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 Epidemiological studies have repeatedly demonstrated 
an inverse relationship between the risk of atherosclerotic 
cardiovascular disease and plasma levels of high-density li-
poprotein cholesterol (HDL-C), as well as of its major apo-
lipoprotein (apo), apoA-I ( 1, 2   ). Despite proven effi cacy, 
primary and secondary prevention trials have shown that 
there remains a considerable residual cardiovascular risk 
during cholesterol-lowering treatment ( 3   ). In view of anti-
atherogenic properties of HDL, this lipoprotein fraction 
has been identifi ed as a therapeutic target ( 4–7 ). There-
fore, progress in our understanding of HDL metabolism 
and HDL function is expected to contribute to the devel-
opment of novel strategies in order to reduce the burden 
of atherosclerotic disease in humans ( 5, 6, 8 ). 

 The metabolism of HDL particles, which comprise a 
heterogeneous group of lipoproteins, is in a complex way 
regulated by many factors, including lipases, lipid transfer 
proteins, and cellular receptors ( 4, 6, 8 ). The liver and in-
testine are major sites of apoA-I secretion and hence con-
tribute to HDL particle generation ( 8–10 ). Importantly, 
studies in rats, rabbits, and hamsters have shown that a 
major fraction of radiolabeled apoA-I is being taken up by 
the kidney in vivo ( 11–13 ), with the proximal renal tubule 
representing a likely site for apoA-I uptake and degrada-
tion ( 14 ). A plausible mechanism that may explain the 
role of the kidney in apoA-I catabolism includes fi ltration 
of apoA-I through the glomerular basement membrane 
and subsequent proximal tubular uptake via the cubilin-
megalin-amnionless complex, which enables endocytosis 
of HDL-derived proteins ( 9, 10, 15, 16 ). 
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self-report), all subjects with a urinary albumin concentration of 
 � 10 mg/L (n = 7,768) were invited, of whom 6,000 participated. 
Furthermore, a randomly selected control group with a urinary 
albumin concentration of <10 mg/L (n = 3,394) was invited, and 
2,592 participated. These 8,592 subjects constitute the entire 
PREVEND cohort and were asked to collect two consecutive 24 h 
urine samples (baseline screening). In order to compose a “ran-
dom sample” representative of the Groningen population, we 
considered a subcohort of the 8,592 subjects. For this purpose, 
we included all subjects with a urinary albumin concentration of 
<10 mg/L who completed the fi rst screening (n = 2,592) and 
added a subset of the ‘‘oversampled’’ subjects whose urinary al-
bumin concentration was >10 mg/L by proportionally taking a 
computer-generated, random subset (n = 840) ( 31 ). After exclu-
sion of 18 participants known to have proteinuria or renal dis-
ease, a cohort of 3,414 participants was created. As expected, the 
characteristics of this “random sample” were similar to that of the 
original population (n = 40,856) ( 32 ). 

 Because we aimed to test a physiological relationship of HDL-C 
and apoA-I with kidney function, we selected individuals without 
manifest disease. Therefore, we excluded subjects with an esti-
mated glomerular fi ltration rate (e-GFR)  �  45 ml/min/1.73 m 2  
[assessed using the Modifi cation of Diet in Renal Disease (MDRD) 
equation; see below] and urinary albumin excretion >300 mg/24 h. 
We also excluded subjects with prior history of cardiovascular dis-
ease or with diabetes mellitus (see defi nitions), as well as sub-
jects using any anti-hypertensives or lipid-lowering agents 
(including diuretics, angiotensin converting enzyme inhibitors, 
angiotensin antagonists, statins, and fi brates) in order to avoid 
bias attributable to associations of prevalent cardiovascular dis-
ease with (apo)lipoproteins and interference due to HDL effects 
of lipid-lowering and anti-hypertensive drugs. Individuals who 
were nonfasting at the time of screening were not allowed to par-
ticipate to be able to calculate insulin resistance. Finally, we ex-
cluded subjects with missing values for HDL-C, apoA-I and 
apoA-II, and triglycerides (n = 24), leaving a study population 
consisting of 2,484 subjects. 

 Measurements, defi nitions, and renal function estimates 
 Participants underwent two visits to the outpatient research 

unit for the baseline survey. All participants completed a ques-
tionnaire on demographics, cardiovascular disease history, and 
medication use prior to their fi rst visit. Height and weight were 
measured on the fi rst visit; body mass index (BMI) was calculated 
as the ratio between weight and height squared (in kg/m 2 ). Waist 
circumference was measured on the bare skin between the 10th 
rib and iliac crest. During the fi rst and second visit, blood pres-
sure was measured in supine position every min for 10 min with 
an automatic device (Dinamap XL Model 9300, Johnson-Johnson 
Medical, Tampa, FL). Blood pressure values are given as the 
mean of the last two recordings of both visits. The participants 
collected two 24 h urine samples for measurement of creatinine 
and albumin excretion; microalbuminuria and macroalbumin-
uria were defi ned as mean urinary albumin excretion between 30 
and 300 mg/24 h, and >300 mg/24 h, respectively ( 30–32 ). Par-
ticipants were instructed to remain fasting for at least 8 h before 
blood sampling, which was done at the second visit. Diabetes mel-
litus was diagnosed by fasting plasma glucose  � 7.0 mmol/l ac-
cording to 1997 American Diabetes Association criteria ( 33 ) or 
use of glucose-lowering drugs. Furthermore, information on 
medication use was checked using pharmacy-dispensing data 
from all community pharmacies in the city of Groningen, which 
covers complete information on drug use in 80% of PREVEND 
participants. Insulin resistance was estimated using homeostasis 
model assessment (HOMA ir ), which was quantifi ed as insulin   · glu-
cose/22.5 ( 34 ). 

 Despite the prominent role of the kidney in apoA-I ca-
tabolism as inferred from animal experiments ( 9–14 ) and 
the observation that increased catabolism of apoA-I is a 
predominant kinetic abnormality in humans with low 
HDL-C ( 17 ), the relationship of HDL-C and apoA-I in sub-
jects without severely compromised kidney function has 
received little attention. In fact, most studies have focused 
on low HDL-C and apoA-I levels in subjects with severe 
chronic kidney disease ( 18–22 ). Few epidemiological stud-
ies have determined the relationship of HDL-C with esti-
mates of glomerular fi ltration rate (GFR) in populations 
with low prevalence of severe chronic kidney disease ( 23–
25 ). Using data from the Kaiser Permanente Renal Regis-
try  , it was found that the prevalence of low HDL-C 
was increased in subjects with an estimated GFR (e-GFR)  �  
60 ml/min/1.73m 2 , irrespective of obesity ( 23 ). An analy-
sis from the population-based PREVEND (“Prevention of 
REnal and Vascular ENd stage Disease”) cohort demon-
strated the lowest HDL-C in subjects with the highest com-
pared with subjects with the lowest creatinine clearance 
( 24 ). In apparent contrast, a report from the Multi-Ethnic 
Study of Atherosclerosis showed among subjects with 
e-GFR > 60 ml/min/1.73m 2  that HDL-C and HDL particle 
concentrations were related inversely to serum cystatin-C 
levels, as a measure of renal function ( 25 ). Of note, in 
these studies, the relationship of kidney function with 
apoA-I was not determined ( 23–25 ). Moreover, in several 
of these reports ( 24, 25 ), associations of HDL-C with kid-
ney function were not controlled for factors affecting both 
kidney function and HDL-C, such as obesity and insulin 
resistance ( 26–28 ). 

 The present study was initiated to test the hypothesis 
that HDL-C and apoA-I are inversely associated with GFR 
in subjects without severely compromised renal function. 
To this end, we carried out cross-sectional analyses in a 
random sample of the general population that makes part 
of the PREVEND cohort. Fasting subjects were included, 
and we took potential confounding due to obesity, insulin 
resistance, and serum triglycerides into account. 

 SUBJECTS AND METHODS 

 Study participants 
 This study was conducted among subjects who participate in 

the Prevention of REnal and Vascular End-stage Disease (PRE-
VEND) study, which began in 1997. This prospective cohort study 
in the city of Groningen (The Netherlands) investigates the natu-
ral course of urinary albumin excretion and its relation to renal 
and cardiovascular disease. The study was approved by the local 
medical ethics committee. All participants gave written informed 
consent. Details of the study protocol have been published else-
where ( 29, 30 ). In summary, all inhabitants of the city of Gro-
ningen aged 28–75 years were sent a questionnaire and a vial to 
collect a fi rst-morning-void urine sample (prescreening). Of 
these subjects, 40,856 responded (47.8%) and returned a vial to 
a central laboratory for urinary albumin and urinary creatinine 
assessment. From these 40,856 subjects, the PREVEND cohort 
was selected with the aim to create a cohort enriched for the pres-
ence of high urinary albumin excretion. After exclusion of 
insulin-using diabetic patients and pregnant women (defi ned by 
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per 1.73 m 2  body surface area ( r  = 0.472,  P  < 0.001 and  r  = 
0.486,  P  < 0.001, respectively). HDL-C, apoA-I, and apoA-II 
levels were strongly interrelated ( r  = 0.346 to  r  = 0.712,  P  < 
0.001 for all). As shown in   Table 2  , HDL-C and apoA-I levels 
were correlated inversely with e-GFR, calculated using the 
MDRD and the CKD-EPI equations, as well as with creati-
nine clearance. HDL-C and apoA-I were also inversely re-
lated to waist circumference, HOMA ir , triglycerides, and 
urinary albumin excretion in univariate regression analysis. 
In contrast, apoA-II was unrelated to e-GFR and creatinine 
clearance. Likewise, inverse relationships of HDL-C and 
apoA-I with GFR estimates and creatinine clearance were 
observed when dividing the participants in normal weight, 
overweight, and obese individuals (  Table 3  ). The polyno-
mial relationships between HDL-C, apoA-I, and apoA-II 

 Three estimates of kidney function were applied: e-GFR calcu-
lated with the MDRD equation ( 35 ), e-GFR calculated with the 
new Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) equation ( 36 ) (supplementary  Table I   ) and the mean of 
two 24 h creatinine clearance measurements. All estimates of 
kidney function were corrected for 1.73 m 2  of body surface area, 
which was calculated as 0.007184 · (height in cm)  0.725  · (body 
weight)  0.425  ( 37 ). 

 Laboratory methods 
 Plasma glucose was measured shortly after blood collection. 

For other measurements, serum samples were stored at –80°C 
until analysis. Serum and urinary creatinine, serum total choles-
terol, and plasma glucose were measured using Kodak Ektachem 
dry chemistry (Eastman Kodak, Rochester, NY) with intra- and 
inter-assay coeffi cients of variation (CVs) < 3%. HDL-C was mea-
sured with a homogeneous method (direct HDL, no. 7D67, 
AEROSET TM  System, Abbott Laboratories, Abbott Park, IL). In 
this assay system, HDL and apoB-containing lipoproteins are 
complexed with one reagent, followed by solubilizing HDL par-
ticles by another reagens ( 38 ). Serum triglycerides were mea-
sured enzymatically. Serum apoA-I and apoA-II were determined 
by nephelometry applying commercially available reagents for 
Dade Behring nephelometer systems [BN II, Dade Behring, 
Marburg, Germany; apoA-I test kit, code no. OUED; apoA-II test 
kit, code no. OQBA, apo B test kit, code no. OSAN ( 39 )]. Intra- 
and inter-assay CVs of apoA-I, apoA-II, and HDL-C were all <5%. 
Urinary albumin concentration was determined by nephelome-
try, with a threshold of 2.3 mg/l and intra- and inter-assay CVs 
<3% (BNII; Dade Behring). 

 Statistical analysis 
 Data are given in mean ± SD for parametrically distributed 

variables and in median (interquartile range) for variables with a 
skewed distribution. Univariate correlations were calculated 
using Pearson’s regression coeffi cients. We additionally esti-
mated the continuous relationships between HDL-C, apoA-I and 
apoA-II, and eGFR (MDRD) with polynomial regression analysis. 
Associations of HDL-C, apoA-I, and apoA-II with kidney function 
were also determined by dividing GFR estimates and creatinine 
clearance into quintiles using one-way ANOVA. Multiple linear 
regression analysis was performed to determine independent re-
lationships between variables. In these analyses, logarithmically 
transformed values of triglycerides, HOMA ir , and urinary albu-
min excretion were used. Two-sided  P -values < 0.05 were consid-
ered to be statistically signifi cant. 

 RESULTS 

   Table 1   shows clinical and laboratory characteristics of 
this predominantly (>95%) Caucasian population. e-GFR, 
as determined by the MDRD equation, was between 45 
and 60 ml/min/1.73 m 2  in 4%, between 60 and 90 ml/
min/1.73 m 2  in 72.5% and above 90 ml/min/1.73 m 2  
23.5% of subjects; 4.6% had microalbuminuria. Systolic 
blood pressure was <140 mm Hg in 84% and diastolic 
blood pressure was <90 mm Hg in 97.5% of subjects. A to-
tal of 32.5% were current smokers. 

 e-GFR calculated using the MDRD equation was strongly 
correlated with e-GFR calculated using the CKD-EPI equa-
tion ( r  = 0.963,  P  < 0.001). e-GFR calculated using the MDRD 
equation and e-GFR calculated using the CKD-EPI equation 
were also correlated with creatinine clearance, expressed 

 TABLE 1. Clinical characteristics, estimates of glomerular fi ltration 
rate, urinary albumin excretion, serum lipids, high density lipoprotein 

cholesterol, apolipoprotein A-I and apolipoprotein A-II in 2,484 
individuals 

Characteristic

Age (years) 47 ± 12
Sex (men/women) 1411/1073
Body mass index (kg/m 2 ) 25.5 ± 3.9
Waist circumference (cm) 86 ± 12
Systolic blood pressure (mm Hg) 124 ± 17
Diastolic blood pressure (mm Hg) 72 ± 9
Serum creatinine ( � mol/L) 82 ± 13
Urinary albumin excretion (mg/24 h) 6.9 (5.4-10.3)
e-GFR MDRD  (ml/min/1.73 m 2 ) 81.2 ± 13.3
e-GFR CDK-EPI  (ml/min/1.73 m 2 ) 85.1 ± 14.3
Creatinine clearance (ml/min/1.73 m 2 ) 92.1 ± 22.8
Plasma glucose (mmol/L) 4.59 ± 0.62
Serum insulin (mU/L) 73 (5.2-10.5)
HOMA ir  (mU X mmol/(L 2  X 22.5)) 1.46 (1.00-2.18)
Serum total cholesterol (mmol/L) 5.59 ± 1.12
Serum triglycerides (mmol/L) 1.07 (0.78-1.51)
HDL-C (mmol/L) 1.40 ± 0.41
Serum apoA-I (g/L) 1.43 ± 0.29
Serum apoA-II (g/L) 0.35 ± 0.06

Data are given in mean ± SD or in median (interquartile range). 
Apo, apolipoprotein; HDL-C, high-density lipoprotein cholesterol; 
HOMA ir , homeostasis model assessment estimated insulin resistance; 
e-GFR, estimated glomerular fi ltration rate by MDRD and CDK-EPI 
equations (see Methods).

 TABLE 2. Univariate correlations of high density lipoprotein 
cholesterol, apolipoprotein A-I, and apolipoprotein A-II with renal 
function, waist circumference, insulin resistance, triglycerides, and 

urinary albumin excretion in 2,484 individuals 

HDL-C ApoA-I ApoA-II

e-GFR MDRD  � 0.102*  � 0.126*  � 0.022
e-GFR CKD-EPI  � 0.056**  � 0.096* 0.001
Creatinine 

clearance
 � 0.081*  � 0.108*  � 0.032

Waist  � 0.454*  � 0.296*  � 0.083*
Ln HOMA ir  � 0.320*  � 0.173* 0.002
Ln Trig  � 0.474*  � 0.161* 0.147*
Ln UAE  � 0.108*  � 0.086*  � 0.042***

Pearson’s correlation coeffi cients are shown. Apo, apolipoprotein; 
HDL-C, high-density lipoprotein cholesterol; HOMA ir , homeostasis 
model assessment estimated insulin resistance; Ln, logarithmically 
transformed values; Trig, triglycerides; UAE, urinary albumin excretion; 
e-GFR, estimated glomerular fi ltration rate by MDRD and CKD-EPI 
equations (see Methods). e-GFR and creatinine clearance are expressed 
per 1.73 m 2  of body surface area. *  P  < 0.001; **  P  < 0.01; ***  P  < 0.05.
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 In addition, sensitivity analyses were carried out in the 
subjects with urinary albumin excretion < 30 mg/24 h (n = 
2370), as well as in subjects with e-GFR using the MDRD 
equation  �  60 ml/min/1.73 m 2  (n = 2385). In subjects 
with urinary albumin excretion <30 mg/24 h, the inde-
pendent relationships of HDL-C and apoA-I with both 

with e-GFR, calculated using the MDRD equation, are 
shown in   Fig. 1  . Again, inverse relationships of HDL-C and 
apoA-I but not apoA-II with e-GFR were present. The asso-
ciations of HDL-C, apoA-I, and apoA-II with quintiles of 
e-GFR, as estimated by MDRD, are demonstrated in   Fig. 2  . 
Both HDL-C and apoA-I were lower in the higher e-GFR 
quintiles, but this trend was not observed for apoA-II. Simi-
lar patterns were observed for the relationship between 
HDL-C, apoA-I and apoA-II, and e-GFR, as estimated by 
CKD-EPI, and creatinine clearance (data not shown). 

 Multiple linear regression analyses were performed to 
determine whether the inverse relationships of HDL-C 
and apoA-I with GFR estimates and creatinine clearance 
were independent of waist circumference, HOMA IR   , and 
triglycerides. HDL-C and apoA-I were related inversely to 
both GFR estimates (  Tables 4  and  5  )   as well as to creati-
nine clearance (  Table 6  ), independently of waist, HOMA IR , 
and triglycerides in age- and sex-adjusted models. When 
urinary albumin excretion was also included in the analy-
ses, the strength of the relationships of HDL-C and apoA-I 
with e-GFR and creatinine clearance remained unchanged. 
In these models, the independent relationships of HDL-C 
and apoA-I with urinary albumin excretion did not reach 
formal statistical signifi cance ( Tables 4–6 , models 2)  . Fur-
thermore, the independent relationships of HDL-C and 
apoA-I with GFR estimates and creatinine clearance were 
unaltered after additional adjustment for smoking and al-
cohol consumption (data not shown). In women only, 
HDL-C and apoA-I were correlated inversely with both 
GFR estimates and with creatinine clearance ( � -coeffi cients 
ranging from  � 0.092 to  � 0.101,  P  < 0.001 for all; data not 
shown), independently of waist, HOMA IR , and triglycer-
ides. When men were analyzed separately, HDL-C and 
apoA-I were also correlated independently and inversely 
with creatinine clearance ( � -coeffi cient:  � 0.065,  P  = 0.013 
and  � -coeffi cient:  � 0.061,  P  = 0.043, respectively), whereas 
HDL-C was related inversely with e-GFR according to the 
CKD-EPI equation ( � -coeffi cient:  � 0.056,  P  = 0.038). In 
men only, the adjusted relationships of apoA-I with e-GFR 
calculated with the CKD-EPI formula ( � -coeffi cient: 
 � 0.040,  P  = 0.21) and of HDL-C and apoA-I with e-GFR 
calculated using the MDRD equation ( � -coeffi cient: 
 � 0.030,  P  = 0.260 and  � -coeffi cient:  � 0.020,  P  = 0.531, re-
spectively) did not reach signifi cance (data not shown). In 
these sex-specifi c analyses, no inverse relationships of 
apoA-II with any of the GFR estimates and creatinine clear-
ance were observed in women or in men. 

 TABLE 3. Univariate correlations of high density lipoprotein cholesterol, apolipoprotein A-I, and apolipoprotein A-II with renal function 
according to obesity category (50 5% nonobese subjects (BMI < 25 kg/m 2 ); 37.8% subjects with overweight (BMI  �  25 kg/m 2  and 

< 30 kg/m 2 ); 11.7% obese individuals [BMI  �  30 kg/m 2 )] 

BMI < 25 kg/m 2 BMI  �  25 kg/m 2  and < 30 kg/m 2 BMI � 30 kg/m 2 

HDL-C ApoA-I HDL-C ApoA-I HDL-C ApoA-I
e-GFR MDRD  � 0.153*  � 0.179*  � 0.133*  � 0.138*  � 0.156**  � 0.088
e-GFR CKD-EPI  � 0.115*  � 0.153*  � 0.111*  � 0.125*  � 0.125***  � 0.068
Creatinine clearance  � 0.070***  � 0.104**  � 0.095**  � 0.122*  � 0.147*  � 0.121*

Pearson’s correlation coeffi cients are shown. Apo, apolipoprotein; HDL-C, high density lipoprotein cholesterol; e-GFR, estimated glomerular 
fi ltration rate by MDRD and CKD-EPI equations (see methods). e-GFR and creatinine clearance are expressed per 1.73 m 2  of body surface area. * 
 P  < 0.001; **  P  < 0.01; ***  P  < 0.05.

  Fig.   1.  Continuous relationships of HDL-C, apoA-I, and apoA-II 
with e-GFR, calculated with the MDRD formula, analyzed by poly-
nomial regression analysis. (upper, middle, and lower panel, re-
spectively). Lines of best fi t (polynomial quadratic) with 95% 
confi dence intervals are shown.   
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lationships were found with creatinine clearance, which 
underscores the robustness of our fi ndings. Such inverse 
relationships of HDL-C and apoA-I with kidney function 
were also present in subjects without and with overweight 
or obesity. Furthermore, multiple linear regression analy-
ses showed inverse relationships of HDL-C and apoA-I with 
all three measures of kidney function that were indepen-
dent of central obesity, insulin resistance, and serum tri-
glycerides. Additional analyses in each gender separately 
yielded essentially similar fi ndings. Thus, the present 
results support the possibility that renal hemodynamic 
factors may contribute to apoA-I metabolism, thereby af-
fecting HDL-C levels. 

 There is a paucity of reports that are primarily aimed to 
determine the relationships of HDL-C and apoA-I with re-
nal hemodynamics in subjects without severe chronic kid-
ney disease. The inverse relationships of HDL-C and 
apoA-I with kidney function agree with some reported 
data obtained in the whole PREVEND cohort ( 24 ). Appar-
ently opposite fi ndings were found when stratifying sub-
jects without renal insuffi ciency according to plasma 
cystatin-C levels ( 25 ), although in adolescent American 
Aboriginals ( 40 ), in subjects with essential hypertension 
( 41 ), or in type 2 diabetic individuals ( 42 ) no signifi cant 
associations of HDL-C with cystatin-C levels could be dem-
onstrated. It was long believed that cystatin C concentra-
tion is a good marker of kidney function, being independent 
of demographic variables such as muscle mass, weight, or 
disease states. Recent studies have suggested that cystatin 
C concentration is not only dependent on kidney func-
tion, but also on other factors, such as age, gender, smok-
ing, race and metabolic factors ( 43–45 ), which may at least 
in part explain the discrepancy with the previous report 
( 25 ). 

 The kidney represents a major site of apoA-I clearance 
( 11–14 ), but takes up very little HDL-derived cholesterol 
( 13 ). It is, therefore, plausible that the kidney metabolizes 
a lipid-poor form of apoA-I contained in pre � -HDL parti-
cles ( 46 ). Importantly, evidence is accumulating that prox-
imal renal tubules are able to endocytose HDL-associated 
proteins, including apoA-I and apoM, as well as other pro-
teins, via the cubulin-megalin-amnionless complex ( 9, 10, 
16, 47 ). Of note, urinary excretion of apoA-I is strongly 
increased in dogs and humans with functional cubulin de-
fi ciency ( 15 ) and in humans with renal tubular reabsorp-
tion failure due to Fanconi syndrome ( 46 ). Altogether, 
these fi ndings agree with the concept that in normal cir-
cumstances, apoA-I is present in the glomerular ultrafi l-
trate, and that reabsorption by the proximal renal tubule 
prevents its urinary excretion ( 9, 10 ). Although it is likely 
that apoA-II, the second most abundant HDL-associated 
apolipoprotein, is a cubulin ligand as well ( 48 ), apoA-II is 
not present in the urine of Fanconi syndrome patients 
( 46 ). The strong hydrophobicity of apoA-II probably may 
impair its dissociation from mature, cholesterol-rich HDL 
particles, and hence prevents its glomerular passage into 
the preurine ( 46 ). In view of these differences in renal 
apoA-I and apo-II handling ( 46 ), we also determined the 
relationships of apoA-II with GFR estimates in the present 

GFR estimates and creatinine clearance were essentially 
unaltered ( � -coeffi cients ranging from  � 0.040 to  � 0.050, 
 P -values ranging from 0.063 to 0.006; data not shown). 
Likewise in subjects with e-GFR  �  60 ml/min/1.73 m 2 , the 
relations of HDL-C and apoA-I with GFR estimates and 
creatinine clearance remained unchanged ( � -coeffi cients 
ranging from  � 0.036 to  � 0.046,  P -values ranging from 
0.055 to 0.012; data not shown). 

 DISCUSSION 

 This population-based study has demonstrated inverse 
relationships of HDL-C and its qualitatively most abundant 
apolipopoprotein, apoA-I, with GFR, estimated using the 
MDRD as well as the CDK-EPI equations in subjects with-
out severe chronic kidney disease. Importantly, similar re-

  Fig.   2.  HDL-C, apoA-I, and apoA-II (upper, middle, and lower 
panel respectively) according to quintiles of eGFR estimated by the 
MDRD-equation. Ranges of e-GFR in the increasing quintiles were: 
47–70, 70–77, 77–84, 84–92 and 92–148 ml/min/1.73 m 2 , respec-
tively. HDL-C and apoA-I: *  P  for trend < 0.001 by one-way ANOVA. 
ApoA-II,  P  = 0.83.   
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we also carried out a sensitivity analysis in subjects without 
microalbuminuria. Again, the strength of the relationships 
of HDL-C and apoA-I with GFR estimates was unaltered. 
Third, it should be recognized that the MDRD equation 
has not been developed for estimating kidney function at 
GFR values > 60 ml/min ·   1.73m 2  and it’s accuracy in this 
range has been criticized. However, most epidemiological 
studies have used the MDRD equation for estimating GFR. 
To make our study comparable to those in the literature 
( 23–25 ), we decided to adopt e-GFR, calculated using the 
MDRD equation, as our selection criterium. Recently, the 
CKD-EPI equation was developed, aiming to provide reli-
able e-GFR values especially at higher ranges ( 36 ). Impor-
tantly, our study showed inverse relationships of HDL-C 
and apoA-I with kidney function, irrespective of GFR be-
ing estimated by the MDRD equation, the CDK-EPI equa-
tion, or creatinine clearance. 

 It is increasingly appreciated that kidney function is in-
fl uenced by metabolic factors such as overweight and insu-
lin resistance ( 26, 27 ), which also coincide with lower 
HDL-C and apoA-I levels ( 4, 28 ). Moreover, microalbu-
minuria has been shown to be associated with higher tri-
glycerides, lower HDL-C, and altered lipoprotein subfraction 
levels ( 49 ). Such interrelationships require that these met-
abolic factors should be taken into account when address-
ing the contribution of GFR to HDL-C and apoA-I in a 

study. Despite expectedly strong interrelationships be-
tween apoA-I, apoA-II, and HDL-C, apoA-II was unrelated 
to any measure of GFR. It is obvious that the mechanisms 
responsible for the inverse relationship of HDL-C and 
apoA-I but not apoA-II with GFR, as shown here in the 
PREVEND population, are not known precisely. We inter-
pret the current fi ndings to be consistent with the hypoth-
esis that glomerular ultrafi ltration and subsequent tubular 
reabsorption and degradation contributes to apoA-I me-
tabolism in humans. 

 Several methodological aspects of our study need to be 
considered. First, we decided to test our hypothesis that a 
higher GFR is a determinant of lower HDL-C and apoA-I 
levels in a more or less healthy population. Therefore, the 
present study was carried out in the so-called “random 
sample” of the PREVEND cohort in order to avoid poten-
tial bias due to overrepresentation of microalbuminuric 
subjects ( 32 ). Besides prevalent cardiovascular disease, di-
abetes, and use of potentially interfering anti-hypertensive 
and lipid-lowering medications, we also excluded subjects 
with an estimated GFR  �  45 ml/min/1.73 m 2 , as based on 
the MDRD formula. This cut-off level is somewhat arbi-
trary but was also chosen in the Kaiser Permanente Renal 
Registry report ( 23 ). Of note, a sensitivity analysis on sub-
jects with GFR  �  60 ml/min/1.73 m 2 , indicating absence 
of moderate GFR decrease, yielded similar results. Second, 

 TABLE 4.   Multiple linear regression analyses demonstrating relationships of high density lipoprotein 
cholesterol and apolipoprotein A-I with estimated glomerular fi ltration rate (e-GFR), creatinine 

clearance, clinical variables [waist circumference, insulin resistance (HOMA ir )], triglycerides, and 
urinary albumin excretion in 2,484 individuals. Analyses with e-GFR based on MDRD equation 

(e-GFR MDRD ); model 1 without and model 2 with urinary albumin excretion. 

Model 1 Model 2

HDL-C ApoA-I HDL-C ApoA-I

 �  P  �  P  �  P  �  P 

e-GFR MDRD  � 0.042 0.018  � 0.040 0.038  � 0.040 0.024  � 0.040 0.053
Waist  � 0.209 <0.001  � 0.165 <0.001  � 0.206 <0.001  � 0.161 <0.001
Ln HOMA ir  � 0.068 0.001  � 0.070 0.002  � 0.067 0.001  � 0.068 0.003
Ln Trig  � 0.31 <0.001  � 0.030 0.163  � 0.331 <0.001  � 0.030 0.163
Ln UAE  � 0.026 0.118  � 0.034 0.071

All models are adjusted for age and sex. Apo, apolipoprotein; HDL-C, high-density lipoprotein cholesterol; 
HOMA ir , homeostasis model assessment estimated insulin resistance; Ln, logarithmically transformed values; Trig, 
triglycerides; UAE, urinary albumin excretion;  � , standardized regression coeffi cient.

 TABLE 5. Multiple linear regression analyses demonstrating relationships of high density lipoprotein 
cholesterol and apolipoprotein A-I with estimated glomerular fi ltration rate (e-GFR), creatinine 

clearance, clinical variables [waist circumference, insulin resistance (HOMA ir )], triglycerides, and 
urinary albumin excretion in 2,484 individuals. Analyses with e-GFR based on CKD-EPI equation 

(e-GFR CKD-EPI ); model 1 without and model 2 with urinary albumin excretion. 

Model 1 Model 2

HDL-C ApoA-I HDL-C ApoA-I

 �  P  �  P  �  P  �  P 

e-GFR CKD-EPI  � 0.051 0.008  � 0.051 0.024  � 0.049 0.011  � 0.048 0.033
Waist  � 0.208 <0.001  � 0.165 <0.001  � 0.205 <0.001  � 0.161 <0.001
Ln HOMA ir  � 0.069 0.001  � 0.070 0.002  � 0.067 0.001  � 0.068 0.003
Ln Trig  � 0.332 <0.001  � 0.030 0.157  � 0.332 <0.001  � 0.030 0.155
Ln UAE  � 0.025 0.120  � 0.034 0.071

All models are adjusted for age and sex. Apo, apolipoprotein; HDL-C, high-density lipoprotein cholesterol; 
HOMA ir , homeostasis model assessment estimated insulin resistance; Ln, logarithmically transformed values; Trig, 
triglycerides; UAE, urinary albumin excretion;  � , standardized regression coeffi cient.
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fi t the concept that the kidney contributes to apoA-I regu-
lation in humans.  

 The laboratory work of J. J. Duker and J. van der Wal-Haneveld 
is appreciated. We thank Dade Behring (Marburg, Germany) 
for supplying equipment (Behring Nephelometer II) and 
analytes for the determination of apolipoproteins and other 
metabolites. 
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