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Abstract
Modern epidemiological studies face opportunities and challenges posed by an ever-expanding
capacity to measure a wide range of environmental exposures, along with sophisticated
biomarkers of exposure and response at the individual level. The challenge of deciding what to
measure is further complicated for longitudinal studies, where logistical and cost constraints
preclude the collection of all possible measurements on all participants at every follow-up time.
This is true for the National Children’s Study (NCS), a large scale longitudinal study that will
enroll children starting in early pregnancy and gather information on their development and
environment through early adulthood. The success of the NCS will significantly depend on the
accurate, yet cost-effective, characterization of environmental exposures thought to be related to
the health outcomes of interest. The purpose of this paper is to explore the use of cost saving, yet
valid and adequately powered statistical approaches for gathering exposure information within
epidemiological cohort studies. The proposed approach involves the collection of detailed
exposure assessment information on a specially selected subset of the study population, and
collection of less-costly, and presumably less-detailed and less-burdensome, surrogate measures
across the entire cohort. We show that large scale efficiency in costs and burden may be achieved
without making substantive sacrifices on the ability to draw reliable inferences concerning the
relationship between exposure and health outcome. Several detailed scenarios are provided that
document how the targeted sub-sampling design strategy can benefit large cohort studies such as
the NCS, as well as other more focused environmental epidemiologic studies.
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Introduction
Modern epidemiological studies face the opportunities and challenges posed by a seemingly
ever-expanding capacity to measure a wide range of environmental exposures, along with
sophisticated biomarkers of exposure and response at the individual level. The challenge of
deciding what to measure is further complicated for longitudinal studies that involve
following participants over time. In practice, logistical and cost constraints preclude the
collection of all possible measurements on every study subject at every follow-up time.
These challenges already face the National Children’s Study (NCS), an ambitious
longitudinal study to examine the effects of environmental exposures on the health and
development of children during their formative years. Key to the success of the NCS will be
the detailed characterization of multiple environmental exposure parameters over time. Yet,
to be successful, this must happen in a cost-effective manner. We describe here a statistical
design framework that uses carefully planned sub-sampling and designed missingness to
reduce study cost, while retaining high power to estimate effects of interest.

Environmental exposure assessments often use physical and biological measurements
combined with time-activity information to estimate aggregate exposures. The NCS requires
a means of identifying those exposure parameters that relate to the targeted health outcomes.
The large number of participants in the NCS, and observations of them for up to 21 years,
constrains the number and timing of measurements of detailed physical and biological
measurements that can be obtained for each individual throughout the study due to the
limitations of respondent burden and cost. This will inevitably lead to some degree of
missing and potentially error-prone exposure data. The NCS will therefore require statistical
tools which allow for efficient collection of exposure information while still preserving the
ability to detect key dose-response relationships in the face of such challenges. More
importantly, the results from the NCS must be of high scientific quality, and derived with
sufficient statistical power to properly characterize the relationship between exposure and
health outcome, and to serve as a resource for additional scientific investigations as new
information becomes available.

In support of the NCS, we have applied innovative statistical techniques and developed
supporting software for multi-stage targeted sub-sampling designs in which precise exposure
assessment measures are collected on a carefully selected subset of the study population
while less expensive (and presumably less detailed/comprehensive and less burdensome)
surrogate measures for the same exposure are collected across the entire cohort [1] This
sampling approach builds on well-developed statistical methodology, and integrates the
concepts of epidemiological study design and analysis of data with missing covariates. Since
the early work of Cornfield [2], the case-control study design has become a critically
important tool in epidemiology. Conceptually, one may think of the case/control study as
selecting from a large cohort (such as the NCS), with subjects who experience the event
having a higher likelihood of selection than those who do not. The case-control design is one
of the simplest and most effective examples of a much broader class of outcome dependent
designs [3]. Like the case-control study design, outcome dependent sampling can
substantially reduce the cost of a study while maintaining high statistical efficiency by
selectively observing the exposure variable in a way that depends on the outcome status and
other confounding covariates. There are several well-studied variations on the case-control
design which exploit the idea of outcome-dependent sampling. White [4] proposed a two-
stage case-control design where one starts with a traditional case-control design. Some
expensive or difficult to measure covariates are assessed only on a subset of the study
subjects, with selection probabilities that depend on other covariates of interest. Weaver and
Zhou [5] proposed a two-stage outcome dependent sampling design for continuous
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outcomes, followed by Wang and Zhou [6] who proposed a two-stage outcome dependent
sampling design with discrete response and auxiliary covariates.

Our approach relies on multiple nested stages of sampling for exposure information, where
each successive stage of sampling is pursued using a subset of study participants selected in
the previous stage. Each stage represents an increasing level of detail (e.g., the accuracy,
completeness, and precision of measurements; the number of locations and media sampled;
and the number of observations over time) and cost with respect to exposure assessment
(e.g. ranging from routine community-level environmental monitoring and simple
questionnaire information, to environmental measures, to biomarker data, to aggregate
exposure assessment information, to repeated measurement of multimedia multipathway or
aggregate exposure information). The goal of the statistical sampling approach is to
determine what fraction, and which specific members, of a study population should be
assessed at each stage to allow investigators to determine the most cost efficient (or burden
efficient) manner to design the study so that the relationship between disease and exposure
can be appropriately characterized.

Our statistical approach is based on the application of well accepted approaches to handling
missing covariate data. Because the selection probabilities used to define our assumed
staged sampling strategy always depend on data observed at the previous stage, we are in the
setting where data can be viewed as missing at random (MAR) [7]. While a number of
different approaches are possible, we take a likelihood-based approach based on an assumed
parametric model for the joint distribution of the outcome and covariates of interest.
Through construction of the observed data likelihood by integrating over the distribution of
missing data, we can characterize the relationship between the health outcome and exposure
of interest by leveraging the joint exposure/surrogate information collected in the highest
stage of sampling with a statistical measurement-error-type adjustment applied to the
remainder of the cohort. Computer simulations indicate the potential for large scale
efficiencies in sampling and analysis costs and study subject burden associated with the
targeted sub-sampling approach compared to traditional study designs in which detailed
exposure information is collected on all study participants [8]. These efficiency gains can be
realized without making any substantive sacrifices on the ability to draw unbiased inferences
on the research problem of characterizing the relationship between exposure and health
outcome.

Despite the relatively large body of literature on methods for handling missing covariates,
relatively little has been done on optimal design in this setting. Reilly and Pepe [9] use a
mean score formulation to address optimal design for settings where covariates cannot be
measured on all study subjects for reasons of cost or practicality. Our targeted sub-sampling
design approach builds on these principles, using a maximum likelihood approach for staged
sampling in a manner that allows flexibility in terms of the research problems that it will
support, including: the inclusion of effect modifiers in the model between exposure and
health outcome, multiple distributional assumptions for the outcome and exposure variables,
and the possibility of repeated measures for the health outcome data in a longitudinal model.

Through careful consideration of these issues in the context of providing the data needed for
the various exposure assessment analyses planned for the NCS, we demonstrate via three
examples how the proposed targeted sub-sampling methodology can be used to identify
cost-effective and efficient sampling schemes for collecting the desired environmental
exposure data. While our examples focus on cost characterized in terms of monetary
considerations, cost could just as easily be interpreted in terms of respondent burden so long
as investigators can quantify the differential burden associated with each measurement.
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Targeted sub-sampling
We assume a simple logistic regression model for characterizing the probability of an
adverse health outcome as a function of exposure:

(1)

where Y is the binary outcome of interest (e.g. whether a child develops autism by age 6)
and X is the exposure variable (e.g. in-utero or post natal pesticide exposure). Targeted sub-
sampling assumes that if X can be predicted well by one or more surrogate measures of
exposure, then a study can still maintain excellent power for fitting model (1) even if X is
measured on only a relatively small sub-sample of the study population. We have developed
rigorous optimal design guidelines that characterize the sub-sampling strategies that either
maximize study power subject to a cost constraint or minimize cost, subject to a desired
power [1]. As discussed later, “cost” may reflect monetary or respondent burden
considerations. Our sampling strategy is conducted in stages, with the health outcome (Y)
being assessed in the first and largest sample of participants within the cohort. A subset of
those participants would have the first-stage surrogate measure (Z1). If multiple stages of
surrogate measures are being planned (Z2,…, Zn), each successive stage represents a smaller
subset of the previous stage. The last and smallest stage of sampling assesses the true
exposure of interest (X). Our approach allows for the possibility that X is not directly
measurable, but rather represents a hypothetical true exposure that can, at best, be
approximated. For this case, we assume a latent variable approach where all the various
observed surrogates (the Z’s) are viewed as providing indirect information about the true
exposure of interest. It should be noted that the design’s stages of sampling need not
correspond to a temporal ordering for sample collections. Rather, the stages correspond to an
assumed hierarchy of sampling in which Stage 0 represents a sub-sample of study
participants in the NCS cohort that will have the health outcome measured, and each
successive stage represents a smaller subset of study participants from the previous stage.

Our design is characterized by a series of conditional probabilities that characterize an
individual’s chance of being sampled at successive stages in the hierarchy, conditional on
data that were observed at previous stages. In a manner similar to that reported by Robins et
al. [10], we represent these sampling probabilities through a series of logistic regression
equations. For example, the equations characterizing a design involving a two surrogate
measures would be:

where γ0 represents the probability that a study subject is sampled at stage 0 for the health
outcome (Y); γ1 represents the conditional probability that a study subject is sampled at
stage 1 (for the surrogate measure Z1), given that (s)he was already selected within stage 0
and given the observed value of Y at stage 0; γ2 represents the conditional probability that a
study subject is sampled at stage 2 (for the surrogate measure Z2), given that (s)he was
already selected within stage 1 and given the data observed at stages 0 and 1, and ; γ3
represents the conditional probability that a study subject is sampled at stage 3 (for the
exposure variable X), given that (s)he was already selected within stage 2 and given the data
observed at stages 0, 1 and 2.
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The intercept terms (α00, α10, α20, and α30) are included in all designs with multiple stages
of surrogate measures and a measurable exposure variable. The slope terms α11, α21, and α31
represent parameters associated with outcome dependent sampling in stages 1, 2, and 3; and
α22, α32, and α33 represent parameters associated with covariate dependent sampling in
stages 2 and 3. Thus, a design with no opportunity for covariate-dependent or outcome-
dependent sampling would constrain these slope terms to zero.

Due to the hierarchical nature of the staged sampling approach, the probability of sampling
at any stage is a product of the γ probabilities from the current and all previous stages of
sampling. Thus, the overall probability of being sampled for X in stage 3 (as a function of
α,Y, Z1 and Z2) is π3 = γ0·γ1·γ2·γ3.

We use a maximum likelihood formulation for optimal design, which means statistical
distributional assumptions are needed for the marginal distribution of X, and the conditional
distributions of Y|X and Z1|X,….ZP|X, in to allow proper construction of the joint likelihood
which is necessary to support the design. Numerical constrained optimization is used to
determine optimal selection probabilities (that is, the set of α’s needed to characterize the
sampling probabilities) at each model stage, subject to specified constraints related to
budget, respondent burden or required levels of precision. For this last optimization goal, the
target standard error is calculated as a function of desired statistical power, size of the study,
and a choice between a one-sided or two-sided test of the hypothesis.

For the relationship between health outcome and exposure, our approach allows for logistic
regression models for binary health outcomes and linear regression models for continuous
outcomes, in both the cross-sectional and longitudinal setting. Our approach also allows
investigators to develop designs that include an effect modifier (E), which when included in
the design, is assumed to be assessed at the second stage of the model among a subset of
participants that are observed with the health outcome. Additional detail on the statistical
methodology for these designs, including information about the objective function and
optimization strategy supporting both cross-sectional and longitudinal designs can be found
in our earlier work [1].

Partitioning and Attributing Cost and Burden to Appropriate Stages
Each variable (Y, E, Zj, and X) that is included in the staged targeted sub-sampling approach
may have two different types of associated costs and burden: specimen collection and
analytical measurement. Specimen collection costs cover the physical collection of the
biological or environmental specimen and the materials and activities that are required prior
to specimen analysis (e.g. supplies, equipment, shipment, storage in a repository, etc.). The
respondent burden associated with specimen collection may be significant. For example,
parents are typically reluctant to agree to blood samples being drawn from infants and young
children unless medically necessary. Analytical costs are designed to cover specimen
analysis and transferring the results to the study database. There is generally no respondent
burden associated with analytical measurement.

We assume that the analytical costs for a variable are always attributable to the stage of
sampling associated with that variable but that the specimen collection costs for a variable
may be attributable to that variable’s stage or any previous stage of sampling. Assignment of
specimen collection costs to a previous stage of sampling becomes necessary when the
decision of whether or not to measure a variable is a function of information from a previous
stage within the targeted sub-sampling paradigm (i.e. covariate or outcome dependent
sampling). There are also instances in which a fraction of the specimen collection and/or
analytical costs associated with a particular variable might already be covered as part of a
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previous stage of sampling, and the costs associated with sampling and measuring that
fractional component must be deleted from subsequent stages.

Case Studies
We present three case studies focused on the design of a hypothetical study relating
neurobehavioral and cognitive development in children with exposures to chlorpyrifos, a
specific non-persistent pesticide and the potential interaction with decreased paraoxonase
activity. Each case explores multiple study designs, including a classic design in which the
health outcome, effect modifier, and true measure of exposure is measured on all study
subjects (used as a basis of comparison), and two-stage targeted sub-sampling designs in
which the health outcome, effect modifier, and a surrogate measure of exposure (either ZSF
or ZQuest) are measured in the first stage of sampling, and then the true exposure (X) is
measured in the second stage of sampling. For the targeted sub-sampling designs, we
investigated three methods for selecting study participants for true exposure assessment:
random sampling, covariate dependent sampling, in which participants are selected based on
a previously obtained value of a surrogate measure, and outcome dependent sampling, in
which participants are selected based on a previously obtained health outcome measure. For
simplicity, our case examples are based on determining optimal design strategies based on
monetary cost, though respondent burden would be important to consider as well.

Data Sources for Case Studies
The assumed outcome for our case studies is the Peabody Picture Verbal Test – Revised
(PPVT-R) scores observed sequentially on children over a 4 year period of time (ages 36,
60, and 84 months) from National Longitudinal Survey of Youth 1979 [11]. The first two
case studies focus on a cross-sectional investigation of whether the child was in the lowest
5th percentile of scores at 84 months. Case Study 3 focuses on a longitudinal assessment of
repeated measures of the continuous PPVT-R scores. We assume a $20 administration cost
and a $5 analysis cost for the Peabody exam.

The best current methods for estimating true exposure to chlorpyrifos may rely on a detailed
and accurate aggregate exposure analysis combining information about the food, dust, and
air in the child’s environment with activity patterns during key lifestages [12,13]. Aggregate
exposure analysis is costly in terms of both study budget and study subject burden and thus
an ideal candidate for consideration in a targeted sub-sampling approach.

We utilized data on childhood chlorpyrifos exposures from the EPA study of Children’s
Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) as
the basis for this case study example [14,15]. CTEPP is a recent aggregate exposure study of
257 preschool age children (ages 2 to 5) conducted in North Carolina and Ohio in rural and
urban settings with sampling schemes chosen for diversity in economic and daycare status.
CTEPP monitored exposures over a 48 hour period at the children’s home and day care
center (if applicable) by collecting environmental samples(air, dust and soil), personal (hand
wipes, diet, water, and urine) samples and questionnaire information (housing
characteristics, pesticide products used, and general activity patterns of the participants).
Chlorpyrifos data from 127 households in the six Ohio counties was used for this case
example.

Aggregate exposure to chlorpyrifos for each participant in CTEPP was estimated using the
time-weighted average of concentrations [16] and serves as the gold standard (X). Various
candidate surrogate measures (Zj) were calculated by setting all but the component of
interest (diet, inhalation, dust, etc) to the mean exposure. The correlations, ρ, between X and
Zj were then calculated by performing a simple linear regression, allowing for a non-zero
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intercept term, and taking the square root of the R2 coefficient. Because these analyses
clearly suggested that dietary exposure from solid food explained much of the variability in
aggregate exposure, we further parceled the dietary surrogate into solid and liquid food. The
distributions and costs associated with exposure and two of the surrogate measures are
detailed below:

• Exposure (X): The aggregate exposure per day to chlorpyrifos is log normally
distributed with a geometric mean of 4.76 and a geometric standard deviation of
1.28. We assumed that it would cost $350 to sample and $1800 to analyze the
aggregate exposure data for each child based on costs from the CTEPP Study.

• Surrogate (ZSF): The solid food (SF) portion of the duplicate plate analysis was
highly correlated (ρ=0.89) with aggregate exposure. ZSF was log normally
distributed with a geometric mean of 4.62 and standard deviation of 2.12 and would
cost $50 to sample and $450 to analyze. The cost of exposure (X) when using Z_SF
was adjusted to the additional cost of sampling ($300) and analysis ($1350)
exposure.

Since questionnaire data (aside from time activity patterns) is not part of the aggregate
exposure calculations, a second surrogate measure (ZQuest) was calculated by using four
pesticide use and diet questions to predict aggregate exposure in a linear model.
Distributions were then calculated on the predicted points and correlated with X as shown
below:

• Surrogate (ZQuest): The surrogate from the questionnaire data was log normally
distributed with a geometric mean of 4.75 and a standard deviation of 1.28. We
assumed that administering the questionnaire would cost $5 and analysis would
cost $1. The costs of obtaining the questionnaire surrogate (ZQuest) were assumed
to be independent from the other measures of exposure (X and ZSF) for the case
studies.

Our case studies also incorporate genetic susceptibility to decreased paraoxonase activity as
an interaction between genetics and environment. Preliminary studies have shown that
paraoxonase (PON1), an enzyme made in the liver and carried on HDL, may protect against
the adverse affects of pesticides/insecticides: the higher the level of paraoxonase, the lower
the toxicity effects of chlorpyrifos. Infants produce less paraoxonase than their mothers and
thus may be at greater risk for adverse neurocognitive health effects from pesticide exposure
[17]. We assumed that approximately 15% of the population has the genetic form of PON1
which corresponds to decreased paraoxonase activity [17,18]. We also assumed that blood
will be routinely archived for all NCS participants (thus a $0 sample collection cost) and
will cost $40 to genotype PON1.

Case Study 1
Our first case study is a cross-sectional example relating exposure to chlorpyrifos and
decreased paraoxonase activity to the probability of being in the lowest 5% of a standardized
neuro-cognitive test, as captured by the following logistic regression:

We assume β1= β2= β3= 0.4045 (corresponding to an odds-ratio of 1.5), and that the
optimization goal was to identify the lowest cost sampling design that allows us to test the
hypothesis β3=0 based on a two-sided test with size (α=0.05) and power (1− β =0.8). Since
β3 corresponds to the interaction between exposure and the effect modifier, this design
essentially is optimized to detect a 50% increase in the odds of being in the lower 5 percent
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of this cognitive test associated with a one standard-deviation increase in exposure for study
participants with decreased paraoxonase activity (ψYX = exp(β3)=1.5). The results are
provided in the top third of Table 1.

The classic design requires the neuro-cognitive assessment (Y), aggregate exposure (X), and
genotyping of PON1 (E) to be measured for 7,210 study participants with an associated total
cost of approximately $16M. Utilizing a two-stage targeted sub-sampling design with a solid
food surrogate (sampling Y, E, and ZSF jointly in the first stage), and a completely random
sampling scheme for aggregate exposure assessment in the second stage lowers the cost to
$5.5M, or 35% of the classic design. This is accomplished by increasing those that are
jointly sampled for Y, E, and ZSF in the first stage to 9,505 children, with 90 of those
children completing the aggregate exposure analysis (X) in the second stage of the design.

While none of the covariate or outcome dependent sampling schemes have a lower total cost
than the solid food surrogate with random sampling, it is interesting to note that the outcome
dependent sampling scheme for the questionnaire surrogate costs about $1.4M less than
completely random sampling designs.

Case Study 2
For this case study, we build upon the first case study with two important changes:

1. We assume that the specimens associated with exposure (X) were already collected
and stored in a repository as part of the NCS core data collection protocol, and are
available for future analysis to support this hypothesis. Thus, we assume no
additional costs associated with specimen collection for exposure assessment in this
Case Study. However, we assume that there will be costs incurred from the
chemical analysis of samples from the repository associated with those study
participants selected for detailed exposure assessment as part of this design.

2. Instead of conducting the covariate dependent sampling as a function of the
continuous surrogate exposure measure (Z), we allow the decision of whether to
analyze the full complement of samples associated with true exposure (air, dust,
food and soil) to be dependent on the binary effect modifier (E).

We again assume (β1= β2= β3= 0.41) and that the optimization goal is to identify the lowest
cost design that allows us to reject H0: β3 =0 based on a two-sided test with size (α=0.05)
and power (1− β =0.8). The main difference from Case Study 1 is that there are no
additional costs associated with specimen collection for assessing exposure, since these
costs were already included in Stage 0, as described above in Change 1.

The middle section of Table 1 provides the results for Case Study 2. The classic design still
requires joint sampling of Y, E and X for 7,210 study participants at a cost of $13.4M. The
approximate $2.5M reduction in the cost of the classic design (compared to Case Study 1) is
entirely attributable to the assumption that the environmental samples were already collected
and available from the repository for chemical analysis. The use of a solid food surrogate in
a random sampling scheme lowers the cost to $5M, or 37% ofthe classic design by
increasing the Y, E, and ZSF sample size to 9,489 children. Only 96 of those children would
need aggregate exposure media analysis.

The above result parallels the results of Case Study 1 random sampling schemes. However,
unlike in Case Study 1, additional efficiency gains can be gained by the covariate and
outcome dependent targeted sub-sampling designs. This result is largely attributable to the
fact that these designs no longer carry the expensive specimen (air, dust, food, and soil)
collection costs that were previously attributed to the Stage 1 sample.
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When exploring targeted sub-sampling designs that utilize the lowest cost and precision
questionnaire-based surrogate measure (Z_Quest), the random sampling design would
sample 93,266 study participants in the first stage and pursue chemical analysis on 991
randomly selected study participants (i.e., about 1% of the cohort) in the second stage at a
total cost of $8.41M. The covariate dependent design where sampling for X is dependent on
E would sample 53,382 study participants for Y and Z_Quest in the first stage and pursue
chemical analysis on 1029 study participants in the second stage at a total cost of $5.64M.
The covariate dependent sampling designs result in sampling equations for the second stage
chemical analysis that result in over-sampling the study participants with decreased
paraoxonase activity (as expected). The questionnaire-based targeted sub-sampling design
with selection of Stage 2 participants based on the value of the effect modifier offers a
significant improvement in cost efficiency. The efficiency gain is achieved due to two
factors: (1) Only those study participants with decreased paraoxonase activity (when E=1)
contribute information to the target parameter (β3) whose variance is being minimized by
the constrained optimization, and (2) the questionnaire-based design does not require the
higher cost of chemical analysis of food samples in the first stage of the design.

The outcome dependent design would sample 16,992 study participants for Y and ZQuest in
the first stage and pursue chemical analysis on 721 study participants in the second stage at a
total cost of $2.5M. This outcome dependent sampling design, as well as the design using
ZSF, resulted in sampling equations for the second stage chemical analysis that leads to over-
sampling the study participants with low performance on the neuro-cognitive assessment.
The results in the middle section of Table 1 demonstrate that the outcome dependent design
with the lowest cost/lowest precision surrogate measure (ZQuest) leads to the most efficient
sampling design. This result is expected to generally hold true for most instances in which a
reliable surrogate measure (Z) can be identified for an outcome dependent design where
there are no sample collection costs necessary for obtaining true exposure (X) measurements
during the first stage of sampling. Of course, this design approach relies heavily on the use
of archived specimens, and additional work may be necessary to determine whether these
specimens can be stored long-term and still yield accurate analytical results.

Case Study 3
Ideally, the NCS will be able to detect differences in children’s developmental trajectories
over time attributable to exposure. The longitudinal example presented here examines study
designs needed to understand the effect of chlorpyrifos on Peabody Picture Verbal Test –
Revised (PPVT-R) scores over a 4 year period of time (ages 36 months, 60 months, and 84
months). The following model was used as the basis for this longitudinal case-study
example:

where Yij is the PPVT-R test score for the ith child at follow-up time j, Ageij is the age of
this child at that time, Xi represents the true pesticide exposure for the ith child,β0 toβ3 are
fixed effects parameters that describe the interactive effects of age and exposure on test
scores across the population, R0i and R1i are random effects allowing each child to deviate
from population average, and εij is the error not explained by the model. It is assumed that
the random effects are multivariate normal
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and that the error term is normal . It should be noted that the exposure
variable (Xi) in the above model is not time varying (i.e. it represents a pesticide exposure at
a single moment in time for each child) and is assumed to temporally precede health
outcome measures (Yij).

Based on an analysis of the NLSY data, we estimated that β0 = −2.77, β2= 0.834,

, and , and . For the purposes of this case
study, we assume that exposure to chlorpyrifos, ln(X), will have a negative impact on
PPVT-R scores with β1= −0.5. Similarly, we hypothesize that the negative effects of
exposure will also diminish cognitive development in children over time, justifying the
choice of a negative value for β3 = −0.01 which is the parameter whose standard error is
being minimized by the sampling design.

The classic design in the longitudinal example as shown in the last section of Table 1
involves participation of 11,321 children in a full aggregate exposure analysis and three
waves of PPVT-R testing, costing $25.2M. A random two-stage design utilizing solid food
as a surrogate greatly improves upon the classic design. By increasing the number of
children to 14,483 that participate in the three waves of PPVT-R testing and the solid food
portion of the aggregate exposure study, the number of children needing a full aggregate
exposure study decreases to 107. Consequently, a design utilizing the solid food surrogate
would only cost $8.5M, or 34% of the classic design. Note that the outcome dependent
sampling design presented in Table 2 generated sampling equations based on the average of
the three repeated measures on each individual – but that our design also allows for outcome
dependent sampling in the longitudinal case based on the minimum or maximum of the
repeated measures.

Aggregate Exposure Study
Many large cohort studies such as the NCS have multiple scientific objectives, making it
difficult to identify a single efficient design under the designed missingness paradigm. One
possible strategy to deal with the problem of multiple and varied scientific objectives is to
implement a global aggregate exposure study as a 2nd stage random sample from within the
larger cohort, designed to provide detailed exposure results across a range of hypotheses to
be investigated. Using this approach, we assume that information related to major health
outcomes of interest and limited risk factor information (surrogate measures of exposure) on
all study cohort members are collected in the first stage of the design. The second stage
(aggregate exposure study) sample helps characterize the relationship between the risk
factors explored in the first stage and more definitive and direct measures of exposure,
thereby allowing key exposure/outcome relationships to be explored across the larger cohort
using analysis methods that correct for the missing exposure information among study
participants that are not involved in the aggregate exposure study. The fraction of study
participants selected in the 2nd stage is dependent on a set of parameters related to the
strength of exposure/outcome relationships that are being characterized in the study, as well
as the strength of the relationship between the surrogate and improved measures of
exposure. To illustrate, we investigated a series of cross-sectional sampling designs in which
the health outcome (Y) and the risk factor information (Z) were constrained to be assessed
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on the entire cohort, and that exposure (X) is measured at random on a smaller subset of the
study population.

Since measures of exposure are often continuous, we assume that true exposure follows a
standard normal distribution (i.e. X ~N(0,1)), that the risk factor information (Z) is also
continuous, that the health outcome (Y) represents the presence or absence of disease, and
that the relationship between Y and X is defined by a simple logistic regression model (i.e.
logit(Pr(Y=1)) = β0 + β1·X).

Table 2 provides sample sizes needed for random 2nd stage sample for exposure within a
cohort of similar size to the NCS as a function of the odds ratio between the health outcome
and exposure (ψYX), the correlation between aggregate exposure and the risk factor
information that is measured across the entire cohort (ρXZ), the prevalence of the health
outcome (PY), and the cohort size. The sample sizes correspond to the number of study
participants that are needed in order to detect ψYX with sufficient precision (α=0.05) and
power (1−β=0.8). Because exposure (X) was assumed to follow a standard normal
distribution, the odds ratio (ψYX) can be interpreted as the increased odds of the health
outcome associated with a one standard-deviation increase in exposure.

The shaded rows in Table 2 correspond to ρXZ=0, and essentially identify the sample size
necessary in a traditional design in which the health outcome Y and the aggregate exposure
X are assessed on all study participants. For example, to detect an odds ratio of 1.25
(ψYX=1.25) when the prevalence of the health outcome is 1% (PY=0.01), a traditional design
would require 15,947 study participants with Y and X observed. Green shaded areas in
Table 2 identify odds ratios (ψYX) that cannot be detected with sufficient precision and
power within the sample size constraints under the traditional design.

Continuing with this example of detecting an odds ratio of 1.25 when the prevalence of Y is
1 percent, if we assume a cohort size of 100,000 study participants and a correlation between
X and Z of 30 percent (similar to the correlation between questionnaire information and
measures of aggregate exposure assessment for nonpersistent pesticides as discussed
earlier), use of a random 2nd stage sample for exposure involves 7,696 study participants
(compared to 15,947).

The strength of utilizing designed missingness concepts for exposure assessment within a
large cohort study is based on leveraging information from Y and Z among a large number
of study participants who do not participate in the 2nd stage sample. The size of the total
cohort (i.e. those with Y and Z assessed) can be critical – as seen in comparisons between a
cohort of size 100,000 and 75,000. For the example of trying to detect an odds-ratio of 1.25
when the prevalence of Y is 1%, the traditional design requires 15,947 study participants. If
there is an available surrogate metric of exposure that has a 40 percent correlation with true
exposure, then the analysis indicates that only 840 study participants are required in the 2nd

stage exposure study if the cohort size were 100,000. However, to characterize the same
relationship from a cohort of 75,000 participants would require 4,797 participants in the 2nd

stage exposure study. While inclusion of 4,797 study participants still represents a large
reduction compared to the traditional design, the loss of 25,000 study participants with Y
and Z information has a large impact (making it necessary to include 4,797 rather than 840
study participants in the 2nd stage sample in order to characterize the same relationship).

Conceptually, the aggregate exposure study as described above represents a random 2nd

stage sample from the larger cohort, where more detailed and burdensome exposure samples
are collected and analyzed in real time to provide coverage across a range of potential
exposure/outcome hypotheses. Additional nested outcome-dependent designs should also be
explored to support hypotheses in which (1) specimen collection costs and burden for
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exposure are minimal and (2) the samples can be archived in a repository for future chemical
analysis. However, these investigations are likely to be hypothesis specific.

Finally, it should be noted that since the designs illustrated in Table 2 are based on a
maximum likelihood approach, it is understood that the results are based on large sample
approximations. Thus, we cannot assume that a resulting design will sufficiently
characterize the relationship between X and Z to allow for calibration of the relationship
between Y and X with fewer than 20 study participants included in the 2nd stage sample.

Conclusions
The multi-stage targeted sampling design methodology, alternatively referred to as designed
missingness, offers an appealing degree of flexibility for developing strategies for
logistically feasible and cost effective collection of environmental exposure information for
epidemiological cohort studies. These design strategies require study planners to identify a
reasonable proxy for exposure that can be assessed as part of the core data collection
protocol, while the more burdensome and expensive environmental and exposure monitoring
and chemical analysis corresponding to a more direct and comprehensive exposure
assessment is pursued on a much smaller, and sometimes targeted, segment of the study
population. In comparison to classic design strategies that require a complete matrix of data
on all study participants needed for a given hypothesis, the case studies investigated here
suggest that significant efficiencies can be gained by employing multi-stage targeted sub-
sampling strategies without sacrificing the ability to draw unbiased inferences regarding the
relationship between health effects and exposures. While our case example were formulated
in terms of monetary cost, the results are relevant to considerations related to respondent
burden as well. The “gold standard” exposure measurement in our case studies corresponded
to an aggregate exposure analysis reflecting the food, dust and air in each child’s
environment, while the surrogate measures focused on the use of only partial assessments.
Hence, the cost of measurement was proportional to the associated respondent burden.

We have implemented the proposed design methodology through a windows-based software
tool that allows study planners to properly account for the costs associated with employing
these design strategies. Users can partition the sampling costs to previous design stages for
outcome and covariate dependent designs and allocate fractional costs when the surrogate
measure in an earlier stage is a component of the more accurate measure of true exposure.
While our design methodology allows substitution of sampling and analytical costs with
estimated units of burden as described above, it does not currently account for potential item
non-response associated with the different types of measures incorporated into the design. In
future work, we plan on developing optimal design strategies that allow incorporate item
non-response associated with measures at each stage of the sampling paradigm – thereby
allowing researchers to develop designs that are optimal with respect to both costs and the
potential effects of non-response due to burdensome data collection. We also plan on
developing simulation and analysis tools that will allow us to assess more complex designs,
such as those that account for spatial correlation or other effects of clustering that are
integrated into studies such as the NCS.

Our analysis within the case studies suggest that when the complexities and costs associated
with the collection of physical samples (e.g. air, dust, soil, food) for an exposure assessment
are appropriately taken into consideration, multi-stage sampling strategies that select study
participants for detailed exposure assessment at random tend to be more cost efficient than
outcome or covariate dependent design strategies, unless:

1. The value of the surrogate measure can be identified in advance of specimen
collection for more detailed aggregate exposure assessment, in which case
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covariate dependent sampling designs can lead to greater cost/burden efficiencies,
or

2. Detailed exposure specimens have already been collected across the entire cohort
and stored within a repository for future chemical analysis as part of the core data
collection protocol. When this is the case, covariate and outcome dependent
sampling designs will almost always outperform the random sampling design
because the costs associated with specimen collection are removed from
consideration and the covariate and/or outcome information can be used to better
target where resources are spent for exposure assessment laboratory analyses.
While not presented in this manuscript, designs that are dependent on both outcome
and covariate information, such as those proposed by Breslow and Cain [19], are
also expected to perform well. These designs are also well supported by our
methodology and software tools.

When samples that support the true exposure are available from within the study repository,
our analyses suggest that low-cost/low-detail/low-burden surrogate measures can be
exploited by an outcome dependent sampling design that mirrors the classic nested case/
control study design, offering the greatest cost efficiencies.

The multistage targeted sub-sampling approach and software may be used for the NCS in
multiple ways, including:

• The design and implementation of one or more global aggregate exposure studies
nested within the NCS cohort to serve as a resource for current NCS scientific
goals and any future investigations that focus on chemical or biological exposures;

• Determination of appropriately sized fractions of the study population that must
undergo both health outcome and exposure assessments to support key hypotheses
(it may not always be necessary to measure the health outcome across the entire
study cohort – which can also lead to cost and burden efficiencies); and

• The design and implementation of any number of nested studies, including nested
case/control studies, from within the NCS cohort that efficiently targets samples
from the NCS repository for chemical analysis in support of specific hypotheses.

The identification of appropriate surrogate measures of exposure will be a critical part of
capitalizing on these design strategies. This may entail careful scrutiny of existing data
sources (such as the ones utilized in developing the case-studies for this report), and/or
conducting pilot field and laboratory studies that assess the relative costs and performance of
candidate exposure metrics. This type of research, coupled with use of the design
methodology and software, can be used to systematically evaluate whether it is worthwhile
including additional or more personal exposure assessment methods, or more precise
chemical analysis methods that have higher associated costs at varying stages of the design.

Finally, it should be noted that the results presented in this paper demonstrate efficiencies
gained from power studies that assume a fully parametric likelihood-based model. Often,
following study design, analysts will utilize models different to those assumed at the design
phase (e.g.semiparametric analysis techniques) to establish the relationship between
exposures and outcome. Depending on the nature of the analysis model, such a discrepancy
has the potential to result in bias and/or efficiency loss. We performed preliminary
investigations to assess how the misspecification of a model between Y and X in the design
phase will affect the estimation of the parameters in the analysis phase. In particular we
considered cases where the true logistic model Y|E, X included a non-linear term in X, but
where the design phase was based on the assumption of a linear logistic model. Assuming a
likelihood-based analysis fitted with MCMC-based approaches, we detected a modest loss in
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power depending on the magnitude of the coefficient associated with the non-linear term,
but we did not observe a statistically significant bias in the parameter estimations.
Additional research needs to be done to fully assess the performance of these designs in the
presence of misspecification, as well as extension of these methods to support non-linear
functions of exposure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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