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Abstract
Predicting protein functions from structures is an important and challenging task. Although
proteins are often thought to be packed as tightly as solids, closer examination based on geometric
computation reveals that they contain numerous voids and pockets. Most of them are of random
nature, but some are binding sites providing surfaces to interact with other molecules. A promising
approach for function inference is to infer functions through discovery of similarity in local
binding pockets, as proteins binding to similar substrates/ligands and carrying out similar
functions have similar physical constraints for binding and reactions. In this chapter, we describe
computational methods to distinguish those surface pockets that are likely to be involved in
important biological functions, and methods to identify key residues in these pockets. We further
describe how to predict protein functions at large scale (millions) from structures by detecting
binding surfaces similar in residue make-ups, shape and orientation. We also describe a Bayesian
Monte Carlo method that can seperate selection pressure due to biological function from pressure
due to protein folding. We show how this method can be used to reconstruct the evolutionary
history of binding surfaces for detecting similar binding surfaces. In addition, we briefly discuss
how the negative image of a binding pocket can be casted, and how such information can be used
to facilitate drug discovery.
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1. Introduction
The structural genomics projects have made significant contributions to our current body of
knowledge of protein structures [1]. They have further faciliated the establishment of a
comprehensive view of the global universe of protein structures, and have provided a
foundation with a wealth of information for developing model and computational tools that
can be used to understand the molecular mechanism how individual proteins carry out their
biological roles and how protein functions evolve.

Functional characterization of proteins with unassigned functions is an important task. By
design, a large number of newly determined protein structures from structural genomics are
not related to other known proteins, and bioinformatics tools based on sequence alignment
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often cannot provide accurate information about the functional roles of these proteins.
Several early studies showed that reliable functional assignment will require sequence
identity of 60–70% between the protein of unknown function and a well-studied protein
[2,3].

Recently, the approach of inferring protein functions by detecting local spatial regions on
protein structures with similar patterns has been shown to be very effective
[4,5,6,7,8,9,10,11,12]. The rationale behind this approach is intuitive and appealing. For
proteins binding to similar substrates or ligands and carrying out similar functions, they are
constrained by the requirement of providing the necessary microenvironment for similar
binding and biochemical reactions to occur. These physical constraints are reflected by
similarity in the shape of local binding surfaces and in the physico-chemical texture of the
binding surfaces. In order for similar functions to occur, the evolution of residues involved
in binding and reaction will be constrained and this results in similarly allowed and
forbidden residue substitution on binding surfaces [11].

In this chapter, we discuss our approach to predict and characterize protein functions from
protein structures by comparing local surfaces. We first discuss the existence of voids and
pockets, and their distribution in proteins [13]. We then describe how to identify those that
are likely to be functionally important, as well as the key residues on them [14]. This is
followed by a discussion on how to match local surfaces and how to assess their similarity in
both sequence order dependent and independent fashion [5]. Next we discuss how to extract
evolution patterns of small local regions directly related to protein function and unaffected
by folding requirement using a Bayesian Monte Carlo method, and how this approach
improves protein function prediction [11]. We then describe three examples of protein
function prediction and characterizations using proteins generated from the Midwest Center
for Structural Genomics [15]. This is followed by a brief discussion on how further
information from computed protein local binding pockets can be extracted in the form of
negative image to guide for selecting inhibitors from a collection of candidate compounds
[16].

2. Voids and Pockets in Protein Structures and their Origins
Protein structure is known to be packed tightly. The packing density of protein interior is
comparable to that of solid, with low compressibility [17]. Protein packing has been
described as a jig-saw puzzle [18]. However, detailed study using the technique of alpha
shape [19,20,21,22] revealed that there are numerous voids and pockets in protein structures
(Fig 1) [13].

Here voids are enclosed empty space that is inaccessible to a water molecule modeled as a
probe of 1.4 Å radius, and pocket is an empty space in the protein that has a constricted
opening to the bulk exterior and is accessible to a water molecule (Fig 1). The size of the
void or pocket in this study is required to be large enough to contain at least one water
molecule. In fact, there is a scaling relationship between the number of voids and pocket and
the chain length of the protein (Fig 2a). On average, there is an increase of 15 voids or
pockets for every 100 amino acid residues [13]. For example, the binding sites of HIV-1
protease and phosphatidylinositol transfer protein (PITP) both corresponds to well-defined
surface pockets (Fig 3).

Various scaling relationships suggest that protein packing is of random nature [13]. For
example, if we use a simple solid ball packing as a model of protein, we would expect that
the volume V = 4πr3/3 and the area A = 4πr2 should have a scaling relationship of V ∝
A3/2. In reality, this scaling relationship is linear (Fig 2b). This linear relationship is
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reminiscent of the scaling relationship of clustered random spheres in off-lattice and on-
lattice models [23,24].

To further investigate the nature of protein packing and the origin of voids and pockets, we
have studied the packing behavior of random chain polymer in off-lattice three-dimensional
space [25]. Other than the requirement that these polymer chains are compact and self-
avoiding, there is no relationship between these studied chains and real protein. The task of
assessing the ensemble properties of packing of these chain polymers in a statistically
accurate manner is technically very challenging, as one needs to generate adequate samples
that are independent and properly weighted. This relates to the well-known attrition
problem: the success rate of generating self-avoiding chain polymers is rapidly diminishing
with the increase of chain length, as it becomes exponentially difficult to maintain the self-
avoiding requirement. For example, even for a short chain of length 48, the success rate of
using simple growth method would be only 0.79% [26].

Using the sequential Monte Carlo method [27,28], we have overcome this technical
difficulty, and succeeded in generating properly weighted ensemble of thousands of self-
avoiding chains up to length 2,000 [25]. We have carried out the same geometric analysis on
these chain polymer structures, just as we did with protein structures. The results indicate
that both the scaling relationship of the coordination number, and the packing density with
the chain length show characteristically the same scaling relationship as that of proteins
[25]. Altogether, these findings provide strong evidence that proteins are not optimized by
evolution to eliminate voids and pockets. Rather, the majority of the voids and pockets
simply emerge from the requirement of packing self avoiding chains in a compact space.

3. Identifying Functional Surfaces of Proteins
The existence of numerous voids and pockets poses two challenging problems. First, how do
we identify the void(s) and pocket(s) that are biologically important, e.g., how to distinguish
those involved in binding and biochemical reactions from those formed by random chance.
Second, for a given pocket or voids found on a protein structure, how do we know if it is
important for some biological functions known or yet to be discovered?

We have developed a method to address these problems for enzymes. In this method, we do
not directly compare the structure or function of a well-characterized protein with the
protein in question. Rather, we seek to recognize pocket or void that might be involved in
enzyme function based on general characteristics. We discuss in later sections the
comparative approach when the unknown query protein is compared with a database of
protein structures.

Typically, about 10%–30% of all residues in an enzyme participate in the formation of the
binding pocket [14]. Compared to the full length primary sequences, the usage of residues in
forming pocket is biased. Often His, Asp, Glu, Ser, and Cys account for the most important
active site residues [29,5,8,14]. These are residues known to be important for catalytic
functions. On the other hand, nonpolar residues such as Val, Leu, Pro are far less frequent in
enzyme binding pocket [14]. Although these hydrophobic residues are frequently conserved
for maintaining protein structures and for protein folding, they are often not directly
involved in molecular functions of enzymes. In fact, the composition of residue on binding
surfaces of enzyme is very different from that of the overall sequences (Fig 4).

In our method for identifying functional region from enzyme structures [14], we examine
the occurrence of the atomic pattern of a residue with exposed surface in the binding pocket.
That is, we record the residue type and all of the exposed atoms from this residue, along
with the secondary structure environment this residue belongs to. A probability function for
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each atom pattern, residue type, and secondary structure is then constructed based on
statistical analysis of a database of annotated key residues of enzymes. After evaluating this
probability function for each residue in a candidate pocket, we can sum up the probability
values for all residues in the identified pocket, and if its above a threshold value, a
functional binding pocket is predicted, and the few residues with the highest probability
values are further predicted to be functionally important key residues.

This method has been shown to work well in a 10-fold cross-validation test of 3,503 protein
surfaces from 70 proteins, with a sensitivity of 92.9% and specificity of 99.88% [14]. We
have also shown that for four enzyme families (2,3-dihydroxybiphenyl dioxygenase, E.C.
1.13.11.39; adenosine deaminase, E.C. 3.5.4.4; 2-haloacid dehalogenase, E.C. 3.8.1.2, and
phosphopyruvate hydratase, E.C. 4.2.1.11), the key residues predicted are also consistent
with annotated information contained in the Structure-Function Linkage Database (SFLD)
[30]. Fig 5 illustrates the example of predicted binding surface and key residue on a
structure of alpha amylase.

4. Matching Local Binding Surfaces
A different approach that can potentially yield rich information is to compare the local
surface of a binding pocket to a database of local surfaces, some of which have known
biological characterization. Fig 6 illustrates an example. The cAMP dependent protein
kinase (1cdk) and Tyr protein kinase c-src (pdb 2src) share only 13% sequence identity.
However, the ATP binding pocket have similar shape and chemical texture. Once these ATP
binding pockets are identified and computed from their structures, we can select the residues
located on the wall of the binding pocket, and remove residues on the loops connecting these
wall residues. It is clear that the remaining sequence fragments have much higher sequence
identity (51%). In both cases, the residues forming the pocket wall come from diverse
regions in the primary sequences.

The simple example shown in Fig 6 suggests an effective strategy that can rapidly decide if
two pocket surfaces are similar. We can derive surface patterns from the residues forming
the walls of pockets (called pvSOAR patterns for pocket and void surface patterns of amino
acid residues), and rapidly compare these patterns. Once a pair of protein surfaces are found
to be similar, we can further examine their shape and chemical texture in detail, and
determine the statistical significance of their overall similarity. This approach is generally
applicable to any two surface patterns of pockets and voids [5].

There are several technical problems to be solved for this approach to be generally useful.
We need to identify and generate local surfaces automatically and accurately. This can be
achieved by applying void and pocket algorithm for exhaustive identification and
measurement of voids and pockets from protein structures [20,21,22]. We also need to
rapidly and accurately assess surface similarity. Once a pair of similar local surfaces are
found, we need to evaluate whether the similarity is statistical significant.

4.1. Comparison of Sequence Patterns of Surface Pockets and Voids
Sequence order dependent method—By concatenating wall residues of a pocket or
void on a peptide chain, we have compiled a database of pvSOAR sequence patterns for all
protein structures in the protein data bank. This database is part of the CASTp database
[31,32]. It currently (August, 2008) contains 46,071 protein structures, with 1,582,472 voids
and 1,555,994 pockets. We can rapidly query a protein surface pocket against CASTp
database through alignment of sequence fragments using standard dynamic programming
technique, allowing gap insertion [5]. In this approch, we assume that the residues in the
sequence pattern are positioned following their order of the primary sequence.

Liang et al. Page 4

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2010 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sequence order independent comparison—The alignment of pvSOAR sequence
fragments through dynamic programming can discover many similar binding pockets.
However, there are many cases where two proteins with similar placement of amino acids in
their tertiary structures have different relative positioning of these amino acids in their
primary structures (see Fig 7 for stromelysin). When comparing two local surface pockets,
we also need to detect similar residue patterns while ignoring their strict positioning in the
primary structures. This is the problem of finding which amino acid on the query protein
surface pocket is equivalent to which amino acid on the target protein surface pocket.

Sequence order independent matching of pockets can be formulated as a maximum weight
bipartite matching problem, where graph nodes represent amino acids (e.g., using Cα atoms)
from the two protein pockets. Directed edges are used to connect nodes from the query
protein to nodes of the target protein, if the two nodes share some similarity (e.g., by a
scoring function based on shape and chemistry). Each edge is given a weight that is based on
the similarity measure. The problem is to find a set of edges connecting nodes in query
pocket to nodes in target pocket, with maximized total edge weight, while insisting only at
most one edge is selected for each residue [33].

One way to solve this problem is by using the Hungarian algorithm [34] as described in [35]
with modifications. This is an iterative method that uses the Bellman-Ford algorithm [36].
First, we add a fictitious source node s that connects to every query node with 0-weight. We
then add a fictitious destination node d that connects to every target node with 0-weight. The
Bellman-Ford algorithm computes the distance F(i) of the shortest path(s) from the source
node to each of the remaining node i. The weight for each edge that does not contain the
source node is then updated. The new weight w′(i, j) for edge e(i, j) starting from node i to
node j is:

An overall score Fall, initialized to 0, is now updated as . Next, we flip the
directions of all edges in the shortest path from the source s to the destination d.

We then apply the Bellman-Ford algorithm on this new graph, and this is repeated until
either there is no directed path from s to d as edges have been flipped, or the shortest
distance F(d) to the destination is greater than the current overall score Fall. The output of
the Hungarian algorithm includes a set of directed edges starting from target nodes to query
nodes, and these provide the equivalence relationship, namely, which residue in the target
pocket should be aligned to which residue in the query pocket. Based on this equivalence
relationship, we can then compute the shape similarity between these two surface pockets at
atomic details, as described below. When we use atoms as nodes instead of residues, the
results will be atomic alignment of pocket surfaces.

4.2. Comparison of Shapes of Surface Pockets and Voids
Once two voids or pockets are found to have significant sequence similarity, we then follow
up with more detailed shape analysis using two methods. First, we compute the coordinate
root mean square distance (cRMSD) between the subset of equivalent residues or atoms.
This equivalence relationship is established by the local alignment of pocket sequence
fragments. The cRMSD distance is measured when the subset of residues are optimally
aligned with rigid motion and has the least RMSD value. This alignment and the cRMSD
value can be computed from the singular value decomposition of the correlation matrix of
the coordinates of the point sets [37].
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cRMSD is not a perfect measure of shape similarity. It works well when two structures are
similar, but is sensitive to outliers. If a protein experiences conformational change, its
binding pocket may expand or shrink and its residues may retain the relative orientational
relationship, but with significantly altered Euclidean distances. To address this deficiency,
we can use the orientational RMSD (oRMSD) measure [5]. We first place a unit sphere at
the geometric center of the pocket. The location of each residue is then projected onto the
unit sphere along the direction of the vector from the geometric center. The projected pocket
is therefore represented by a set of unit vectors on the unit sphere, which preserves the
original orientational relationship. The RMSD of the two sets of unit vectors for the two
pockets in comparison can then be measured, which gives the oRMSD value [5].

For sequence-order-independent comparison of two surface pockets, we start from a crude
initial equivalence relationship that represents the initial correspondence between residues
from query and target pockets. We then apply the optimal rotation matrix and translation
vector computed using [37] to this initial alignment. The Euclidean distances between
residues (or atoms) in the query pocket and target pocket are then computed after the
optimal superposition. Those that are below a threshold are updated with new weights
computed using a similarity scoring function. The Bellman-Ford algorithm and the SVD
based optimal alignment and update of Euclidean distances are then repeated iteratively.
One can stop this iterative process if the improvement is less then a threshold. As the overall
alignment shape score may deteriorate temporarily when a new equivalence relationship is
found and new superposition applied, simulated annealing allowing a probability that
structural alignment may temporarily deteriorate can also be applied here [35].

As an illustration, the sequence order independent alignment of surface pockets in two
structures of stromelysin shown in Fig 7. It has an overall cRMSD of 0.76 Å for 29 atoms
from 10 residues. The Cα atoms from these 10 residues align with an cRMSD of 1.05 Å.
The alignment obtained in a sequence-order-dependent fashion contains 16 residues. If we
select the subset of 10 residues from these 16 residues that overlap most with that of the
sequence order independent alignment, the alignment of their Cα atoms has a cRMSD value
of 3.71 Å. This example illustrates that this method of sequence-order-independent
comparison of two surface pockets works well, and often can identify excellent surface
matches that are challenging for other methods (Dundas and Liang, unpublished).

4.3. Statistical Significance
After the similarity of two surface pockets is calculated, we need to assess its statistical
significance to aid in biological interpretation. pvSOAR sequence patterns are typically
short, and are of different composition from the full chain sequences. In addition, frequently
the two pocket sequence patterns in comparison have different number of residues. Although
the theoretical model of extreme value distribution (EVD) provides accurate description of
gapless local alignment of random sequences [38], no exact theoretical models are known in
general for local sequence alignment of very short sequences with gaps.

We have developed a heuristic approach to assess the statistical significance of two pocket
pvSOAR sequences aligned in sequence order. By removing the largest peak in the low-
score region of the distribution of alignment scores of random short sequences which often
contain just one or two matched residues, we found that the remaining distribution can be
described by an extreme value distribution well [5]. Specifically, the Smith-Waterman
scores of the search results of a query sequence pvSOAR pattern to a database of randomly
shuffled pocket sequences are collected. They are then fitted to an EVD distribution, and the
goodness-of-fit is then evaluated using the Kolmogorov-Smirnov test [39]. If the observed
Kolmogorov-Smirnov statistic doe not indicate that the random scores are inconsistent with
an EVD distribution, we further estimate the statistical significance p-value using the
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calculated z-score z = (S − μ)/σ, where S is the similarity score, μ the mean of random
scores, and σ the standard deviation. The p-value can be estimated from the z-score as [5]:

The expected number E of random pocket sequences with the same or better score can be
calculated as:

where Nr is the number of randomly shuffled sequence fragments. The p-value or E-value
can be used to exclude matched pairs of pocket pvSOAR sequences that are unlikely to be
biologically relevant.

Once the cRMSD or oRMSD value is calculated for two surface pockets, we also need to
evaluate the statistical significance of shape comparison. As illustrated above, a common
practice for determining statistical significance is to assume the similarity score are drawn
randomly from a specific underlying distribution. The parameters of the assumed
distribution are then estimated by curve-fitting the distribution of scores from the random
comparison of protein pockets. The derived parameters can then be used to find the Z-score
or p-value of a given similarity score [40,41,42,43]. We found that the distribution of both
cRMSD and oRMSD for random surfaces on protein structures do not follow known
parametric model such as the extreme value distribution [5]. We empirically estimate the
probability p of obtaining a specific cRMSD or oRMSD value for n number of matched
positions from a set of randomly generated surface pockets and voids. By collecting cRMSD
and oRMSD values of millions of randomly matched pockets with different number of
selected matched residues, we can estimate the p-value of a specific cRMSD or oRMSD of
with a specific number of matched residues. This can be found by finding the closest value
of the rank order statistic in the randomly collected cRMSD or oRMSD data of the same
number of residues [4,5].

5. Uncovering Evolutionary Patterns of Local Binding Surfaces
Fast comparison of pvSOAR sequence fragments is a key step when querying a specific
surface pocket/void against a database of precomputed pocket/voids, as the database can
contain hundreds of thousands or millions of entries. This is possible by applying fast
dynamic programming method to align the sequence fragments representing the two
pockets/voids. This step is carried out before promising hits are identified and further
detailed shape comparison is carried out.

The specific scoring matrix used to assess the similarity of two aligned pocket/void
sequence fragments is critical for detecting functionally related binding pockets/voids. A
convenient choice is to adopt widely used PAM matrice or BLOSUM matrice [44,45]. A
disadvantage of this approach is that these are precomputed matrice and have implicit
parameters with values predetermined from the analysis of large quantities of sequences,
which contain little information of the protein of interest. Another approach is to use
position specific scoring matrix (PSSM) such as those generated by the PSI-BLAST
program [46]. The drawback of this latter approach is that it often leads to serious bias as the
PSSM is derived from all sequences aligned to the query sequence satisfying certain
statistical significance requirement. Bias comes from the fact that all aligned sequences
contribute equally to the derivation of PSSM, regardless how closely or distantly they are
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related. This is particularly problematic if the query results from the database is dominated
by closely related proteins.

5.1. Evolution Model
To resolve these issues, we have adopted an approach that models the evolutionary process
using a continuous time Markov process and an explicit phylogenetic tree [11]. Markovian
evolutionary models are parametric models and do not have pre-specified parameter values.
These values are instead estimated from specific sequence data relevant to the protein of
interests [47]. This approach has been shown to be more effective in deriving informative
rate matrice with significant advantage over matrices obtained from other methods [47].

We assume that a reasonably accurate phylogenetic tree T, the branch lengths of the tree
representing divergence time, and an accurate multiple sequence alignment are known.
These can be computed using maximum likelihood method or Bayesian method [48,49,50].
The subset of columns in the multiple sequence alignment corresponding to the residues in
the binding pocket are then identified based on pocket calculation [5,51,11]. Our model
assumes that the evolution of the residues in the binding pocket can be modeled by a
Markovian process characterized by a 20×20 matrix Q = {qij} of instantaneous substitution
rates. The divergence time t is measured in the unit of the expected number of residue
changes per 100 sites between the sequences.

Once the instantaneous substitution rate matrix Q = {qij} is known, the matrix of
probabilities of substitution of residue i by residue j in the time interval t can be computed
as:

For symmetric Q, the matrix exponential can be conveniently computed as:

where U is the matrix of right eigenvectors of Q, and U−1 is that of the left eigenvectors. A
technique to construct a more general non-symmetric instantaneous rate matrix Q that can be
symmetrized can be found in [52,11].

For a column in the multiple sequence, we follow the phylogenetic tree T and compute the
transition probability pxixj (tij) for each of the edge in the tree, whose length denotes the time
interval ti,j. Here xi and xj are the residues at the positions corresponding to the nodes
connected by the edge. If we knew all the ancestral sequences (corresponding to the internal
nodes in the phylogenetic tree) of the extant sequences (corresponding to the leaf nodes), the
likelihood given the tree T and the instantaneous rates Q for this column h can be obtained
by combining probabilities along all edges:

Here the πxk is the prior probability of an arbitrarily chosen node k as the starting node
taking its residue as type xk at column h. π xk typically can be computed as the composition
of the aligned sequences. The product sign Π is over all edges in the phylogenetic tree. Since
in reality we do not know the identities of the residues in ancestral sequences, we sum over
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all possible values the ancestral sequence might take in this column, and the probability
p(xh|T, Q) of observing this particular column h in the multiple sequence alignment is:

Here the summation sign Σ is overall all possible residues in this column for each of the
ancestral sequences.

Treating each column independently, the probability P ( |T, Q) of observing all residues in
the selected columns for the functional region  is:

Here the product Π sign is over all columns.

5.2. Estimating Model Parameters Q and Bayesian Monte Carlo
We adopt a Bayesian framework, and each model parameter is described with a distribution
instead of a single value. The posterior probability π(Q|  , T) of the rate matrix for a given
aligned pocket region  and the phylogenetic tree T integrates our prior information
(represented by the prior distribution π(Q)) on the model parameters, and the likelihood
function-related probability P ( |T, Q) derived from the observed data:

Once this posterior distribution is known, we can calculate the posterior mean of the
parameters:

In practice, we generate correlated samples from the posterior distribution, and the posterior
means of the model parameters are estimated from these samples:

Samples drawn from the desired posterior distribution π(Q|  , T) are generated by running a
Markov chain. Briefly, we start with an initial set of parameter values for Q. The new
parameter set Qt +1 at time t + 1 is generated from a proposal transition function T(Qt, Qt+1).
It will be either accepted or rejected by following the acceptance rule denoted as r(Qt, Qt+1).
The criterion in designing the acceptance rule is to ensure that the detailed balance

is observed. This is necessary for the samples generated by the Markov chain to follow the
desired posterior probability distribution π(Q|  , T). The move set behind the proposal
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transition function that generates new trial parameter set is very important for efficient
computation. Its design is discussed in [11].

The Metropolis-Hastings acceptance rule

is a rule that ensures detailed balance. It either accepts or rejects the proposed new
parameter set Qt +1 by evaluating whether a random number u generated from the uniform
distribution between 0 and 1 is no greater than r(Qt, Qt+1).

5.3. Deriving Scoring Matrice from Rate Matrix
Once the expected values for the rate matrix Q is obtained, we follow the framework by
Karlin and Altschul and derived scoring matrix used for assessing the similarity between
residues at different time interval [46]. For residue i and residue j at time interval t, the
similarity score bij (t) can be computed as:

where mij (t) is the joint probability of observing both residue type i and j at the two nodes
separated by time t, and λ is a scalar [46].

5.4. Validity of the Evolutionary Model
The validity of this approach is confirmed by extensive simulation test. In [11], an explicit
phylogenetic tree and 16 artificially evolved sequences of carboxypeptidase A2 are used to
test if the underlying model of substitution rate parameters of Jones, Taylor and Thornton
(JTT) [53] used to generate the artificial sequences can be recovered. In 50 independent
simulations, the recovered rates and the true JTT parameters all have the weighted mean
error (as defined in [54]) less than 0.0045. In addition, the parameters can be recovered with
acceptable accuracy when only about 20 residues in total size is used [11].

5.5. Evolutionary Rates of Binding Surfaces and Other Surfaces Are Different
We have calculated the substitutionrate matrix for both the binding surface region and the
remaining surface region of alpha amylase. The distinct selection pressure for functional
surface is also clearly evident in the different patterns of the inferred substitution rates for
binding region and for the rest of the protein surface region (Fig 8)[11]. In addition, both
substitution patterns are also very different from the precomputed JTT model [53]. This
example illustrates the need of extracting evolution pattern specific to the functional
surfaces of a particular protein for constructing sensitive and specific scoring matrix for
detecting functionally related protein surfaces. It also indicates that selection pressure
specific for protein function can be extracted without being altered by selection pressure due
to folding.
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6. Predicting protein function by detecting similar biochemical binding
surfaces
Amylase and other enzymes

Alpha amylase (Enzyme Classification number 3.3.1.1) is an enzyme that breaks down
starch, glycogen, and other related polysaccharides and oligosaccharides. An objective test
for protein function prediction is to take a known amylase structure and ask if it is used as a
template, whether we can find all other amylase structures in the protein data bank (PDB)
and nothing else. This is a challenging task, as amylase exist in diverse species, and some of
them have very low sequence identity (< 25%), which is challenging for function inference.

Using the template structure 1bag from B. subtilis, we are able to identify one of the
computed pocket containing 18 residues as the binding pocket, (Fig 9). With multiple
sequence alignment of 14 sequences homologous to the template 1bag, all with < 90%
seqeunce identity to the template or to each other, we have constructed a phylogenetic tree
using the Molphy package (Fig 9a) [48]. The rate matrix Q for the binding region (which
correspond to the positions of the 18 residues) are then estimated using the Bayesian Monte
Carlo method we developed [11]. Scoring matrice of different divergence time are then
generated from this rate matrix Q. These scoring matrice are then used to evaluate the
similarity for each of the >2 million precomputed pocket/void sequence fragment contained
in the pvSOAR database [55] with the query sequence fragment. This comparison is carried
out using the Smith-Waterman method as implemented in the FastA package [39].
Promising hits with E-value < 0.1 are then selected for further shape analysis. Those with
cRMSD or oRMSD values with the template surface pocket at a statistical significance of p
< 0.01 [5] are then chosen as predicted hits, namely, proteins that are predicted as alpha
amylase.

Using this template, we are able to predict 58 other PDB structures as alpha amylase.
Indeed, all of them are found to have the same EC number as that of 1bag. When following
the same procedure but using a different PDB template 1bg9 from the plant barley, we can
predict 48 other PDB structures to be alpha amylase, again in this case all are of the same
E.C. number as that of 1bg9 and 1bag [11]. Combining the hits using these two templates
together, we are able to identify 69 PDB structures of alpha amylase among the 75 known
alpha amylase structures. This method using specific matrix estimated by Bayesian Monte
Carlo compares more favorably than using the general JTT matrix, and than using the
iterative dynamic programming sequence alignment method Psi-blast. Details can be found
in [11].

This method has been tested for other enzymes. The results for 2,3-dihydroxybiphenly
dioxygenase (E.C. 1.13.11.39), adnosine deaminase (E.C. 3.5.4.4), 2-haloacid dehalogenase
(E.C. 3.8.1.2) and phosphopyrovate hydratase (E.C. 4.2.1.11) are described in [11], where
all other protein structures of the same E.C. numbers are correctly predicted. In a recent
study, we have selected a set of 100 enzyme families with about 6,000 structures and
770,000 precomputed binding surface pockets/voids for testing. By taking the structure with
the best resolution and R-factor as template, we test if our method can identify other
members of the same protein family and nothing else. After calculating the overall
sensitivity and specificity of predictions of all 100 protein families, the accuracy of
predictions for the functions of all 6,000+ structures from the 100 protein family is 92%, and
the best Mathews coefficient is 86.6% (Tseng and Liang, unpublished).
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Identifying metal cofactor of YecM from E. coli
The problem of predicting ion-specificity of YecM protein structure is studied in [15].
YecM protein (pdb 1k4n) from E. coli was chosen as a structural genomics target, as it does
not have recognizable similarity to other proteins of known structures. Structural analysis
indicates that YecM shares some similarity to an isomerase and several oxidorectases [56].
As these proteins all contain a divalent metal cation, it was predicted that YecM is a metal
binding protein, but the preferred metal ions were not known.

In order to predict the metal cofactor more accurately, the putative metal binding pocket on
the YecM structure was compared against all known metal binding surfaces in the PDB
database using pvSOAR [15,55]. The results of surface alignment indicates that several zinc
binding surfaces from diverse species (Rattus norvevgicus, Bacillus thermoproteolyticus,
and Bacillus anthracis) share strong similarity to that of YecM, all with significant p-values
[15]. In fact, the top 30% of a rank ordered list of all significant hits are zinc binding
surfaces. In contrast, binding surfaces for other metal ions (i.e. Co, Mn, Fe, and Mg) have
less significant similarity to that of YecM. This result suggest that YecM is likely to have
zinc as its preferred metal cofactor.

Locating the active site of ribose 5-phosphate isomerase
pvSOAR analysis helped to identify the active site of another protein from structural
genomics project [15]. RpiB protein from E. coli (pdb 1nn4) is known to have ribose-5-
phosphate isomerase activity. However, the active site on this protein is unknown [57].
Although RpiA and RpiB have similar function, these two proteins belong to two different
structural folds [15]. The active site of RpiA as identified by mutagenesis and co-crystal
structure with inhibitor is absent on RpiB structure [57]. A ligand docking study suggested
that the active site of RpiB from M. tuberculosis is located at the dimer interface [15].

Pairwise comparisons of the active sites using pVSOAR show that the active sites of RpiA
and RpiB from E. coli and M. tuberculosis have similar area and volume, and the active sites
on RpiB from E. coli and M. tuberculosis have almost identical geometry measured in both
cRMSD and oRMSD, with strongly conserved phosphate binding residues. Detailed analysis
further reveals that the most notable difference between RpiA and RpiB is in the
composition of basic residues, where His/Arg in RpiB are replaced by Lys in RpiA. The
surface patches of positively charged residues, and the orientation of acidic and basic
residues important for catalysis are all conserved for these proteins to carrying out similar
functions.

Although biochemical assays clearly indicates that all three proteins have the same substrate,
and they are likely to have very similar binding surfaces, the location and identities of the
binding surfaces cannot be detected without surface comparison, as RpiA and RpiB have no
detectable similarity in overall sequence and structural fold. This study indicates that
pvSOAR analysis can help to understand how two seemingly different binding surfaces
performed the same function.

Putative adenine nucleotide binding site on CBS domain
CBS-domains are present in many species and have unknown specific functions, but are
thought to be part of an energy status sensor complex [58]. They appear in AMP-activated
protein kinase, IMP dehydrogenase-2, and chloride channel CLC2 binding adenosyl
moieties (such as AMP, ATP, or S-adenosyl methionine), and are often found in tandem
pairs [59,58]. Their biochemical roles and the locations of the active sites are
uncharacterized.
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In the study of [15], three structures of different proteins from different species of archaea
and bacteria containing CBS domains are analyzed (Fig 10). These domains have about 20%
sequence identities, which is insufficient for functional inference. Surface patches from the
structures of these domains are identified and searched against a library of AMP and ATP
binding surfaces for potential matches. Among these, well-defined interface pockets are
identified by CastP computation, and strong hits of diverse AMP and ATP binding surfaces
are found that are similar to these interface surfaces [15]. The results suggest that both
tandem CBS domains from protein mt1622 (pdb 1pbj from M. thermoautotrophicum) and
inosine-5′-monophate dehydrogenase (IMPDH from S. pyogenes, pdb 1zfj) can bind to
AMP and ATP, consistent with experimental studies [58].

An unexpected finding for hypothetical protein Ta549 CBS from T. acidophilum is that an
alternative binding surface is found to have formed by a C-terminal additional insert of the
singleton CBS domain, and a CBS domain tandem pair on a different chain. This binding
surface has only weak similarity to the above-mentioned binding surface of the tandem CBS
pairs, but showed strong similarity to ATP binding surface on saicar-synthase from S.
cerevisiae. This finding suggests the existence of multiple binding sites in a CBS binding
domain, stabilized by a third CBS domain.

7. Adaptive patterns of spectral tuning of proteorhodopsin from
metagenomics projects

Our method can also be applied to protein sequences with only limited structural
information to gain biological insight [60]. Proteorhodopsins (PR) are a class of newly
discovered retinal-containing rhodopsins with structural and functional similarities to
archaeal bacteriorhodopsins [61,62]. They are found in numerous marine bacteria and
archaea through metagenomics studies of the communities of marine organisms. A number
of homologous proteorhodopsins were functionally expressed in E. coli and found to form
active, light-driven proton pumps in the presence of retinal [61,63,64,65].

The absorption maxima of light wavelength of several subfamilies of protorhodopsins span
the spectral range from blue (490 nm) to green (525 nm) [66]. The absorption maxima
correlate with the depth at which the samples were collected, e.g., green absorbing pigments
(GPR) are found at the surface, and blue absorbing pigments (BPR) are found at the deeper
waters [62]. Spectroscopic and mutagenesis analyses indicate that a single residue difference
at the position 105 (Leu in GPR and Gln in BPR) functions as a spectral tuning switch and
accounts for most of the spectral differences [66]. Residues A, E, M, and V also appear at
the position 105 in the family of green absorbing pigments, each with a specific absorption
maximum [66,67].

Based on sequence similarity to the archaeal bacteriorhodopsin with known structures, we
have mapped out 13 non-redundant putative retinal-binding pocket sequence fragments from
99 sequences of proteorhodopsins [60]. The substitution rates for the amino acid residues
forming the putative retinal-binding pocket are then calcualted using the Bayesian Markov
Chain Monte Carlo method [11]. Fig 11 shows the putative proteorhodopsin retinal binding
pocket sequences, along with the phylogenetic tree and the bubble-plot of amino acid
substitution rates. The amino acid substitution rates indicate very fast exchange rate between
the pairs of amino acid residues at position 105 (Fig 11c)), such as A/E, A/L, A/V, E/Q, L/
Q, E/L, and E/V, indicating that this position of the retinal-binding pocket is the important
location of the functional adaptation of the proteorhodopsin. Results from this analysis
support the model that proteorhodopsins experience fast adaptation to the environmental
conditions (ocean depth) of their habitat by mutating at position 105, rather than acquiring a
new function (such as signal transduction). As light is at a premium at ocean depth, spectral

Liang et al. Page 13

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2010 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tuning is very important, as a well-tuned pigment would be more effective at capturing light
[62,66,68].

8. Generating binding site negative images for drug discovery
We can also construct the negative image of a binding pocket, and use it as a shape template
for understanding substrate/ligand and protein binding. With additional chemical texture
mapped on the template, negative images of binding pockets can be used for rapid screening
of compounds in order to identify those that might bind to the proteins [16].

The negative image of a binding pocket can be constructed using a set of circumscribing
spheres for the discrete set of Delaunay tetrahedra and triangles that defines the binding
pocket [22,16]. First, the orthogonal centers of each Delaunay tetrahedron contained in the
binding pocket is calculated. Circumscribed spheres are then generated with the orthogonal
centers taken as their spherical centers. The radii of the circumscribed spheres are then
further optimized so the resulting collection of spheres most faithfully represent the negative
shape of the binding pocket [16]. Fig 12 gives an example of the negative image computed
for the isoflurane binding pocket in apoferritin, which provides the only soluble protein
model known to contain the structural motif thought to be important for strong anesthetic
binding [69].

When combined with pharmacophore information, the negative images of protein binding
pockets are found to be very effective in enriching inhibitors when examining and ranking a
long list of chemical compounds for potential binding activities [16]. Results for HIV-1
protease, phosphodieterase 4B, estrogen receptor alpha, HIV-1 reverse transcriptase, and
thymidine kinase show that the enriched compounds are of generally diverse chemical
nature [16]. This offers an advantage for further development of drug-like compounds based
on these leads.

9. Summary and Conclusion
Structural genomics projects have significantly advanced our understanding of the structural
basis of the protein universe. It provides a wealth of information for tackling the challenging
problem of understanding protein functions. By providing a large amount and standardized
data, the success of structural genomics enables development of new and well-tailored
computational methodology to interrogate a variety problems in functional understanding of
the biological roles of protein molecules.

In this Chapter, we have discussed our approach of studying protein local surfaces for
function inference and function characterization. The approach described in this chapter
combines computational geometric characterization of protein structure, sequence and shape
matching, and uncovers evolutionary signal of protein function. Our results suggests that
this approach is effective in detecting enzyme functional surfaces, in inferring and
characterizing protein functions, and in gaining biological insight of the relevant cellular
processes. An important advantage of this integrated approach is that it gives clear location
information about the region of protein surfaces where biological function occurs. Another
important advantage is that by generating well-defined surface pockets and interior voids, by
identifying those surfaces related to binding, and by applying the Bayesian Monte Carlo
method as developed in [11], we are now able to achieve the important task of separating
selection pressure due to protein function from that due to protein stability and folding. This
is evidence by the improved ability in predicting protein functions when using customized
scoring matrice computed using our approach vs. using precomputed scoring matrice.
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It is envisioned that this approach of local surface analysis and comparison can be
generalized to study the challenging problem of physical protein-protein interactions.
Additional development in surface partition, shape matching, and evolutionary signal
detection will likely to yield new insight.
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Figure 1.
Pockets and voids in proteins. There are three types of unfilled space on protein surfaces.
Voids are fully enclosed and have no outlet, pockets are accessible from the outside but with
constriction at mouths, and shallow depressions have wide openings. We use the general
term surface pockets to include both pockets and voids (Adapted from [13]).
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Figure 2.
Voids and pockets in protein structures. (a) Number of voids and pockets scale roughly
linearly with protein length for a representative set of 636 proteins. Here circles and solid
triangles represent the numbers of voids and pockets, respectively. (b) The volume of
protein as calculated using van der Waals model scales linearly with the van der Waals area
of protein (Adapted from [13]).
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Figure 3.
The binding pockets on HIV-1 protease and phosphatidylinositol transfer protein (PITP).
(Left): Binding pocket (yellow) on HIV-1 shown in van der Waals space filling model.
Ligand is colored red. (Middle): The alpha shape of the HIV-1 binding site. Its mouth
opening is colored gold. (Right): Binding pocket (green) on PITP for phoshpolipid (red) and
a regulatory site on a different region (yellow) of the same protein.
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Figure 4.
The length distribution and residue composition of functional surfaces for 3,275 enzyme
proteins containing known functional key residues. (a) Functional surfaces usually consist of
8–200 residues, with the mean at 35 residues. (b) The amino acid residue composition of
functional surfaces is different from the composition of sequences used to construct the
Jones-Taylor-Thornton (JTT) model (Adapted from [14]).
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Figure 5.
The binding surface (green) and key residues predicted from a structure of alpha amylase.
Here the predicted four key residues are colored yellow (D176), cyan (H180), pink (N208)
and blue (D269). They contain several high propensity atomic patterns from our library of
1,031 functional atomic patterns. Their classes of secondary structural environment (sheet s,
helix h, and coil c) are also listed. The substrate molecule is colored red (adapted from [14]).
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Figure 6.
Functional surfaces on the catalytic domains of cAMP-dependent protein kinase (1cdk) and
tyrosine protein kinase (2src). (a) In both cases, the active sites are computed as surface
pockets. (b) Residues defining the pockets are well dispersed throughout the primary
sequences (full sequence identity = 16%), (c) The identity of their surface sequence patterns
is much higher (51%).
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Figure 7.
The binding pockets from two different stromelysin catalytic domains (pocket 29 from pdb
1hv5.A and pocket 19 from 1qic.D). They are aligned in a sequence order independent
fashion with an cRMSD of 0.76 Å for 29 atoms from 10 residues. (Top) The binding
pockets on the two protein structures, with pocket atoms shown in space filling form. The
aligned atoms are colored in red. (Middle) The alignment of residues of these two surface
pockets. Atomic details of the alignment are not shown. Sequence numbers are listed above
and below the residue names for 1hv5 and 1qic, respectively. Residues in 1hv5 are arranged
in order, but it is clear that the aligned residues in 1qic are not in sequence order. This
residue alignment is derived from detailed alignment of atoms from surface pockets.
(Bottom) Aligned atoms from these two surface pockets, with N atoms in blue, O in red, and
C in green.
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Figure 8.
Substitution rates of residues in the functional binding surface and the remaining surface of
alpha-amylase (pdb 1bag). (a) Substitution rates of residues on functional binding surface
(values represented by bubble sizes). (b) Substitution rates of residues on the remaining
surface on 1bag. The values and overall pattern of substitutions that appear in both surface
regions are very different (adapted from [11]).
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Figure 9.
Function prediction of alpha amylases. (a) The phylogenetic tree for Pdb structure 1bag
from B. subtilis. (b) The functional binding pocket of alpha amylase on 1bag. (c) A matched
binding surface on a different protein structure ( 1b2y from human, full sequence identity
22%) obtained by querying with the binding surface of 1bag (adapted from [11]).
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Figure 10.
Structures containing the CBS domain: (A) CBS domain protein mt1622 from M.
thermoautotrophicum (PDB ID=1pbj), (C) inosine-5′-monosphate dehydrogenase (IMPDH)
from S. pyogenes (PDB ID=1zfj), and (E) conserved hypothetical protein Ta549 from T.
acidophilum (PDB ID=1pvm). The proposed nucleotide bindings surface of mt1622
(CASTp ID=9, cyan, A) is shown superposited to a flavoprotein (PDB ID=1efp, white) with
bound AMP molecule (B). The IMPDH binding surface (CASTp ID=31, yellow) is show
superpositioned with ATP bound cyclin-dependent kinase 2 (PDB ID=1b38, white) (D).
Ta549 contains an additional C terminus CBS domain (C, orange) opposite the tandem
domain interface surface (CASTp ID=27, C, green). The domain insert creates a novel
surface (CASTp ID=30, orange) that shares similarity to an ATP binding surface from
saicar-synthase (PDB ID=1obd, white) (F).
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Figure 11.
Amino acid substitution rates in the putative retinal-binding pockets of proteorhodopsins. a)
Alignment of putative pocket sequences. The 20 pocket residue positions are mapped from
retinal-binding pocket in bacteriorhodpsin structure 1KGB. Residues that are identical with
the residues in the first sequence are substituted with “.”. b) Phylogenetic tree of the full-
length protorhodopsin sequences. c) The plot of amino acid substitution rates for residues in
the putative retinal binding pocket. The area of the circles is proportional to the substitution
rate. The exchange pairs with the fastest rates are found at positions 93 and 137 in PR
(following BR numbering). These are: A/L, A/V, A/E, E/Q, E/L, L/Q, L/V, and M/T
(Adapted from [60].
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Figure 12.
The generation of a negative image of a binding pocket. (a) The surface pocket in apoferritin
that binds isoflurane, (b) the atoms forming the binding pocket and its computed negative
image, and (c) negative image of the binding pocket.
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