stress. Since the

phylogenetic analysis (Figs. 1 and 2) pointed to an important

Tup12-specific role of the C-terminal domain, we made a hybrid

construct to test this directly. The new hybrid protein in which the

C-terminal domain of Tup11 was replaced by the corresponding

domain from Tup12 (Tup11-11-12) rescues the sensitivity

phenotype similarly to Tup12 on both lower and higher

concentrations of CaCl2. The expression level of this hybrid

protein is also similar to that seen for Tup12 (Fig. 3B). We

conclude that the C-terminal domain of Tup12 contains important

Tup12 specific determinants required for CaCl2 stress response.

Sequence comparison predicts differences in localized
surface properties of Tup12 compared to Tup11

Both phylogenetic and functional evidence suggests that the C-

terminus is a main determinant of the functional differences that

distinguish Tup12 from Tup11, even though it is the most

conserved domain between all Tup proteins. To identify

Figure 2. Ability of S. octosporus and S. japonicus Tup12 proteins to rescue the CaCl2 sensitivity of tup12D in S. pombe. Five-fold
dilutions of the wild-type strain JY741 and JY741 Dtup12 transformed with empty vector or with plasmids expressing one of the fission yeast Tup12
proteins or S. octosporus Tup11, spotted on YES agar supplemented with CaCl2 (0.1 M or 0.25 M, left panels) or sorbitol (1.2 M or 2.0 M, right panels).
doi:10.1371/journal.pone.0011009.g002

Figure 3. Ability of Tup11/12 hybrid proteins to rescue the CaCl2 sensitivity of tup11D, tup12D in S. pombe. Five-fold dilutions of the
wild-type strain JY741, strain FFB52 (Dtup12, Dtup12) and strain FFB52 transformed with empty vector or with plasmids expressing of intact Tup11 or
Tup12 or Tup11/12 hybrid proteins, spotted on YES agar supplemented with increasing concentrations of CaCl2. The Tup11/12 hybrid proteins
contained the following amino acid residues from Tup11 and Tup12. Tup12-11-12 (Tup12 residues 1–104, Tup11 residues 88–286, Tup12 residues
260–586 followed by Gly, Ser derived from the vector); Tup12-11-11 (Tup12 residues 1–104, Tup11 residues 88–614 followed by Gly, Ser derived from
the vector), Tup11-12-12 (Tup11 residues 1–87, Tup12 residues 105–586 followed by Gly, Ser derived from the vector). (B) The hybrid Tup11/12
proteins are expressed at similar levels to Tup11 and Tup12. Western blot in which Flag-tagged proteins were identified using antibodies specific for
the Flag tag. The Tup proteins are the same as in A. FFB52 was used as a negative control (No Tup).
doi:10.1371/journal.pone.0011009.g003
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differences in the properties of the Tup12 and Tup11 C-terminal

domains, we first identified residues that were identical between S.

pombe and S. octosporus but that that were consistently different

between the Tup11 and Tup12 proteins of these species. These

species were chosen because both have Tup12 proteins that

efficiently rescue the CaCl2 sensitivity of S. pombe tup12D mutant

cells. Pairs of residues that differ between Tup11 and Tup12 were

judged to have significantly different properties if they have a

negative score in a BLOSUM62 matrix or if they have opposite

net charge. The ClustalX alignment of Tup11 and Tup12 C-

terminal regions with secondary structure annotations based on

the tertiary structure of S. cerevisiae Tup1 [21] is shown in Fig. 4A.

The positions of the divergent residues that match the selection

criteria are coloured (different colours show the identity of either

or neither of the fission yeast proteins with Tup1). The divergent

residues that distinguish Tup11 and Tup12 are clearly non-

randomly distributed throughout the primary sequence, with a

major cluster of divergent residues being located in the region that

forms blade 3 of the WD40 propeller-like structure. We used the

tertiary structure of the Tup1 C-terminal domain [21] to predict

the location of divergent residues that distinguish Tup11 and

Tup12 on the surface of the WD40 propeller-like structure. Fig. 4B

(upper panels) shows that the majority of the divergent residues are

clustered on the side of the structure, in a region corresponding to

blade 3 in the WD40 domain propeller structure, shown in Fig. 4B

(lower panels). In contrast, the conserved top region, which is

known to be important for Tup1 dependent transcriptional

regulation [1,21,24], is also highly conserved between the Tup11

and Tup12 proteins of fission yeasts (Fig. 4B, left panels). Our data

thus suggest a model whereby Tup11 and Tup12 in fission yeasts

repress transcription via common mechanisms that are also

conserved with Tup1 proteins in more distant species. Tup12

specificity, involving specific amino acid differences in the blade 3

region of the structure, could be due to qualitative or quantitative

differences that modulate the otherwise conserved repression

mechanisms in a context dependent fashion.

Discussion

We previously proposed that the very high divergence in the

central histone-binding repression domain might be responsible

for the functional diversification of Tup11 and Tup12. The

possibility of adaptive variation in this region is suggested by the

fact that the two S. pombe proteins differ from each other in the

central region to a greater extent than either of them does in

relation to Tup1 proteins from a range of distantly related fungal

species [18]. Phylogenetic analysis using sequences from different

fission yeast species gives some support for this because Tup12

proteins tend to be more related to each other in the middle region

than they are to Tup11 proteins. This is particularly true for

comparison between the S. pombe and S. octosporus proteins, which

both have full ability to complement CaCl2 stress related defects

associated with S. pombe strains lacking Tup12. However, there is

no equivalent tendency towards sequence conservation within the

Tup11 group of proteins. Thus any adaptive changes within the

middle region leading to Tup12-specific functions would have to

be viewed in the light of the significant neutral variation that

appears to be manifested by the Tup11 group of proteins.

Importantly, replacing the Tup12 repressor domain with the

equivalent region of Tup11 did not cause any noticeable effects on

Tup12 specific functions under CaCl2 stress conditions. Thus the

middle domain is not important for Tup12-specific function under

these conditions. We cannot however, exclude the possibility that

differences in the middle domain of Tup11 and Tup12 have a

functional significance under other conditions that are not studied

here. It is also possible that divergence in the middle domain has

been of adaptive significance during evolution but that it no longer

contributes to the genetic fitness of S. pombe.

Both the N-terminal and C-terminal domains show a higher

degree of similarity within groups of different fission yeast Tup11

and Tup12 proteins, respectively, than for comparisons between

Tup11 and Tup12 proteins. This is particularly true for S. pombe

and S. octosporus, which both have a Tup12 that is fully active in the

CaCl2 stress response of S. pombe. The C-terminal domain showed

the strongest Tup11 and Tup12 specific conservation and our

results clearly show that replacement of the Tup11 C-terminus

with the corresponding region of Tup12 is sufficient to elicit

Tup12-specific functionality that is indistinguishable from the

intact Tup12 protein, at least in the context of CaCl2 stress. A

predominant role of the C-terminal domain in Tup12 specificity

would be consistent with the current views about Tup1 protein

structure and function, whereby the N-terminus is primarily

involved in interactions needed for co-repressor complex forma-

tion while the C-terminus is important for interaction with

downstream factors involved in gene repression. Although this

work has focused on the C-terminal WD40 domain, we have also

studied a fusion protein where the N-terminal domain of Tup11 is

replaced by the corresponding domain from Tup12. In this study

the hybrid protein (Tup12-11-11) was fully able to rescue low-level

CaCl2 sensitivity, which can be rescued by intact Tup11 or Tup12

proteins, but it was only weakly able to rescue high-level CaCl2,

which requires Tup12-specific activity for rescue (data not shown).

Unfortunately, we have not been able to measure the expression

level of this protein (data not shown) and our data is thus

inconclusive. It is possible that the Tup12 N-terminus contains

only partial Tup12-specific activity since we know that sufficient

protein is expressed to rescue low-level CaCl2 sensitivity but we

cannot exclude the possibility that the lower Tup12-specific

activity of the hybrid protein results from a lower expression level

of this hybrid compared to the other expressed proteins.

We focused our attention on the C-terminal WD40 repeat

domain for which a tertiary structure is available for the equivalent

domain of Tup1 from S. cerevisiae. The location of divergent

residues that consistently differ between Tup11 and Tup12

proteins is informative and useful for hypothesis building. For

example, many mutations that interfere with Tup1 dependent

genome-wide transcriptional regulation in S. cerevisiae [1], either at

the level of corepressor recruitment or downstream steps, localize

to the loop regions forming the top surface of the WD40 repeat

structure. Thus, it was possible that differential requirement for

Tup11 and Tup12 on subsets of genes might be due to distinct

surface properties in this region. However, our results indicate that

this region is completely devoid of significant differences between

Tup11 and Tup12. Instead, the significant surface differences

between Tup11 and Tup12 point mainly towards the third

propeller blade of the WD40 repeat structure, revealing two

distinct patterns on the side of the WD40 repeat modules of Tup11

and Tup12, respectively. Tup11 shares more identical residues

with Tup1 in this region than does Tup12 (see residues shaded red

compared to green in Fig 4), which is interesting, considering that

Tup11 is generally less similar to Tup1 than is Tup12 (see Fig. 1).

It is noteworthy that functional similarity between the Tup1 and

Tup11 C-terminal domains in vivo has been demonstrated

previously [11]. One possibility is that Tup11 and Tup12 might

generally interact similarly with transcription factors and co-

factors through the conserved top region of the structure while

differing in overall affinity for some factors due to distinct

interaction properties along the side of the WD40 repeat module,

WD40 Repeat Domain Divergence
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Figure 4. Location of divergent residues in the C-terminal domain that distinguish Tup11 and Tup12. (A) Multiple alignment of the
WD40 repeat domains of fission yeast Tup11 and Tup12 proteins in relation to the Tup1 from S. cerevisiae. Residues that are identical in the Tup11 or

WD40 Repeat Domain Divergence
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which might provide auxiliary interactions. In future work, it

would clearly be relevant to search for protein interaction partners

that show qualitative or quantitative differences in their interaction

with Tup11 and Tup12 as well as to identify CaCl2 stress response

genes for which the Tup12 C-terminal WD40 domain plays a

specific regulatory role.

In conclusion, our present results show that the important

determinants specifying Tup12-specific function during CaCl2
stress reside in the C-terminus of Tup12, and suggests that Tup12

specific surface properties in the third blade of the WD40 repeat

domain propeller-like structure may play an important role in

Tup12 specificity. Tup11 and Tup12 in fission yeasts thus provide

an interesting system for studying the basis for functional

specificity of WD40 repeat domains, that have a highly conserved

overall structure.

Materials and Methods

Yeast strains and growth conditions
Unless otherwise stated, yeast strains (Table 1) were grown at

30uC in YES or, for selection of plasmids, synthetic minimal

medium supplemented with the required amino acids. Solid media

were supplemented with agar (2%). Strain FFB52 was constructed

by PCR based replacement of the leu+ cassette in strain JY741

Dtup12 with a kanMX cassette. Complementation assays were

carried out by spotting dilution series of logarithmically growing

cells onto stress inducing and control plates, followed by 4–5 days

incubation at 30uC.

Plasmids and cloning
Escherichia coli strain XL1-blue was used for cloning and

amplification of plasmids.

Plasmids for expression of N-terminally FLAG-tagged full-length S.

pombe Tup11 and Tup12 proteins were a generous gift from Dr.

Simon Whitehall, University of Newcastle, UK. Constructs for

expression of N-terminally FLAG-tagged S. pombe Tup11/12

hybrids were prepared by overlap extension PCR, using Expand

High Fidelity System (Roche), and subsequently cloned into the

BamHI site of pREP41-FLAG-N. Correct fusions of domain-

encoding sequences were confirmed by PCR. Total RNA from

logarithmically growing overnight cultures of wild-type S. octosporus

and S. japonicus was prepared by hot phenol extraction, followed by

further purification using a RNA Easy mini kit (Qiagen) and

treatment with amplification grade DNase I (Invitrogen). Approxi-

mately 100 ng total RNA was used per 50 ml reaction consisting of

the SuperScript III Platinum One-Step RT-PCR System (Invitrogen)

and gene specific primers with added restriction sites. Platinum Taq

Polymerase (Invitrogen) was used for –RT controls. S. octosporus and S.

japonicus tup11+ and tup12+ cDNA was cloned into the BamHI site of

pUC19 (Fermentas, #SD0411). S. japonicus tup11+ cDNA was cloned

into the BamHI site of pUC19 using BglII cleaved ends. Plasmids

purified from five clones for each of the constructs were sequenced

using M13 primers (Fermentas) and nested primers to obtain full

coverage of both strands. Consensus cDNA sequences have the

following accession numbers: GU253463, GU253464, GU253466

and GU253467. cDNA encoding S. octosporus Tup11 and Tup12 and

S. japonicus Tup12 was subcloned into pREP42X (ATCC # 87607). S.

pombe tup12+ was sub-cloned from prep-FLAG-N-tup12+ into

pREP42X to serve as a control. Primer sequences are available

upon request.

Bioinformatics
Phylogenetic analysis of translated full-length protein sequences

was performed using the neighbor-joining method implemented in

the MEGA software package [20]. Comparison of protein domain

sequences was performed by ClustalW alignment of domain regions

in MacVector 6.5 using the BLOSUM62 matrix with a gap penalty

of 10. ClustalX was used for alignment of C-terminal regions with

secondary structure annotations, using a penalty function based on

the known secondary structure of the S. cerevisiae Tup1 C-terminal

domain [21]. Structure images were made in UCSF Chimera [22],

using chain C of the crystal structure of the C-terminal domain of S.

cerevisiae Tup1, PDB accession number 1ERJ [21].
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Tup12 proteins from S. pombe and S. octosporus but which differ significantly between Tup11 and Tup12 are coloured (blue – both Tup11 and Tup12
residues differ from Tup1; red – Tup11 residues are the same as in Tup1; green - Tup12 residues are the same as in Tup1). Secondary structure and
numbering of the WD40 domain blades is indicated above the sequence. The amino acid numbering, secondary structure annotation and the
position of the so-called blade structures refer to positions in the intact S. cerevisiae Tup1 protein. Sequences underlined in grey correspond to
disordered sequences that are not seen in the crystal structure (Fig 4B). The sequence residues aligned by ClustalX are S. cerevisiae Tup1 (282–713), S.
pombe Tup11 and Tup12 (282–614 and 271–586), S. octosporus Tup11 and Tup12 (271–601 and 240–555) and S. japonicus Tup11 and Tup12 (293–630
and 253–576). (B) Tertiary structure of Tup1 showing the location of residues that differ significantly between Tup11 and Tup12 proteins. Colouring is
as described in (A) above. The upper and lower panels show space-filling and ribbon diagrams of the WD40 repeat domain, respectively. Different
views of the structure were generated by 90u rotations about a verticle axis through the center of mass of the molecule. The N- and C-terminal ends
as well as the blades and their component strands are labeled according to convention. Asterisks show gaps in the crystal structure due to the
existence of disordered regions. Blue asterisks indicate that the disordered region contains residues that are significantly diverged between Tup11
and Tup12.
doi:10.1371/journal.pone.0011009.g004

Table 1. Strains used in this study.

Strain Genotype Reference

JY741 h2 ura4-D18 leu1-32 ade6M216 [11]

JY741 (Dtup12) Dtup12::LEU2+ h2 ura4-D18 leu1-32
ade6M216

[11]

FFB52 Dtup11::ura4+ Dtup12::kanMX h2

ura4-D18 leu1-32 ade6M216
This study

yFS286 Wild-type S. octosporus, haploid A. Smialowska

yFS275 Wild-type S. japonicus, haploid NBRPa

ahttp://yeast.lab.nig.ac.jp/nig/index_en.html.
doi:10.1371/journal.pone.0011009.t001
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