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Abstract
Purpose of review—A better understanding of the molecular events underlying stroke recovery
might be useful to optimize restorative therapies. Measurement of these events, however, is generally
inaccessible in humans, at least at the molecular level. Substitute measures, or biomarkers, that are
accessible and that provide useful insights might provide deeper insights into spontaneous recovery
in humans. This review considers advances in insights into using biomarkers to understand recovery
from stroke, and to serve as a surrogate measure of stroke recovery, including in a clinical trial
context.

Recent findings—Among the key recent findings is that measures of brain function and injury are
the strongest predictors of treatment effect, moreso than behavioral measures are despite the reliance
on behavioral measures as study entry criteria. Functional neuroimaging studies have provided
insights into therapeutic mechanism of action. In addition, measures of CNS function have been used
to estimate individual therapy needs, findings that suggest the potential to tailor restorative therapies
to the specific needs of individual patients.

Summary—Many therapies are emerging as potentially useful to promote improved recovery after
stroke. Continued advances in biomarkers are providing new insights into the neurobiology of both
spontaneous and therapy-induced brain repair after stroke.
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Introduction
Stroke is a major source of disability. Most patients do not reach the hospital in time to receive
acute therapies. The majority of those who do receive such therapies nevertheless still have
significant disability, as spontaneous stroke recovery is generally incomplete[1]. One area of
therapeutics that has the potential to further reduce disability revolves around restorative
therapeutics. A restorative therapy can be defined as one that aims to improve outcome by
promoting repair and restoration rather than by salvaging acutely threatened tissue. Restorative
interventions under study have included growth factors, cells, small molecules, intensive and
activity-based therapy, robotics, neuroprosthetics, electromagnetic brain stimulation, and
cognitive strategies such as motor imagery[2]. Restorative therapies for stroke span the
spectrum in terms of readiness for patient application, including publication of positive phase
3 trial results[3,4]. Whether the focus is on spontaneous recovery or on therapy-induced repair,
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a better understanding of the underlying cellular and molecular events might be useful to
improve patient outcomes.

Measurement of the events underlying recovery, however, is generally inaccessible in humans,
at least at the molecular level. Substitute measures, or biomarkers, that are accessible and that
provide useful insights might provide deeper insights into spontaneous recovery in humans,
and might also serve as surrogate markers in clinical trials of restorative therapies.

Biomarkers: general considerations
In the simplest case, a biomarker of stroke recovery would be a measure that correlates with
clinical status or with clinical evolution. Such a marker might be useful in constructing or
testing a biological model of recovery. A well-designed functional neuroimaging study can
also provide biomarker data around a specific subset of neural events, for example, providing
insights into specific neurochemical components of plasticity[5,6].

Biomarkers in a clinical trial might serve as a surrogate marker, which has been defined as “a
laboratory measurement…used as a substitute for a clinically meaningful endpoint.…”[7] One
of the earliest examples in stroke recovery was from Carey et al[8], who hypothesized that
affected limb training would be associated with increased reliance on the ipsilesional motor
system, that is, that measures of ipsilesional motor system function were a biomarker for
treatment effects. These authors found that, in subjects with chronic stroke prior to training,
affected hand finger tracking movements activated contralesional brain areas. However, after
training at this task, the normal pattern of laterality of brain activation was restored, with
activation shifting to ipsilesional brain regions.

In general, surrogate markers are particularly useful in phase 2 trials, for example, to probe
biological activity of a proposed therapy, to inform the decision whether or not to proceed to
phase 3[9,10], or by helping define a target population[11].” Examples include blood pressure
as a surrogate marker for vascular death, HIV RNA levels as a marker of progression to AIDS,
or tumor size as a marker of survival. Biomarker data might also be used to guide features of
therapy in ways that behavioral or demographic data can not. This perspective has received
increased attention in the acute stroke setting, where some studies have suggested that
diffusion-perfusion mismatch might be a useful surrogate marker of salvable penumbra
[12-14].

A number of caveats exist when considering the utility of a biomarker in this context. Surrogate
endpoints are generally easier to measure than behavioral endpoints are, easier to standardize,
and save time and money[9,15]--but these features are not always applicable for many of the
imaging or physiological measures proposed as recovery-related surrogate endpoints. A
measure has reduced potential to serve as a valid surrogate endpoint when it is not in the causal
pathway of the disease process, when the therapeutic intervention selectively affects
physiology of the surrogate, or when the surrogate measure does not fully capture the net effect
of treatment on the clinical outcome[9,16]. The usual clinometrics considered for any outcome
measure, such as validity, reliability, sensitivity, and specificity (see Figure 1), are pertinent
to any discussion of biomarkers but in general have been incompletely assessed in the setting
of stroke recovery[17-20]. Numerous influences and other covariates relevant to other aspects
of stroke[21] are likely important to biomarkers of recovery and vastly complicate assessment
of these markers.

Recovery after stroke
Animal studies have provided insights into the cellular and molecular events underlying
spontaneous and treatment-induced stroke recovery for which human biomarkers might be
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useful. As reviewed elsewhere[22-24], these include structural changes in axons, dendrites,
and synapses; increased activation and migration of endogenous neural stems; plus changes in
extracellular matrix, growth factor levels, glia, angiogenesis, and excitability. In some cases,
these changes arise bilaterally after a unilateral stroke. Cortical representational maps can shift
and expand in relation to injury, behavioral recovery, and training.

Human studies of stroke recovery also provide information useful for selecting biomarkers of
recovery. Overall, the best spontaneous return of behavior is associated with the greatest return
of activity in primary cortex. Useful compensatory brain responses include increased activation
in secondary areas that are normally connected to the injured zones through a distributed
network, a shift in interhemispheric lateralization towards the contralesional hemisphere, and
shifts in representational maps surrounding the infarcted zone. In general, the best behavioral
outcomes after stroke are associated with the greatest return of brain function towards the
normal state of organization[25]. Some authors have suggested that those events that support
spontaneous recovery are likely to be the same events that are measured as biomarkers[26].

A biomarker might be selected on any of several bases. For example, a biomarker might be
selected as it correlates with a cross-sectional estimate of behavioral status, with change in
behavioral status over time, with response to a therapeutic intervention, or in relation to a key
covariate of interest. The choice of test used might vary across these situations, but as described
below, likely substantial overlap exists. Choice of biomarker might also emphasize pragmatic
issues: most patients with stroke are often infirm with reduced capacity for extended testing;
many have a range of stroke-related deficits, such as inattention, aphasia, or depression, that
reduce capacity to undergo testing; and have relevant concomitant medical and demographic
issues, such as median age in the eight decade.

Biomarkers of potential value to recovery after stroke
A number of measures of potential interest are available to serve as a biomarker of recovery.
The most elementary examples are simple behavioral measures, such as short-distance
measures of gait as a marker of overall vascular or social status[27], index finger extension as
a predictor of arm recovery[28], or a blood test as a marker of subsequent clinical outcome
[29]. Simple brain imaging measures also have potential value, for example, with total infarct
volume correlating with, and predicting, overall neurological status[30,31].

More complex anatomical imaging measures are also of potential value as biomarkers of
recovery. Imaging of region pertinent to specific neurotransmitters might have value for
specific hypotheses such as those related to memory[32]. High resolution MRI can detect
changes in cortical thickness[33], sometimes increased with treatment[34]. Diffusion tensor
imaging (DTI) measures the tendency of water movement to be directional, and so reflects
injury when stroke reduces the linearity of water movement, or fractional anisotropy, within a
directional tract such as the corticospinal. DTI data provide a measure of white matter tract
status that not only describes injury[35], but also can provide insights into repair[36]. DTI, like
fMRI[37], is of particular value to translational science in brain repair because the same
measurements obtained in animal models can be used in human subjects. Multimodality
approaches provide rich insights in this context[38,39].

Measures of CNS function might also be useful biomarkers. Physiological measures such as
motor system transcranial magnetic stimulation (TMS) can yield information on the size of a
cortical representational map, or on the speed/magnitude of the motor evoked potential (MEP),
reflections of CNS injury[40]. Brain function can be measured with functional MRI (fMRI) or
positron emission tomography (PET), as well as with electroencephalography or
magnetoencephalography. Use of such methods can measure the volume of regional activation,
such as the volume of Broca’s area activated during a speech output task; the magnitude of
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activation, such as the height of parietal activation during a spatial attention task; or the balance
of activation across hemispheres, sometimes reported as the laterality index (LI). PET can
provide a direct measure of many processes including regional blood flow, metabolism, and
receptor ligand occupation. Other tissue function measures include measures of cortical
excitability or inhibition, or assessments of the connectivity between various cortical regions
[41].

Measurement of tissue function introduces complexities that do not arise with measurement
of tissue anatomy. To activate the brain with fMRI or PET, the subject must engage in a specific
behavioral paradigm, correctly, according to instructions, on cue--at times a challenge after
stroke. The behavioral paradigm must be carefully selected to probe the brain functional circuit
of interest. These issues influence the utility of such a biomarker, and do so in a manner that
might vary across sites.

There are many types of relationship that a biomarker might have with the process or behavior
of interest. A biomarker might simply be a direct correlation with the level of activity in a
specific brain area. For example, better outcome has been found to correlate with larger
activation maps within ipsilesional motor cortex using a range of techniques[42,43]. In such
cases, a TMS, fMRI, or PET measure might be used to determine which patients have more of
a useful recovery-related process ongoing. A useful biomarker might also have an inverse
correlation, for example, with reduced blood flow[44], activation[25], or evoked potentials
[45] in specific brain areas at times corresponding to better behavioral outcome. A biomarker
might involve excitatory or inhibitory[46] measures.

Although a preponderance of evidence suggests that the most critical processes for behavioral
recovery take place in the ipsilesional hemisphere, a number of observations suggest that events
useful to recovery can also be measured in the contralesional hemisphere[47-51]. In studies of
brain activation, the LI[52] has been a useful metric for defining the activation balance between
hemispheres, with recent studies providing refined methods for its determination[53].

Potential applications of stroke recovery biomarkers
A biomarker for recovery that is found to be valid and reliable might be employed in several
different ways to improve patient outcomes. Functional neuroimaging measures might be used
to guide dose of therapy, much as serum TSH is used to guide treatment of hypothyroidism or
exercise treadmill testing is used to guide treatment of chest pain. Repeated measurement of
fMRI laterality measurements[54] or motor evoked potential by TMS[55] have been found
useful in this regard, with change over time in these measures suggesting potential
modifications of a restorative therapy dose. Given that individual patient responses to a
restorative therapy are highly variable, great promise exists in the use of biomarkers to guide
qualitative or quantitative treatment choices in order to derive maximum patient gains.

A biomarker that can substantially improve prediction of spontaneous outcome[56], or of
response to treatment, might be of enormous value to clinicians and clinical trialists. One
candidate measure is fMRI-based. In patients with chronic stroke, smaller ipsilesional primary
motor cortex activation during fMRI predicted gains from motor related therapy, and did so
more strongly than many other clinical or imaging metrics did[57] (Figure 2). Stinear et al
[35] achieved good success at predicting arm motor gains from therapy using DTI-based
measures of white matter integrity, TMS-based measures of motor system function,
demographics, and behavioral status.

Much work remains to bring biomarkers of stroke recovery to the point of utility. The degree
of variance in behavioral outcome after therapy explained by biomarkers remains limited. For
example, a measure of CNS injury based on DTI accounted for only 38% of the variance in
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clinical gains in one study[35]; an fMRI-based measure of CNS function, only 20%[57]. Also,
a recent meta-analysis[58] examined functional neuroimaging as a biological marker of
treatment effects. Concerns highlighted included that published data are skewed given that
most studies using biomarkers in this context have preferentially enrolled patients with good
baseline behavioral status, and so the value of recovery biomarkers in most patients remained
less explored. Also, many studies using recovery biomarkers have focused on patients in the
chronic phase of stroke, but data on patients in the initial weeks post-stroke are needed given
that such biomarkers might also prove important, and vary from chronic phase findings[59,
60], during this acute time period. The optimal technique to use for deriving biomarker data
remains unclear, with few publications directly comparing measurements across modalities.

Nevertheless, recent studies investigating biomarkers of recovery following stroke have
provided useful insights into treatment mechanism, patient selection, and prognosis. These
findings are facilitating emergence of restorative therapies in patients with stroke, and thus
deliver on the promise to reduce disability after stroke.

Conclusion
Biomarkers that measure CNS injury and function have the potential to provide insights into
recovery, serve as surrogate markers in clinical trials, and possibly guide therapeutic decision
making in a manner than can improve outcomes for individual patients. Recent findings are
exciting and heuristic, but further studies are needed for such biomarkers to reach the point of
widespread utility.
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Figure 1.
Specificity of fMRI measures in relation to post-stroke therapy. Ten patients with chronic left
brain hemiparetic stroke underwent fMRI scanning during two tasks, received three weeks of
robotic therapy, then underwent repeat fMRI scanning. The content of the robotic therapy
emphasized grasp/release movements. Group fMRI maps are displayed for 9 (bottom row) to
10 (top row) patients in whom such data were available. The top row shows evolution of fMRI
activation for the task that was extensively practiced as part of therapy, with a significant 20-
fold increase in left primary sensorimotor cortex activation. The bottom row shows that this
increase was absent for a control task, pronation-supination, that relied on similar muscles but
that was not rehearsed as part of therapy. The results suggest specificity of therapy effects on
an fMRI biomarker[17].
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Figure 2.
Potential of fMRI to provide an independent measure for predicting response to therapy in
chronic stroke. Twenty four patients underwent baseline behavioral and fMRI testing received
six weeks of therapy, and had repeat behavioral testing. Measures of (A) baseline motor status,
the arm motor Fugl-Meyer (FM) score and of (B) baseline brain function, the degree of
activation in ipsilesional primary motor cortex as measured from fMRI brain mapping each
predicted behavioral gains from subsequent therapy, and survived as the only such predictors
in a multivariate model. Note that variables not surviving in the model included the classic
stroke outcome predictors of age, time post-stroke, and infarct volume. In this population, better
baseline motor status predicted greater gains from therapy. Also, lesser baseline motor cortex
function during distal upper extremity movements predicted greater gains, suggesting underuse
of available motor cortex resource at baseline. The two variable model, while exciting in its
emphasis that behavioral and fMRI measures can have independent and complementary value,
nevertheless only explained 40% of the variance in response to therapy[57].
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