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Abstract
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second
graders’ word-problem-solving skills and their ability to represent the structure of word problems
using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem
instruction or SBI word-problem instruction, which taught students to represent the structural,
defining features of word problems with overarching equations. Intervention lasted 16 weeks. We
pretested and posttested 270 students on measures of word-problem skill; analyses that accounted
for the nested structure of the data indicated superior word-problem learning for SBI students.
Descriptive analyses of students’ word-problem work indicated that SBI helped students represent
the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect
of students’ emerging algebraic reasoning.

When solving word problems, students are faced with novel problems that require transfer.
This can be difficult to effect in the primary grades (Durnin, Perrone, & MacKay, 1997;
Foxman, Ruddock, McCallum, & Schagen, 1991, cited in Boaler, 1993; Larkin, 1989). Some
psychologists view such transfer in terms of the development of schemas, by which students
conceptualize word problems within categories or problem types that share structural, defining
features and require similar solution methods (Chi, Feltovich, & Glaser, 1981; Gick &
Holyoake, 1983; Mayer, 1992; Quilici & Mayer, 1996). The broader the schema or problem
type, the greater the probability students will recognize connections between novel problems
and those used for instruction and will understand when to apply the solution methods they
have learned.

In a series of studies, we have relied on this conceptualization of transfer to design instruction
for helping students build schemas for word-problem types and for broadening those schemas.
Prior work (e.g., Fuchs et al., 2003; Fuchs, Fuchs, Finelli, et al., 2004; Fuchs, Fuchs, Prentice,
et al., 2004) illustrates the efficacy of this approach, which we refer to as schema-broadening
instruction (SBI), for third-grade students on problem types relevant to the third-grade
curriculum. More recently, Fuchs, Powell et al. (2009) demonstrated the efficacy of SBI
tutoring for a subset of third graders who experience severe mathematics difficulty. With this
population, we taught simpler word-problem types, while introducing algebraic equations to
represent the defining, structural features of those problem types.
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We extend this line of work in the present study, applying SBI to problem types appropriate
to the second-grade curriculum. We focused on typically developing second-grade students
while relying on a whole-class format to deliver instruction, again incorporating algebraic
equations to represent the defining, structural features of problem types. We conducted the
present efficacy trial by randomly assigning 18 classrooms to control (i.e., business-as-usual)
instruction or SBI. To further extend previous studies, we also analyzed students’ word-
problem work to gain insight into SBI’s effects on students’ ability to represent the underlying
structure of word problems using algebraic equations. A focus on algebra gains importance as
high schools increasingly require students to pass an algebra course or test to graduate and
because algebra is often viewed as a route toward competence with higher-level mathematics
(National Mathematics Advisory Panel, 2008). For these reasons, introducing algebraic
thinking early in the curriculum may represent a productive innovation, as has been argued
elsewhere (e.g., National Council of Teachers of Mathematics [NCTM], 1997). Before
describing the study, we provide background information on the theoretical basis for
hypothesizing that SBI with this form of algebraic thinking may be efficacious, and we
summarize previous related research.

Theoretical Basis for SBI
We use the term schema to refer to a generalized description of a word-problem type that
requires similar solution methods (Gick & Holyoak, 1983). Schemas help students recognize
connections between problems that are taught and problems that are novel, which facilitates
transfer. Novel problems differ from taught problems in terms of superficial features, which
make a problem novel but do not alter the problem type or the problem-solution methods. The
most common superficial feature in school (and the easiest for students to handle) is the cover
story. Consider the total problem type, in which quantities are combined to form a total. Let’s
say a teacher uses the following total problem for instruction: Shelley has 6 apples. Robin has
3 apples. How many apples do the girls have together? Then the teacher asks students to solve
a novel total problem with a new cover story: Francis has 7 cats. Anne has 3 dogs. How many
animals do the girls have together? This cover story has a superficial feature that does not alter
the problem type or the required solution method. The cover story only minimally taxes
students’ ability to recognize the problem as belonging to the total problem type. By contrast,
other superficial features increase the challenge in recognizing a novel problem as belonging
to a problem type. Consider the following problem: Francis has 7 cats. Ann has 3 dogs. Ann
walks her dogs 2 times every day. How many animals do the girls have together? This problem
incorporates irrelevant information, which is a superficial feature that creates greater challenge
for identifying the problem as belonging to the total problem type (even though, as a superficial
feature, it does not alter the problem type or the problem-solution methods). Other more
challenging superficial features include (but are not limited to) combining problem types,
variations in format, and the use of figures to incorporate relevant information.

Two instructional components are required to support the development of schemas for problem
types. The first instructional component must help students understand the defining features
of a problem type as well as solution methods for solving a problem within that problem type
(e.g., Mawer & Sweller, 1985; Sweller & Cooper, 1985). For this problem-solution instruction,
problems vary only in terms of the cover story so that the structural features (which represent
the defining features of the schema) are clear. Once mastery of problem-solution steps has been
achieved, the purpose of the second instructional component is to broaden the schema for the
problem type (Cooper & Sweller, 1987). For broadening schemas, a major instructional
strategy is to systematically manipulate superficial features in problems by moving from
variations in the cover story to variations in more challenging superficial features while
emphasizing the structural features that define the problem type. Thus, transfer distance is
gradually increased. Unfortunately, classroom instruction is typically limited to instruction on
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problem-solution methods, with variations in superficial features limited to cover stories. Little
is done to broaden students’ schemas for problem types. SBI addresses both instructional
components: building schemas and broadening schemas.

Prior Work Investigating SBI’s Potential
Even with systematic instructional design, schema broadening may be difficult to achieve (e.g.,
Bransford & Schwartz, 1999; Cooper & Sweller, 1987; Mayer, Quilici, & Moreno, 1999).
Working with children in two age groups (10–12 years of age and 8–9 years of age), Chen
(1999) demonstrated how varying problem features was more successful at helping older than
younger students extract schemas and solve problems, thus raising questions about how to
broaden schemas and promote mathematical problem solving among younger students. In
addition, as is the case for much of the research on analogical problem solving and schema
induction, Chen relied on single-session interventions without explicit instruction to prompt
schema construction. As Quilici and Mayer (1996) noted, research is needed to examine
whether explicit instruction and structured practice to help students develop schemas, rather
than independent study of examples, may strengthen effects.

In a series of studies, Jitendra and colleagues have explored the potential of teacher-directed
schema-based instruction as a method for promoting mathematical problem solving at the
elementary grades. For example, Jitendra et al. (2007) tested the efficacy of this approach at
the third-grade level, focusing on change, group, compare, and two-step problem types. They
randomly assigned 88 students to schema-based strategy instruction or to a metacognitive
planning condition. Instruction occurred in groups of 15–16 students for 8–9 weeks, 5 days
per week, for 25 minutes per session. Six weeks after the end of treatment, significant effects
favored the schema-based strategy condition on a word-problem posttest that mirrored the
problem types used for instruction and on a state-administered test of mathematics
performance.

In our own work, we have also relied on schema theory. Similar to Jitendra, we teach students
to understand the underlying mathematical structure of the problem type, recognize problems
as belonging to the problem type, and how to solve the problem type. In contrast to Jitendra,
we incorporate an additional instructional component by explicitly teaching students to broaden
their schema for problem types. The hope is that the addition of explicit transfer instruction
will lead to more flexible and successful problem-solving performance. We refer to this
approach as SBI.

In our first randomized control study (Fuchs et al., 2003) we separated the effects of (a)
instruction on building the schema (i.e., understanding the underlying mathematical structure
of the problem type, recognizing problems as belonging to the problem type, and solving the
problem type) from (b) instruction designed to broaden the schema. The word-problem types
targeted for instruction were more complex than had been studied to date with third graders,
including word problems that involved finding half, step-up functions, two-step problems with
pictographs, and shopping lists that required two- and three-step solutions. Third-grade classes
were randomly assigned to teacher-designed word-problem instruction, experimenter-
designed instruction on building the schema (i.e., understanding, recognizing, and solving the
problem types), or experimenter-designed SBI on building and broadening those schemas.
With the addition of experimenter-designed SBI, teachers explained how problem features
such as format or vocabulary can make problems seem unfamiliar without modifying the
problem type or the required solution methods. Teachers discussed examples emphasizing
structural features of the problem type despite superficial features such as format or vocabulary
differences. Next they provided practice in sorting novel problems in terms of structural
features. They also reminded students to search novel problems for familiar structural features
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that would allow the students to identify the problem type. Results indicated that SBI (which
included the schema-broadening activities) strengthened word-problem performance over
teacher-designed instruction and over the experimenter-designed instruction on understanding,
recognizing, and solving the problem types without the schema-broadening activities. Effects
occurred on a far-transfer performance assessment that required students to solve multiple
taught and untaught problem types within a highly novel and complex context that resembled
real-life problem solving. Subsequent work (Fuchs, Fuchs, Finelli et al., 2004) has shown how
SBI that addresses six superficial features is more effective than SBI that addresses three
superficial features. Effect sizes favoring SBI ranged from 0.89 to 2.14 in a series of studies.

Why Incorporate Algebra to Represent the Underlying Structure of Problem
Types?

Word problems that belong to a problem type share a common underlying structure. In the total
problem type, for example, quantities are combined to make a larger amount. This underlying
structure, an abstraction that generalizes across total problems, is concretely specified in the
sample problems that fit the word-problem type. One strategy for promoting the abstract
generalization is to explain the structure of the problem type while illustrating it with many
examples (as just described). Another potentially effective and complementary strategy for
representing and clarifying the abstract structure of a problem type is to rely on an overarching
equation by using letters and mathematical symbols to represent the defining features of the
problem type: P1 + P2 = T (i.e., part 1 plus part 2 equals the total). Students use the overarching
equation as a structure for generating algebraic equations that match the structure of a given
problem. The hope is that this overarching equation, which represents the set of relations among
the quantities within a problem type, can provide a scaffold by which students systematically
analyze information presented in a word problem, thereby highlighting distinctions among
different problem types, facilitating recognition of problems as belonging within a word-
problem type, and enhancing word-problem performance.

The idea of teaching students to translate word problems into algebraic equations is not new
(Hawkes, Luby, & Touton, 1929; Paige & Simon, 1966; Stein, Silbert, & Carnine, 1997), but
the use of algebraic equations to represent the structural, defining features of problem types
offers promise not only for enhancing young students’ word-problem performance but also for
promoting their emerging understanding of certain aspects of algebra. In this vein, we use the
term algebra in a limited way to mean representing and reasoning about problem situations
that contain unknowns (Izsak, 2000) and solving problems using the kinds of mathematical
expressions found in algebra (Kiernan, 1992).1 For years, some (e.g., Davis, 1985, 1989; Kaput,
1995) have advocated incorporating algebra throughout the K–12 curriculum to add coherence
and depth to school mathematics and to ease the transition to formal algebra. More recently,
the Algebra Working Group (NCTM, 1997) further conceptualized an early focus on algebra,
prompting the 2000 NCTM standards to encourage teachers to nurture students’ emerging
knowledge of algebra beginning in kindergarten. As noted, in the present study we use algebra
in a limited way: to represent and solve problems and to reason about relations among
operations (e.g., Izsak, 2000; Kiernan, 1992).

Focusing on algebra early may be important given research on children’s algebraic reasoning,
which reveals misconceptions about the equal sign (Jacobs, Franke, Carpenter, Levi, & Battey,
2007; McNeil & Alibali, 2005; Saenz-Ludlow & Walgamuth, 1998; Seo & Ginsburg, 2003)
and difficulty with standard and nonstandard open equations (Carpenter & Levi, 2000; Knuth,

1Algebra also involves the study of pattern generalization, mathematical modeling and symbolization, functional relations, graph
comprehension, and covariation (e.g., Koedinger & Nathan, 2004).
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Stephens, McNeil, & Alibali, 2006). Such difficulty, moreover, has been shown to compromise
word-problem solution accuracy (Carpenter, Franke, & Levi, 2003; Powell & Fuchs, in
press). Studies demonstrate how teacher dialogue (Baroody & Ginsburg, 1983; Blanton &
Kaput, 2005; Saenz-Ludlow & Walgamuth, 1998) or explicit instruction about the meaning of
the equal sign can promote relational understanding (McNeil & Alibali, 2005) and accuracy
in solving nonstandard equations (Powell & Fuchs, in press; Rittle-Johnson & Alibali, 1999).

Other research on early algebra suggests that algebraic reasoning can occur in conjunction with
arithmetic reasoning (e.g., Brizuela & Schliemann, 2004; Kaput & Blanton, 2001). For
example, Schliemann, Goodrow, and Lara-Roth (2001) conducted a longitudinal study in
grades 2–4. With periodic lessons, they promoted shifts from thinking about relations among
particular numbers toward thinking about relations among sets of numbers and from computing
numerical answers to representing relations among variables. In a similar way, Warren, Cooper,
and Lamb (2006) explored the use of function tables with 9-year-olds, focusing on input and
output numbers to help children extract the algebraic nature of the arithmetic involved; in four
lessons, the functional thinking of 9-year-olds improved.

In the present study we took a different approach in an attempt to promote second graders’
emerging understanding about algebra. We introduced overarching equations to represent the
defining features (i.e., the set of relations among the quantities within problem types) of three
problem types as a scaffold for highlighting structural distinctions among the problem types,
with which students could systematically analyze information presented in word problems. We
taught students to use the overarching equations to identify problem types and generate
equations representing the relations among the known and unknown information presented in
word problems. In this way, we hoped to promote emerging knowledge of algebra about
problem situations that contain unknown variables, with students solving problems using
mathematical representations related to algebra.

Purpose of the Present Study
To review, previous work has demonstrated the efficacy of SBI in third grade. In the present
study, we extended this program of research by focusing on younger students (i.e., second
graders), using three problem types derived from the second-grade curriculum. In addition, the
instructional methods extended prior SBI studies with typically developing students by
incorporating algebraic equations to represent the underlying structure of the three word-
problem types. Moreover, to further extend this line of work, we not only assessed effects on
word-problem performance but also described the work students generated as they solved those
word problems to gain insight into their ability to represent the underlying structure of word
problems using algebraic equations.

Method
Participants

In five schools in a southeastern urban school district in the United States, 19 second-grade
teachers (all female) were randomly assigned to SBI (n = 10) or control (i.e., business-as-usual;
n = 9) word-problem instruction. Soon after random assignment, one SBI teacher was
reassigned to a different grade level, leaving nine teachers in each condition. Teachers were
comparable as a function of study condition on years teaching but not on race (see Table 1).
However, because the differences in race were small and given that we relied on random
assignment, we do not consider this problematic.

Student participants were the 270 children in these classrooms for whom we had obtained
parental consent and who were present for both pretesting and posttesting. We began the study
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with 301 students in the fall and experienced 10% attrition during the school year. Students
who moved before the end of the study were comparable to those who completed in terms of
demographics and the descriptive data we collected on incoming mathematics performance.
In each classroom, 10 to 20 students were represented in the database. See Table 1 for student
demographics, descriptive data on the students’ incoming mathematics performance, and
teacher ratings of students’ mathematics performance by study condition. We applied chi-
square (χ2) analysis to categorical data and analysis of variance (ANOVA) to continuous data.
ELL status differed as a function of study condition, although the difference between the
conditions was small (3.1% vs. 0%). Incoming computation (Wide Range Achievement Test
3—Arithmetic [WRAT]; Wilkinson, 1993) and word-problem (Single-Digit Story Problems;
Jordan & Hanich, 2000) performance were comparable between conditions. These two
measures were used for descriptive purposes only. Additionally, teacher ratings of students’
mathematics performance as below grade level or at/above grade level were comparable as a
function of condition.

Word-Problem Instruction
Instruction shared by all conditions—Control and SBI teachers relied primarily on the
basal text Houghton Mifflin Math (Greenes et al., 2005) to guide their mathematics instruction.
We chose the problem types for SBI from this curriculum to ensure that control students
received word-problem instruction relevant to the study.

Commonalities and distinctions between control group instruction and SBI—
Based on an analysis of Houghton Mifflin Math (Greenes et al., 2005) and teacher reports, key
distinctions between the control and SBI conditions were as follows: First, control group
instruction emphasized a metacognitive approach to solving word problems via guiding
questions to help students understand, plan, solve, and reflect on the content of word problems;
SBI did not employ this general set of metacognitive strategies. Second, in contrast to SBI,
there was no attempt in the control condition to broaden the students’ schemas for these problem
types in order to address transfer. Third, control group instruction provided more practice in
applying problem-solution rules. Fourth, control group instruction provided greater emphasis
on computational requirements for problem solution. Fifth, control group instruction focused
less on problems with missing information in the first or second position of the addition/
subtraction equations that represented the underlying structure of problems.

Important commonalities between the control and SBI conditions were as follows: instruction
addressed one problem type at a time, instruction focused on the concepts underlying the
problem type, instruction provided students with explicit steps for arriving at solutions to the
problems presented in the narrative, and instruction relied on worked examples, guided group
practice, and independent work with checking. Another commonality between the control
group instruction and SBI was that research assistants delivered a 3-week introduction unit
(two lessons per week) to all SBI and control group classrooms. This introduction unit was
designed to teach foundational skills and general strategies for solving word problems. It
addressed strategies for checking word-problem work, including the reasonableness of
answers; counting strategies for adding and subtracting simple number combination problems;
strategies for checking computational work; labeling word-problem answers with
mathematical symbols, monetary signs, and words; and strategies for deriving information
from pictures and graphs. This introduction unit, common across both conditions, did not rely
on SBI. The six lessons used worked examples with explicit whole-class instruction, dyadic
practice, independent work, and discussion of challenge problems. Classroom teachers were
present during lessons and assisted with discipline and answering student questions. Each
lesson lasted 45–60 minutes.
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SBI—SBI lessons were incorporated within the teachers’ standard mathematics block. SBI
did not constitute any teacher’s entire mathematics curriculum, but rather supplemented the
teacher’s mathematics program while keeping total mathematics instruction time constant.
Research assistants delivered three 4-week SBI units, each of which comprised eight lessons
(i.e., 24 lessons across the three 4-week units). In addition, a 1-week review occurred at the
start of January. Classroom teachers were present during lessons and assisted with discipline
and answering student questions. Each lesson lasted 45–60 minutes. Each 4-week unit
addressed one problem type, and subsequent units provided cumulative review of previous
units. Three problem types (Riley, Greeno, & Heller, 1983) were addressed: total (or combine,
in which small groups are combined into larger groups, reflecting magnitude aggregation),
difference (or compare, in which two quantities are compared, reflecting magnitude
comparisons), and change (in which an initial quantity increases or decreases over time,
reflecting temporal issues). See Appendix Figure A1 for sample problems of each problem
type.

Units 2–4 were structured in the same way. Lesson 1 addressed finding X when any of the three
positions of a simple addition and subtraction algebraic equation is missing (i.e., a + b = c;
x − y = z). We taught students to solve for X within the equations they generated by simply
rewriting those equations so that X appeared on the right-hand side of the equations. As noted
previously, we were interested in students’ ability to generate algebraic equations to represent
the structure of word problems, not in students’ ability to solve for X. Lesson 2 introduced the
new problem type for that unit by focusing on the conceptual underpinnings and defining
features of the problem type, how the overarching equation represented the defining features
of the problem type, and procedural strategies for problem solution for that problem type.
Lessons 3 and 4 taught students to recognize four superficial features (that can make problems
within the problem type appear novel but do not alter the problem type or the problem-solution
methods): irrelevant information, relevant information presented in pictures or graphs, two-
digit numbers, and the combining of problem types. Lessons 5 and 6 taught students to solve
problems when the missing information was in the first or second position of the overarching
equation that represented that problem type’s defining underlying structure. Lessons 7 and 8
integrated and reviewed the unit’s content.

The total problem type was addressed in Unit 2, the difference problem type in Unit 3, and the
change problem type in Unit 4. At the beginning of the unit focusing on the total problem type,
research assistants also taught students strategies that applied across the three problem types:
to use the RUN strategy (i.e., Read the problem, Underline the question, and Name the problem
type) and to identify and circle relevant information.

For total problems, the overarching equation was P1 + P2 = T (part 1 plus part 2 equals total).
Students were taught to circle the kind of item being combined and important numerical values.
Then they labeled numerical values as P1 (for part 1), P2 (for part 2), and T (for the total).
Students designated the missing information (P1, P2, or T) with an X and created the algebraic
equation representing the mathematical structure of that problem in the form of P1 + P2 = T.
They then solved for X, labeled their answer, and checked their work. Difference and change
problems followed an analogous procedure, however, the overarching equation representing
the problem structure differed. Students were taught to represent the structure of difference
problems with the overarching equation B − s = D (bigger quantity minus smaller quantity
equals difference). As they read the narrative of a difference problem, they circled the bigger
amount (labeled B), the smaller amount (labeled s), and the difference between amounts
(labeled D). Students were taught to represent the problem structure of change problems with
the overarching equation St +/− C = E (starting amount plus or minus the change amount equals
end amount). As they read the narrative of a change problem, they circled the starting amount
(labeled St), the change amount (labeled C), the end amount (labeled E), and specified whether
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that amount increased (labeled with a + next to the C for addition) or decreased (labeled with
a − next to the C for subtraction; see App. Fig. A1 for examples). Using these procedures, we
helped SBI students develop schemas for the three problem types in terms of whether quantities
are combined, compared, or changed. Then we taught SBI students to categorize problems as
total, difference, or change, and to represent the structure of each problem type with an
overarching equation.

In addition, as part of SBI, we explicitly taught students to anticipate superficial features that
make problems appear novel even though those problems belong to the problem types they
were learning. For each problem type, we addressed the following superficial features:
irrelevant information, deriving relevant information from pictures and graphs, two-digit
computation, and combining problem types (requiring two-step solutions). Identifying
irrelevant information taught students to recognize and ignore extraneous numerical
information not needed to solve the problem. Deriving information from pictures and graphs
taught students to look for relevant information beyond the word-problem narratives.
Incorporating two-digit numbers taught students to apply analogous solution methods when
problems involved larger quantities. Combining problem types taught students to look for
multiple problem types within a single word-problem narrative; the multiple problems could
represent the same or different problem types (e.g., two total problems; one total problem
combined with a difference problem). See Appendix Figure A1 for examples of total problems
that were “disguised” by each superficial feature.

SBI activities—Each SBI lesson comprised four activities. The first was whole-class
instruction, during which research assistants reviewed concepts taught during the preceding
lesson and introduced new material. Research assistants relied on instructional posters, visuals,
manipulatives, and role playing; they also modeled problem-solving strategies and provided
guided practice while eliciting student participation. Whole-class instruction lasted 20–25
minutes. During each lesson research assistants guided students through three to four word
problems with decreasing support.

The second activity was partner work, during which students worked in dyads to complete four
word problems. Two problems were similar to problems taught in that lesson and two problems
reviewed previously learned concepts. Dyads comprised a stronger and a weaker student. The
stronger student often took the lead in reading the word problems, however, students worked
together to solve the problems. Partner work lasted 10–15 minutes and then students checked
their work against an answer key and corrected mistakes.

The third activity was individual practice. Each student independently completed 10
computation problems (five single-digit and five double-digit) and one word problem. The
research assistant scored each worksheet, which was worth a maximum of 20 points. After
receiving their scores, students colored the number of points they earned on a bar chart, with
each bar representing one session. Students could thereby monitor their progress. Individual
practice lasted 10–15 minutes.

The final activity was a challenge problem, in which students applied what they had learned
in SBI to more complicated problems. Students completed the challenge problem
independently and then shared solution methods with the class. Research assistants led the
discussion, with the challenge problem activity lasting 5 minutes.

Delivery—Three research assistants taught Unit 1, the introductory unit that all 18 classrooms
received. Two research assistants taught Units 2–4 (one taught four SBI classes and the other
taught five SBI classes), which constituted the SBI program. All sessions were scripted to
ensure consistency of information, however, scripts were studied, not read, in order to preserve
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teaching authenticity. Research assistants met biweekly to discuss upcoming lessons and
problem solve about implementation issues. At the end of the study, teachers reported the
number of minutes per week they spent on math (including time on this project). Means for
the control and SBI, respectively, were 268.03 (SD = 52.67) and 279.12 (SD = 49.83)—not a
statistically significant difference.

Treatment fidelity—Every session was audiotaped, 20% of which were sampled to represent
research assistant, lesson type, and unit comparably. Research assistants listened to sessions
independently, noting essential components of each lesson using a fidelity checklist that had
been prepared at the beginning of the study. Intercoder agreement was 96.9%. In Unit 1 (the
introductory unit), the percentage of essential points addressed averaged 98.84 (SD = 2.26) for
conventional classrooms and 98.54 (SD = 3.54) for SBI classrooms. For SBI instruction (Units
2–4), the percentage of points addressed averaged 99.35 (SD = 1.31).

Measures Used to Describe the Sample at Pretreatment
We used two measures to describe the sample at pretreatment (see the Participants section for
further details). The WRAT (Wilkinson, 1993) assesses calculation skill, during which students
have 10 minutes to write answers to calculation problems of increasing difficulty. Median
reliability is .94 for 5 to 12 years of age. Single-digit story problems (Jordan & Hanich,
2000; adapted from Carpenter & Moser, 1984; Riley et al., 1983) comprises 14 word problems
involving sums or minuends of nine or less. Each problem reflects a total, difference, change,
or equality relationship. Credit is earned for correct mathematical answers. Alpha on this
sample was .92.

Measures Used to Assess Treatment Effects
Word problems—We used two measures to assess word-problem performance: Second-
Grade Vanderbilt Story Problems (VSP; Fuchs & Seethaler, 2008) and the Iowa Test of Basic
Skills Level 8—Problem Solving and Data Interpretation (ITBS; Hoover, Hieronymous,
Dunbar, & Frisbie, 1993). None of the problems from either measure had been used for
instruction. In Table 2 we list problem features by measure and item. As shown, the measures
differed in two major dimensions. First, VSP included items with missing information in all
three positions of equations, whereas ITBS excluded items with missing information in the
first or second position. This difference made some VSP problems more challenging than ITBS.
Second, VSP only included word problems representing total, difference, and change problem
types, whereas ITBS also included word problems representing multiplication, division, and
fraction concepts. Thus, some ITBS problems were more challenging than VSP problems.
Another key difference between the measures was the response format, with VSP requiring
constructed responses and ITBS requiring multiple-choice responses.

VSP comprises 18 word problems that sample total, difference, and change problem types
comparably, with and without the four superficial features and with missing information
occurring in any of the three positions of the overarching equation representing the structure
of the problem types. Credit is earned for correct math and labels in answers. Our primary
analysis was based on the total score (although we provide exploratory results by problem type,
by position of missing information, and by number of math steps required to solve the problem).
Alpha on this sample was .93.

Level 8 of ITBS includes 30 word problems organized in three sections. In the first section,
students answer eight problems that the tester reads aloud; students do not see the written
problems. Each problem is read twice (for this section, problems are not reread upon student
request) and students have 30 seconds to respond. For the eight problems in the second section,
which are structured similarly to those in the first section, students see the written version as
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the tester reads each problem aloud. Students have 30 seconds to solve each problem. In the
third section, which includes 14 problems that require students to find relevant information
located in graphs and pictures, the tester also reads problems aloud while students see the
written version. Alpha on this sample was .86.

Solving simple equations—With find X (Fuchs & Seethaler, 2008), students solve
algebraic equations (e.g., a + b = c; x − y = z) that vary the position of X across all three
positions. The tester demonstrates how to find X with a sample problem. Students are provided
between 5 and 10 minutes to complete the eight test items. Alpha on this sample was .92.

Representing word problems with algebraic equations—To gain insight into
students’ emerging knowledge of algebra, in terms of their ability to represent and reason about
problem situations that contain unknowns (Izsak, 2000) and solve problems using the kinds of
mathematical expressions found in algebra (Kiernan, 1992), we coded each VSP item in terms
of whether students represented word problems using algebraic equations. If this was the case,
we coded whether the algebraic equation correctly represented the structure of the problem
and whether students included “X =” in their answers.

Data Collection
Students were pretested on single-digit story problems and WRAT, pretested and posttested
on the VSP and find X, and post-tested on the ITBS. At pretesting and post-testing, measures
were administered in three sessions. Research assistants, who were unfamiliar with the students
they tested, followed an administration script that prompted them to read each problem aloud
and allowed students adequate response time. They reread items upon student request. Students
were instructed not to work ahead. Prior to testing, all SBI posters and teaching materials were
removed from classrooms and, during testing, research assistants in no way prompted students
to rely on SBI strategies or reminded students about SBI. Pretest data were collected in October
in a whole-class format (except for small-group administrations for make-ups). SBI began the
second week of October and ran for 16 weeks through the final week of February. Posttesting
occurred during the first 2 weeks of March using the same format as pretesting. Two research
assistants scored all protocols independently. Discrepancies in scoring and in data entry were
resolved on a review of the raw data with 100% final accuracy.

Results
Table 3 displays descriptive statistics for (a) pretest, posttest, and adjusted posttest scores by
study condition on VSP and find X and (b) posttest scores by study condition on ITBS. In Table
4 we display intraclass correlations at pretreatment and posttreatment, which show that the
effect for classroom clustering explained between .1% and 11.7% of the variance at
pretreatment (all significant except find X) and between 13.2% and 22.1% of the variance at
post-treatment (all significant). In light of these intraclass correlations and because random
assignment occurred at the classroom level, data were analyzed using a two-level hierarchical
linear model to account for classroom-and student-level effects. Table 4 shows results for
pretreatment analyses on study condition comparability and results for the effects of study
condition on word-problem outcomes. To quantify the magnitude of the difference between
study conditions, we calculated Hedges’s g to provide an estimate of the size of the effect while
controlling for covariates and the hierarchical structure of the model.

Pretreatment Comparability
At pretest there were no significant differences between groups on the find X measure (g = −.
07), as was the case for the VSP overall score (g = .12) regardless of how we considered VSP
performance (for total problems, g = .05; difference problems, g = .11; change problems, g
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= .13; problems with missing information in the first position of the algebra equation, g = .17;
problems with missing information in the second position, g = .12; problems with missing
information in the third position, g = .02; one-step problems, g = .11; two-step problems, g
= .11).

Student Learning as a Function of Study Condition: Word Problems
Table 4 shows the results of HLM analyses on word-problem measures at posttest with the
pretest scores used as a student-level covariate for VSP. In terms of word-problem skill, as
indexed on the overall VSP score, SBI students performed reliably better than control students
(g = .46). On ITBS, however, the effect for study condition was not significant.

We also conducted exploratory analyses on the VSP performance for the various problem types
and problem formats sampled on the measure. We deem these analyses exploratory in light of
the risk of committing a Type 1 error with eight problem types/formats to consider. In these
exploratory analyses, the pattern of effects was similar to the overall VSP score across most
of the ways in which we considered VSP performance. On total problems the effect was
significant with g = .46 in favor of the SBI condition, and on difference and change problems
the effect approached significance (g = .34 and .31, respectively, favoring the SBI condition).
On problems with missing information in the first position of the algebra equation, the effect
was significant (g = .42 in favor of the SBI condition), as was the case for problems with
missing information in the third position (g = .56). However, for problems with missing
information in the second position, the study condition was not significant (p = .147; g = .26
in favor of the SBI condition). For one-step problems, the study condition was significant (g
= .44 in favor of SBI), as was the case for two-step problems (g = .48).

Solving Simple Equations and Representing Word Problems with Algebraic Equations
In terms of solving simple equations, SBI students reliably outperformed controls on find X
(g = .87). With respect to representing word problems with algebraic equations, Figures 1 and
2 provide samples that illustrate correct and incorrect (respectively) ways in which students
incorporated algebra into their problem solving. We coded each VSP item in three ways: (a)
whether students represented the word problem using an algebraic equation; (b) if so, whether
the algebraic equation correctly represented the structure of the problem; and (c) whether
students included “X =” in their answer. There was no instance of any control student
representing a word problem using an algebraic equation or including “X =” in an answer. So
we present results descriptively, only for SBI students.

In terms of whether SBI students represented the structure of word problems using algebraic
equations, 76 students (58%) represented the word problem using an algebraic equation most
of the time (i.e., on 15–18 problems), 26 students (19.9%) represented the word problem using
an algebraic equation some of the time (i.e., on 1–14 problems), and 29 students (22.1%) never
represented the word problem using an algebraic equation. On average, SBI students
represented the word problem using an algebraic equation for 11.2 of the 18 items (SD = 7.7).
In Table 2 we show the number of SBI students who represented the word problem using an
algebraic equation for each VSP item, which ranged from 74 (56.5%) to 89 (67.9%).

In terms of the accuracy of those equations, Table 2 shows (for each problem) the number of
students who correctly represented the word problem using an algebraic equation divided by
the number of students who represented the word problem using an algebraic equation.
Accuracy was highest (95.3%) for a simple total problem (with missing information in the last
position of the equation and with no graph or irrelevant information) and lowest (20.5%) for
a complicated problem: a onestep difference problem with missing information in the second
position (i.e., a more difficult problem type with the most difficult position for missing
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information) with irrelevant information in the narrative as well as in a graph. Accuracy varied
considerably for one-step problems, but it did tend to be lower for problems with graphically
or pictorially presented relevant and irrelevant information than for problems that restricted
presentation of information to problem narratives.

In terms of the extent to which students solved problems using the kinds of mathematical
expressions found in algebra, we coded the use of “X =” in students’ answers. Of the 131 SBI
students, 71 students (54.2%) used “X =” in their answers most of the time (i.e., on 15–18
problems), 26 students (19.8%) used it in their answers some of the time (i.e., on 1–14
problems), and 34 students (28.1%) never used it in their answers. SBI students used “X =” in
their answers for an average of 10.8 (SD = 7.8) problems.

Discussion
Prior work demonstrates that SBI, when conducted in a whole-class format but without
algebraic equations to represent problem types, enhances third graders’ word-problem
performance (e.g., Fuchs et al., 2003). The potential of SBI to incorporate algebraic equations
to represent the structural, defining features of problem types has also been suggested to
improve word-problem performance, but in the context of one-to-one tutoring for third-grade
students with mathematics difficulties (e.g., Fuchs et al., 2009). The purpose of the present
study was to extend this program of research by focusing on younger, typically developing
students while incorporating algebraic equations to represent the structural, defining features
of problem types. We were interested in assessing effects for a younger population not only
with respect to their word-problem performance, but also in terms of their ability to represent
the structure of word problems using algebraic equations. Toward this end and to extend this
line of research further, we described the work students generated while solving word
problems.

With respect to word-problem performance, results corroborate prior work suggesting the
efficacy of SBI. This time, effects were demonstrated with typically developing second graders
who were taught to use algebraic equations to represent the structural, defining features of
problem types. On the VSP measure, SBI effected superior outcomes compared to the business-
as-usual control group, with an effect size approaching one-half a standard deviation.
Therefore, when we conducted exploratory analyses on the various VSP problem types and
features, results generally favored the SBI condition, providing insight into which dimensions
of the word problems created a greater challenge for students.

In other words, the exploratory analyses suggest that SBI effects were consistent and clear for
one-step problems (g = .44) as well as more difficult problems that combined problem types
and therefore required two-step solutions (g = .48). However, results were more clear for total
problems (g = .46), the first problem type addressed in SBI, than for difference and change
problems, in which effects only approached statistical significance and effect sizes hovered
around one-third of a standard deviation. This pattern departs from prior work (e.g., Cummins,
Kintsch, Reusser, & Weimer, 1988; Riley & Greeno, 1988; Verschaffel, De Corte, & Pauwels,
1992) demonstrating that difference problems are the most difficult of the three word-problem
types. Finding that effects on change problems were comparable to effects on difference
problems and less than the effects on total problems suggests that the order in which problem
types are introduced during instruction may affect students’ ease in learning, thereby disturbing
the natural order of difficulty. Because students learned change problems last, they experienced
the fewest opportunities for review and for integrating this problem type with the others,
perhaps explaining why effects for the change problem type may be less strong than for total
problems and only comparable to difference problems, both of which were introduced earlier.
With a longer run of the SBI program and with more time for reviewing and integrating the
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change problem type, effects for change problems may have been more in line with earlier,
descriptive studies.

With respect to the position of the missing information, our exploratory analyses suggest that
SBI effects were strongest when the missing information occurred in the third slot of the
algebraic equation, followed by the first slot (with respective effect sizes of .42 and .56). For
problems with missing information in the second position, the effect size was relatively small
(.26). This pattern is inconsistent with previous work. For example, Schatschneider, Fuchs,
Fuchs, and Compton (2006) used item-response theory to show that problems with missing
information in the third position are easier to solve than problems with missing information in
the second or first position, but missing information in the first (not the second) position
presents the greatest challenge. This pattern has been corroborated by Garcia, Jiménez, and
Hess (2006) as well as others (e.g., Riley et al., 1983). It is possible that the pattern of findings
in these exploratory analyses diverge from earlier, descriptive work due to the inclusion of
intervention in the present study. Specifically, in encouraging students to represent the structure
of problems with algebraic equations, students had to solve for unknown variables. Considering
the range of problems that the students faced in the present study, solving for the unknown was
hardest when it occurred after a minus sign (in the second slot). The observed level of
inaccuracy for problems with missing information in the second position may be due to student
errors in solving certain types of algebraic equations rather than their ability to represent the
structure of problem narratives. This explanation finds credibility in our analysis of work
samples. Within one-step problems, the accuracy of students’ algebraic equations for
representing the underlying structure of problems was not lower when the unknown variable
occurred in the second position, and therefore students’ lack of ability to represent these
problem structures does not explain the low accuracy of their word-problem solutions. This
suggests the need for greater instructional emphasis on solving for unknowns within this kind
of subtraction equation within SBI when algebraic reasoning is used to represent the structure
of problem types.

Given the supportive findings favoring SBI on the VSP measure, it is important to note that
parallel effects failed to accrue on ITBS. This was the case even though neither measure
included any problem that had been used for instruction and, in that way, both measures
represented transfer for both conditions. At least three major differences between the measures
may explain the diverging pattern of findings. The first key difference is that VSP includes
items with missing information in all three positions within the equations, whereas ITBS
restricts problems to those with missing information in the third position (i.e., the easiest). In
this way, VSP created greater opportunity than ITBS for SBI students to demonstrate their
learning. In fact, flexibility in handling word problems with missing information in more than
the conventional third position (which was registered on the VSP) is an important goal because
(a) of the analytical difficulties associated with missing information in the first two positions,
(b) higher-level mathematics as well as real-life problem solving require such analytical
flexibility, and (c) real-life problem solving demands the analytical frameworks represented
in the ability to solve for missing information within all three positions.

Another major distinction that may have contributed to the realization of effects on the VSP
but not the ITBS concerns the variety of problem types sampled on the tests. VSP restricts
items to total, difference, and change problem types, those central to the second-grade
curriculum. By contrast, ITBS also samples word problems representative of high-level
mathematics, including multiplication, division, and fraction concepts. Inclusion of these items
rendered the ITBS less sensitive to the effects of SBI, because the multiplication, division, and
fraction items did not provide SBI students with the opportunity to apply the strategies they
had learned for representing problem types. A third key difference between the measures,
response format, may have also contributed to differential findings. The Iowa requires multiple-
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choice answers, whereas the VSP involves open-ended responses. The multiple-choice format
may have suppressed student reliance on the SBI strategies they had learned, as suggested by
the limited amount of work generated on the ITBS test protocols.

These insights create the basis for several conclusions. The first concerns the need for teachers
to redirect instruction toward word problems with missing information in all three positions.
This is critical to foster the analytical flexibility required in higher-level mathematics as well
as real-life problem solving. The second implication concerns the need to effect transfer from
second-grade problem types to problems that engage the concepts of multiplication, division,
and fractions. These concepts are embedded within the number concept and procedural strands
of the second-grade curriculum, providing natural opportunities for teachers to extend the SBI
strategies and analytical frameworks from total, difference, and change problems to more
challenging word-problem types that incorporate those concepts. Finally, in the service of
helping students transfer their classroom learning to high-stakes tests on which students are
required to demonstrate those effects, it makes sense simply for teachers to help students
understand how they might apply their strategies and skills when testing formats are novel (and
even when the space provided to show work is limited).

With respect to the effects of SBI on students’ ability to represent word problems’ structure
using algebraic equations, we were interested in two components. First, we considered
students’ use of algebra to represent and reason about problem situations that contain unknowns
(Izsak, 2000) and, second, to use the kinds of mathematical expressions found in algebra
(Kiernan, 1992). We therefore coded VSP items in three ways: whether students represented
word problems using algebraic equations; if so, whether algebraic equations correctly
represented problem structures; and whether students included “X =” in their answers. Because
there was no instance of any control student representing a word problem using an algebraic
equation or including “X =” in an answer, we considered results descriptively only for SBI
students.

In terms of whether students used algebra to represent and reason about problem situations that
contain unknowns (Izsak, 2000), more than half of SBI students incorporated algebraic
equations within their word-problem work most of the time; another 20% did so some of the
time. Across the 18 VSP problems, the accuracy of those equations in representing problem
structures averaged 59.4%. Students’ strong, although far from universal, reliance on algebra
to represent and reason about word problems is especially notable given that posttesting in no
way prompted students to rely on SBI strategies. Not surprisingly, accuracy was highest
(95.3%) for a simple total problem (with missing information in the last position of the equation
and with no graph/picture and no irrelevant information). Also not surprisingly, accuracy was
lowest (20.5%) for a complicated onestep difference problem with missing information in the
second position (i.e., a more difficult problem type with the most difficult position for missing
information) with irrelevant information in the narrative as well as in a graph. Accuracy varied
considerably for one-step problems and tended to be lower for problems with graphically or
pictorially presented relevant and irrelevant information than for problems that restricted the
presentation of relevant information to problem narratives. With respect to the students’ solving
of problems using the kinds of mathematical expressions found in algebra (Kiernan, 1992), we
coded students’ use of “X =” in the answers. Three-quarters of SBI students used “X =” in their
answers most or some of the time.

Students’ applications and misapplications of the strategies we taught them for representing
the structure word problems with algebraic equations are illustrated in Figures 1 and 2. As
reflected in the correct examples, children constructed a conceptual model of the problem,
identified the problem as belonging within a problem type, represented the known and unknown
information within the problem narrative using the structure of the overarching equation that
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represents the structural features of that problem type, and based their solution plans on that
model (Jonassen, 2003). In Problem 1 (see Fig. 1), the student’s first equation represents the
total problem to combine the number of Tommy’s red checkers with the number of Tommy’s
black checkers to find the total number (P1 + P2 = T), which then becomes the smaller (s)
quantity in the difference equation comparing Tommy’s and Jacob’s amounts (B − s = D). The
equation in Problem 5 represents the total problem type: Tanya and Callie’s 7 ribbons are the
total amount; one part (Tanya’s number of ribbons) is known, and the student solves for the
second part that contributes to the total, with missing information in the second position of the
equation. Problem 7 shows a student representing a change problem in which the student solved
for the starting amount of pennies, to which 4 pennies were added creating a new amount of 6
pennies. Each equation provides a conceptual match for the defining features of the problem
type the narrative exemplifies.

Research shows that even high school students have difficulty mapping symbolic equations
onto word problems in this way (Koedinger & MacLaren, 1997; Stacey & MacGregor, 1999)
and instead tend to rely on an arithmetic approach. Such difficulty is illustrated in the incorrect
examples shown in Figure 2, in which students relied on a procedural approach to generate
solutions, directly translating story values into solvable algorithms. In Problem 11 (see Fig. 2),
the student simply took the two known quantities from the problem narrative and supporting
graph and used the word more to decide on the addition operation to combine those quantities,
although the problem represents the change problem type in which the change value is the
missing information. In the last example (Problem 16), a special education student set up the
first equation correctly, perhaps relying on the structure of the total equation. Unfortunately,
the student, perhaps relying simply on the key word left to select the subtraction operation,
then failed to represent the structure of the second-step change problem correctly, which
requires addition because the missing information occurs in the first position of the change
equation with a decreasing change value. A direct-translation approach, as illustrated in these
incorrect examples, reflects a lack of conceptual understanding not only of the problem
narrative but also of the problem type. It has sometimes been characterized as a “compulsion
to calculate” (Stacey & MacGregor, 1999) in which students grab numerical values presented
in the problem and search for key words to select an algorithm (Sherrill, 1983). Such a
compulsion to calculate deters students from identifying appropriate knowns and unknowns
and from engaging in forward operations to formulate a conceptual equation (Kiernan, 1992).

As indicated by the nearly 60% of students who correctly represented the underlying structure
of problems using algebraic equations, SBI with algebra moved many, although not all, students
in the direction of a conceptual, algebraic approach to reason about word problems. In this
way, findings suggest that SBI strengthens students’ algebraic reasoning, at least in the limited
sense of representing and reasoning about problem situations that contain unknowns. More
generally, together with prior work (e.g., Baroody & Ginsburg, 1983; Blanton & Kaput,
2005; McNeil & Alibali, 2005; Powell & Fuchs, in press; Rittle-Johnson & Alibali, 1999;
Saenz-Ludlow & Walgamuth, 1998; Schliemann et al., 2001; Warren et al., 2006), results
demonstrate that algebraic thinking can be enhanced, at least in this limited sense, among
relatively young, second-grade students, many of whom are from backgrounds of poverty, as
reflected in the fact that 60% of participants received subsidized lunch. The hope is that
promoting such thinking within the context of relatively simple word problems grounds
symbolic forms in students’ preexisting verbal comprehension and strategic competence and
provides a foundation for more abstract word equation problems and more challenging
symbolic equations (Koedinger & Nathan, 2004). This is important given that algebra is a
gateway to high school graduation and higher-level mathematics. Findings suggest that
introducing algebra early in the curriculum may help lay such a foundation, and that SBI with
algebra may represent one strategy for promoting this goal.
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At the same time, in considering findings, readers should note four important study limitations.
First, we used letters to stand for variables in the overarching equations representing the
relations among the structural features of such problem type. We taught students that these
letters represent known amounts (if given in the problem) and unknown amounts (if missing
from the problem). To highlight the fact that these letters stand for structural features of the
word-problem types, we used uppercase letters, as did Schliemann et al. (2001), even though
conventional algebra relies on lower-case letters. In a similar way, students used the uppercase
X to represent the unknown variable when they generated algebraic equations to represent an
actual word problem. Using upper-case letters may limit transfer to conventional algebra, and
future work should investigate this possibility. A second limitation is that the present study
design does not permit us to isolate the effects of using algebra to represent the underlying
structure of problem types. Clearly, a study is warranted to contrast the effects of SBI with and
without algebraic equations. Third, we had inadequate resources to conduct observations of
the word-problem instruction. Consequently, our descriptions of the approach to business-as-
usual word-problem instruction are derived from the basal curriculum on which teachers relied
as well as teacher reports. Future work should conduct classroom observations to provide a
deeper understanding of conventional word-problem instruction to which SBI effects are
compared. Fourth, as suggested on the VSP, although SBI helps students transfer their problem-
solving skills to novel problems that fall within targeted schemas, SBI did not increase students’
capacity to spontaneously develop schemas for problem types that have not been addressed
instructionally, as revealed on the ITBS. A need exists to develop instructional strategies by
which students develop the capacity to develop schema for problem types that are not targeted
within instruction.
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Appendix A

Fig. A1.
Problem type examples
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Fig. 1.
Examples of students’ VSP work: correct representations.
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Fig. 2.
Examples of students’ VSP work: incorrect representations.
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Table 2

Descriptions of Problems on VSP and ITBS

Measure Problem Description Accuracy

VSP 1 Two-step: total X3; difference X2 43/88 (48.9%)

2 One-step: change X3 79/89 (88.8%)

3 Two-step: total X3; change X1 58/87 (66.7%)

4 One-step: difference X3 42/88 (47.7%)

5 One-step: total X1 42/87 (48.3%)

6 One-step: change X2 71/87 (81.6%)

7 One-step: change X1 44/85 (51.8%)

8 One-step: total X3 82/86 (95.3%)

9 One-step: difference X1 76/84 (90.5%)

10 One-step: total X2, graph, irrelevant information in graph 38/80 (47.5%)

11 One-step: change X2, picture, irrelevant information in picture 32/83 (38.6%)

12 One-step: difference X1, graph, irrelevant information in picture and narrative 43/74 (58.1%)

13 One-step: change X3, graph, irrelevant information in graph 66/80 (82.5%)

14 One-step: total X1, graph, irrelevant information in graph 44/81 (54.3%)

15 One-step: difference X2, graph, irrelevant information in graph and narrative 16/78 (20.5%)

16 Two-step: total X3, change X1, graph, irrelevant information in graph 20/75 (26.7%)

17 One-step: total X3, graph, irrelevant information in graph 60/77 (77.9%)

18 One-step: difference X3, graph irrelevant information in graph and narrative 33/75 (44.0%)

ITBS 1 One-step: total X3

2 One-step: change X3

3 One-step: change X3

4 Two-step: total X3, total X3

5 Two-step: total X3, change X3

6 One-step: repeated addition or multiplication

7 One-step: division

8 Two-step: half, total X3

9 One-step: repeated addition or multiplication

10 One-step: change X3, irrelevant information in narrative

11 Two-step: total X3, total X3

12 One-step: total X3, irrelevant information in narrative

13 Two-step: total X3, change X3

14 One-step: division X3

15 Two-step: total X3, difference X3

16 One-step: division

17 One-step: difference X3

18 Two-step: total X3, change X3

19 One-step: repeated addition or multiplication

20 Graph reading

21 One-step: total X3, graph, irrelevant information in graph

22 Two-step: total X3, repeated halving, graph, irrelevant information in graph
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Measure Problem Description Accuracy

23 Graph reading

24 One-step: total X3, graph, irrelevant information in graph

25 One-step: difference X3, graph, irrelevant information in graph

26 Graph reading

27 Graph reading

28 Graph reading

29 One-step: difference X3, graph, irrelevant information in graph

30 One-step: difference X3, graph, irrelevant information in graph

Note.—VSP is Second-Grade Vanderbilt Story Problems (Fuchs & Seethaler, 2008); ITBS is the Iowa Test of Basic Skills Level 8—Problem Solving
and Data Interpretation (ITBS: Hoover, Hieronymous, Dunbar, & Frisbie, 1993). Accuracy is the number of students who used an algebraic equation
correctly to represent the structure of the problem/number of students who represented the word problem using an algebraic equation; accuracy was
coded only for the VSP.
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Table 3

Pretest Performance, Posttest Performance, and Adjusted Posttest Performance by Study Condition

Variable

SBI Control

M (SD) M (SD)

VSP across problems:

 Pretest 10.76 (2.83) 9.99 (2.94)

 Posttest 21.73 (4.31) 17.18 (4.28)

 Adjusted posttest 21.78 (3.33) 17.17 (3.44)

Find X:

 Pretest 1.54 (.77) 1.83 (.77)

 Posttest 5.29 (1.25) 2.68 (1.25)

 Adjusted posttest 5.34 (.62) 2.67 (.74)

ITBS:

 Pretest NA NA

 Posttest 16.14 (3.26) 16.93 (2.54)

 Adjusted posttest NA NA

VSP total problems:

 Pretest 2.66 (.70) 2.59 (.75)

 Posttest 5.35 (1.27) 4.23 (1.01)

 Adjusted posttest 5.39 (.88) 4.24 (.77)

VSP difference problems:

 Pretest 2.32 (.66) 2.14 (.61)

 Posttest 4.75 (1.06) 3.85 (.99)

 Adjusted posttest 4.77 (.68) 3.85 (.73)

VSP change problems:

 Pretest 3.45 (1.00) 3.18 (.99)

 Posttest 6.23 (1.22) 5.23 (1.44)

 Adjusted posttest 6.23 (.94) 5.24 (1.12)

X1 problems:

 Pretest 2.10 (.64) 1.84 (.59)

 Posttest 4.25 (.92) 3.33 (.86)

 Adjusted posttest 4.26 (.61) 3.33 (.65)

X2 problems:

 Pretest 2.39 (.85) 2.15 (.82)

 Posttest 5.02 (1.27) 4.21 (1.40)

 Adjusted posttest 5.04 (.93) 4.21 (1.09)

X3 problems:

 Pretest 3.67 (.81) 3.64 (.75)

 Posttest 7.16 (1.39) 5.57 (1.27)

 Adjusted posttest 7.19 (1.05) 5.59 (.97)

One-step problems:

 Pretest 8.16 (2.05) 7.64 (2.12)

 Posttest 16.43 (3.53) 13.11 (3.37)
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Variable

SBI Control

M (SD) M (SD)

 Adjusted posttest 16.47 (2.69) 13.11 (2.76)

Two-step problems:

 Pretest 2.60 (.92) 2.36 (.87)

 Posttest 5.31 (.81) 4.07 (1.01)

 Adjusted posttest 5.32 (.57) 4.06 (.59)

Note.—SBI: n = 9 teachers, 131 students; control: n = 9 teachers, 139 students. VSP is the Grade 2 Vander-bilt Story Problems Test; ITBS is the
Iowa Test of Basic Skills; X1, X2, and X3 are, respectively, VSP problems with missing information is in the first, second, and third positions of
algebraic equations; one-step is one-step VSP problems; two-step is two-step VSP problems.
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