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Abstract: The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen 
receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endo-
crine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive 
indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies 
suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal 
and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor 
clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is contro-
versial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form 
of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/
PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as 
p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is 
required to determine whether their measurement or monitoring offer significant clinical benefits.
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Introduction
Breast cancer is the major common malignancy in 
women, and its treatment is possible if diagnosed at an 
early stage.1–4 Traditional prognostic factors include 
the axillary lymph node status, the tumor size, and the 
nuclear grade and histological grade.1,3 The progno-
sis for breast cancer generally depends on its stage, 
typically graded as I to IV with sub-stages (Table 1). 
Malignant progression of breast cancer involves the 
conversion of “benign proliferative lesions” and car-
cinomas in situ to early (stages I and II) disease, to 
locally advanced (stage III) disease, and then to metas-
tasis to bone, brain, lungs, and other sites (stage IV).

Fundamental to malignant progression are the het-
erotypic processes regulating epithelial-mesenchymal 
transition, hypoxia, desmoplasia, and angiogenesis5,6 
The development of cancer involves dysregulation of 
proliferative-signaling and growth-inhibitory factors, 
activation of oncogenes, and loss of tumor suppressor 
genes, all of which result in suppression of apoptosis 
and senescence.6 The increasing understanding of the 

pathophysiological background of breast cancer is 
associated with new molecular techniques, improved 
risk assessment, targeted therapy, and individualized 
treatment.1,3,7 Gene expression profiling may pro-
vide predictive and prognostic gene signatures which 
could help characterize tumors and enable more tai-
lored therapies.8,9

Interest in novel prognostic markers is based on 
the fact that a significant number of patients with 
early-stage breast cancer harbor microscopic metas-
tasis at the time of diagnosis. Many molecular mark-
ers that have been studied have both prognostic and 
predictive values. Prognostic markers are indicators 
of aggressiveness, invasiveness, extent of spread of 
tumors, and thus, correlate with survival indepen-
dent of systemic therapy and can be used to select 
patients at risk. On the other hand, predictive mark-
ers are reports which allow clinicians to expect ther-
apeutic outcomes and decide future treatment plans. 
This review summarizes mainly the prognostic val-
ues of classical (Ki67, ER, PR, HER2) and novel 

Table 1. Histological stages of human breast cancer.

Stage TNM Description 5-year 
survival

0 Tis N0 M0 Carcinoma in situ. No tumor in regional lymph nodes, No distant metastases. 99%
I T1 N0 M0 Tumor is less than or equal to 2 centimeters, No tumor in regional 

lymph nodes, No distant metastases.
92%

IIA T0 N1 M0 
 
T1 N1 M0 
 
T2 N0 M0

• � No evidence of primary tumor, metastases to movable ipsilateral nodes,  
No distant metastases.

• � Tumor is less than or equal to 2 centimeters, metastases to movable  
ipsilateral nodes, No distant metastases.

• � Tumor is between 2 and 5 centimeters, No tumor is regional lymph nodes,  
No distant metastases.

82%

IIB T2 N1 M0 
 
T3 N0 M0

• � Tumor is between 2 and 5 centimeters, metastases to movable  
ipsilateral nodes, No distant metastases.

• � Tumor is over 5 centimeters, No tumor in regional lymph nodes,  
No distant metastases.

65%

IIIA T0 N2 M0 
 
T1 N2 M0 
 
T2 N2 M0 
 
T3 N1, N2 M0

•  �No evidence of primary tumor, metastases to fixed ipsilateral nodes,  
No distant metastases.

•  �Tumor is less than or equal to 2 centimeters, metastases to fixed  
ipsilateral nodes, No distant metastases.

•  �Tumor is between 2 and 5 centimeters, metastases to fixed  
ipsilateral nodes, No distant metastases.

•  �Tumor is over 5 centimeters, metastases to movable or fixed  
ipsilateral nodes, No distant metastases.

47%

IIIB T4 Any N M0 
 
Any T N3 M0

•  �Tumor extends to chest wall, any nodal involvement,  
No distant metastases.

• � Any primary tumor involvement, metastases. 
to ipsilateral internal mammary nodes, No distant metastases.

44%

IV Any T Any N M1 Any primary tumor involvement, any nodal involvement, distant metastases. 14%

Abbreviations: T, status of primary tumor; N, regional lymph nodes; M, distant metastases.
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molecular factors (p53, p14ARF, cyclin D1, cyclin E, 
TBX2/3, BRCA1/2, and VEGF) for breast cancer. 
These novel molecular markers have been chosen 
from the viewpoint of involvement in the regulation 
of the p53 and RB tumor suppressor pathways, DNA 
damage response, and angiogenesis/metastasis, 
which play critical roles in human breast cancer 
development.

Ki67
Proliferative markers have been broadly evaluated as 
prognostic factor for early stage breast cancer patients. 
Ki67, a nuclear non-histone protein, was identified by 
Gerdes et al as after immunization of mice with the 
Hodgkin’s lymphoma.10–13 Ki67 is expressed only in 
cells in the proliferative phases of the cell cycle (G1, S, 
G2, and M phases). Ki67 is vital for cell proliferation, 
since downregulation of Ki67 using antisense nucle-
otides prevents cell proliferation.10 Ki67 is tightly 
controlled and regulated, implying a fundamental 
role in cell proliferation. However, it has been very 
difficult to determine its function because of its lack 
of obvious homology with known proteins. Bridger 
et al suggested a role of Ki67 in organizing DNA, 
based on its localization to extranucleolar sites during 
early G1; these sites contain centromeric and satellite 
DNA.14 Ki67 is also known to bind to DNA. Mac-
Callum and Hall suggested a structural role for Ki67 
within the nucleolus, based on its ability to interact 
with other proteins and bind with RNA and DNA.14,15 
They also suggested that Ki67 is an essential factor in 
the synthesis of ribosomes during cell division.15 Fur-
ther studies should be conducted to elucidate the roles 
of Ki67 in cell proliferation and tumorigenesis.

Ki67 expression is usually estimated as the per-
centage of tumor cells positively stained by the anti-
body, with nuclear staining being the most common 
criterion of proliferative index. Numerous studies 
have shown that Ki67 is of prognostic value in many 
types of malignant tumors. In breast cancer, most stud-
ies show a strong, statistically significant correlation 
with clinical outcomes, both on univariate and multi-
variate analyses. A strong correlation has been noted 
between the percentage of cells positive for Ki67 and 
the nuclear grade, age, and mitotic rate.16,17 Multiple 
studies have indicated that breast cancer overexpress 
Ki67 in more than 20–50% of the cells are at high risk 
of developing recurrent disease, showing a statistically 

significant correlation with clinical outcome, such as 
disease-free survival or overall survival.18–30

The predictive value of Ki67 on the survival of 
breast cancer patients has also been studied. To deter-
mine the clinical significance of the level of tumor 
cell proliferation during endocrine therapy for breast 
cancer, Dowsett et al31 measured the expression of 
Ki67 in tumor biopsy samples taken before and after 
2 weeks of pre-surgical treatment with anastrozole or 
tamoxifen alone, or the combination, in 158 patients 
with hormone receptor-positive breast cancer. In 
a multivariable analysis, they found that higher 
Ki67 expression after 2 weeks of endocrine therapy 
was associated with lower recurrence-free survival 
(P = 0.004) whereas higher Ki67 expression at base-
line was not.31 To compare the prognostic significance 
of Ki67 expression in breast cancer before and after 
neoadjuvant chemotherapy, the expression of Ki67 
was assessed using immunohistochemistry (IHC) 
in pre-therapy core-needle biopsy and post-therapy 
surgical excision specimens.32 In a matched cohort 
of 103 patients, post-therapy Ki67 was the only sig-
nificant independent prognostic factor among Ki67, 
ER, PR, HER2, clinical stage, histology on multivari-
ate analysis of relapse-free survival. On multivariate 
analysis for overall survival, both pre- and excision 
Ki67 expression was significant independent pre-
dictors, but the latter showed a stronger prognostic 
impact. In a cohort of 284 patients with only exci-
sion samples, post-therapy Ki67 was a significant 
independent prognostic factor. They concluded that 
post-chemotherapy Ki67 is a strong predictor of out-
come for patients not achieving a pathological com-
plete response.32,33 In addition, Ki67 correlates with 
other well-characterized proliferation markers, such 
as the proliferating cell nuclear antigen, which is a 
target of E2Fs34 (Fig. 1). Ki67 staining will continued 
to be used as a useful laboratory test to predict the 
prognosis of breast cancer patients since it is techni-
cally easier and more closely associated with clinical 
outcomes than DNA ploidy analysis or S phase mea-
surement by flow cytometry.

Estrogen and Progesterone Receptors 
(ER and PR)
The ER and PR are dimeric, gene-regulatory proteins. 
Estrogen and progesterone are well-established endo-
crine steroid regulators that modulate multiple aspects 
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of mammary gland pathology. These two hormones 
work together to direct mammary epithelial growth, 
differentiation, and survival.35 Although both steroids 
are commonly thought to be of primary importance for 
tumors arising in the reproductively competent years, 
between puberty and menopause, local aromatization 
of adrenal androgens provides additional estrogens 
in the postmenopausal years. Estrogen and progester-
one act through their nuclear receptors to modulate 
transcription of target genes.35,36 Genes encoding the 

receptors for each class of steroids are members of a 
single large superfamily of transcription-modulating 
factors. ERs may exist either in homodimeric or het-
erodimeric species, composed of α and β receptors 
acting as hormone-dependent transcriptional regu-
lators.37 The ER pathway plays a critical role in the 
pathophysiology of human breast cancer. Although it 
is known that ERα is of key importance in the mam-
mary ductal elongation of puberty, PR and ERβ appear 
to be more involved with lactational differentiation 

Figure 1. Signaling pathways involving molecular markers for human breast cancer. The green lines show cytoplasmic and nuclear membranes. HER2/
neu is an orphan receptor that can be activated by overexpression or mutation of the transactivating domain (rat neu). Overexpression of HER2/neu 
results in enhanced cell survival and mitogenicity and its deregulation can lead to breast tumorigenesis. VEGF shows mitogenic activity by stimulating the 
Ras-Raf-Mapk and PI3K pathways. Erk activation by the Ras-Raf pathway leads to activation of the cyclin D1 promoter by Fos/Jun/Ets transcription factors. 
Cyclin D1 makes a complex with Cdk4/6 to phosphorylate Rb and release E2F proteins that regulate G1-S transition. Both cyclins E and A2 are direct targets 
for activating E2Fs. Activation of the PI3K-Akt pathway results in enhanced anti-apoptotic action through inhibition of the pro-apoptosis proteins (e.g. Bad, 
GSK3 and the transcription factor FKHR-L1, not shown). In addition, activation of the JAK-STAT pathway by HER2 leads to cell proliferation. A major mito-
genic player acting downstream of HER2 is cyclin D1.215 As indicated, a number of pathways lead from the receptors to enhanced activation of cyclin D1, 
thereby promoting cell cycle progression. Of note, cyclin D1 also interacts with the ERα to promote its transcriptional activity in Cdk-independent fashion.57,58 
Dmp1 (cyclin D binding myb-like protein 1; also named Dmtf1) is a haplo-insufficient tumor suppressor that regulates the Arf-Mdm2-p53 tumor surveillance 
pathway.126,138,216 Cyclin D1 is a negative regulator for Dmp1: however, it synergizes with Dmp1 on the Arf promoter.217 BRCA1/2 proteins are directly or indi-
rectly phosphorylated by ATM/ATR kinases in response to DNA damage, which interact with p53 to stop the cell cycle by activating the p21Cip1/WAF1 promoter.  
Abbreviations: IKK, IκB kinase; Polα, DNA polymerase α; DHFR, dihydrofolate reductase; TK, thymidine kinase; TS, thymidylate synthase; 
PCNA, proliferating cell nuclear antigen; ER, estrogen receptor; PR, progesterone receptor; VEGF, vascular endothelial growth factor; IR, ionizing radia-
tion; HU, hydroxyurea; ATM, ataxia-telangiectasia mutated; ATR, Ataxia telangiectasia and Rad3 related; Chk2, checkpoint homolog 2.
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of the lobules.38,39 From knockout studies in mice, it 
is apparent that PR plays important role in ductal and 
lobuloalveolar development of normal mammary 
gland.40

Overexpression of ERα is a well-established 
prognostic factor in breast cancer patients. Generally, 
ERα-positive breast cancers are associated with slow 
tumor growth, lower histology grade, DNA diploidy, 
and thus a better overall prognosis.35 More than 90% 
of lobular breast carcinomas are ER-positive; while 
medullary and inflammatory carcinomas are predomi-
nantly ER-negative. ER/PR-negative tumors are often 
associated with aggressive disease, and these tumors 
frequently show amplification of HER2, c-Myc, and 
Int2 oncogenes, and mutations of the p53 tumor sup-
pressor gene.

The value of ERα status as an independent prog-
nostic variable has been diminished by its association 
with other established indicators of favorable progno-
sis. These include older age of the patient, low-grade 
histology, a favorable nuclear grade, a low S-phase 
fraction, a normal content of DNA, a low prolifera-
tive index, and a low thymidine labeling index.41 In 
addition, because adjuvant or palliative hormone 
therapy is a common treatment for patients with 
ER-positive tumors receives, it is difficult to evalu-
ate the prognostic value of their ER status alone. 
In some studies, the longer duration of disease-free 
survival (DFS) and overall survival rates of patients 
with ERα-positive tumors are seen only in the pres-
ence of hormone therapy. In addition, the favorable 
effect of ERα-positive status as a discriminant often 
is lost after several years, suggesting that treatment 
benefit is temporary.42,43 When node-positive patients 
not receiving adjuvant hormone therapy were stud-
ied, the 5-year DFS rate was 20% higher for ER-
positive patients compared with that for ER-negative 
patients. However, the 5-year DFS rate of the most 
favorable subgroup (i.e. patients with one to three 
positive nodes and ER-positive tumors) was below 
60%.42 Among node-negative patients, small but sta-
tistically significant differences in DFS and overall 
survival rates have been found between ER-positive 
cases and ER-negative cases after various periods of 
follow-up. The results of a multivariate analysis of 
prognostic factors in over 3,000 patients showed ER 
status to be more important for prognosis than tumor 
size in node-negative cases, but not in node-positive 

cases.43 In one study, the ER status was less important 
for predicting duration of DFS or overall survival 
than the nuclear grade and the number of positive 
nodes.44 Allred and colleagues showed that tamox-
ifen decreased the risk of local regional recurrence in 
patients with ER-positive ductal carcinoma in situ.45

The prognostic significance of ERβ is not well 
defined.46–48 Honma et al49 studied archival materials 
from 442 invasive breast cancers treated with adjuvant 
tamoxifen monotherapy and with a long follow-up 
period (median: 11.1 years) using three antibodies 
to detect ERβN, ERβ1, and ERβcx (ERβ2). Posi-
tive staining for ERβN or ERβ1 was associated with 
significantly better survival. By contrast, ERβcx sta-
tus showed no association with length of survival. 
ERβ1status was significantly associated with longer 
survival in postmenopausal, but not premenopausal, 
women. ERβ1 positivity was associated with signifi-
cantly better survival in patients with ERα(-)PR(-) or 
ERα(-)PR(-)HER2(-) (triple-negative) tumors, which 
are widely believed to have a poor prognosis. Another 
study also showed that higher expression of ERβ in 
ERα/PR-positive breast cancer was associated with 
longer overall survival (70% for high ERβ vs. 30% 
for low ERβ at 100 months) compared with the same 
group of patients expressing much lower levels of 
ERβ. Differential expression of ERβ had no prog-
nostic value in patients with ERα/PR negative breast 
cancer.50 Further studies will be required to establish 
the value of ERβ to predict the prognosis of breast 
cancer patients.

Because the growth of breast cancer is often reg-
ulated by the female sex steroids, determinations 
of the cellular concentrations of ER and PR in the 
tumor continue to be used as predictors of good prog-
nosis and of potential benefit from anti-hormonal 
therapy. To improve the value of ER determina-
tions for tumor prognosis, tests for the presence of 
the estrogen-regulated PR protein are routinely 
performed. In many breast tumor cell lines—and 
in normal tissues containing ER, such as the endo-
metrium and brain—PR expression is induced by 
estrogen.51,52 It is still not known whether ER regu-
lates PR in normal human mammary epithelium in 
precisely the same subpopulation of ductal and lobular 
luminal cells, although this assumption is considered 
to be likely. It is of interest that the ER and PR appear 
to be strongly up-regulated in ductal carcinoma in 
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situ and in hormone-dependent breast cancer, relative 
to normal mammary epithelium.

PR is a heterodimeric protein with A and B sub-
units. Overexpression of the PR indicates that the 
ER pathway is intact, even if the tumor is reported as 
ER-negative.51,52 When biochemical ligand-binding 
assays indicate concentrations of 10 fmol/mg cytosol 
protein or more, the tumors are generally considered 
ER-positive and PR-positive for clinical purposes. 
The ER and PR status can be measured using immu-
nohistochemistry. These results correlate closely 
with biochemical ligand binding assays and clinical 
response rates to endocrine therapy.53,54 Furthermore, 
PR promoter methylation is commonly observed in 
primary breast cancer cases and may be a mechanism 
by which this protein is downregulated.55 Importantly, 
higher PR levels are negatively correlated with tumor 
size and grade. In a recent study, Liu et al showed that 
expression of PR in ER-positive tumors improved sur-
vival of patients receiving estrogen receptor therapy. 
Hence, PR may be used as prognostic factor in this 
group of patients.56 In summary, ER will be used as 
a marker to predict the response to hormonal therapy 
and PR will be used as a predictor of response to hor-
monal therapy as well as a prognostic factor in ER+ 
breast cancers.

Estrogen and progesterone are well known as 
direct modulators of expression of growth factor 
receptor pathways and downstream, cell-cycle regu-
latory genes known as nuclear protooncogenes. The 
nuclear proto-oncoproteins and other cell-cycle regu-
latory proteins, such as AIB-1, c-Myc, and cyclin D1, 
represent points of regulatory convergence of steroid 
and growth factor pathways in cells. Of considerable 
interest is the observation that the cell-cycle regulator 
cyclin D1 also interacts with the ERα to promote its 
transcriptional activity57,58 (Fig. 1). Parallel observa-
tions have also been made with the AIB-1 (amplified 
in breast cancer 1; SRC-3) protein, regarding both 
sensitization of ER transactivation and growth fac-
tor signal transduction.59 AIB1 is an ER coregulatory 
protein that together with other co-activators, like 
transcription intermediary factor 2 (TIF2) and nuclear 
receptor co-repressor (NCoR), is implicated in the 
estrogen signaling pathway and estrogen- regulated 
tumor progression. An alternatively spliced variant 
form of AIB-1 is even more potent for these effects.59 
It has been reported that ERα activation and nuclear 

localization, as well as coactivator interactions, are 
regulated through its phosphorylation.5,60

Harigopal et al studied the prognostic signifi-
cance of AIB1, TIF2 and NCoR protein expression in 
670 breast cancer specimens by breast tissue microar-
ray, and demonstrated the relationship of coregula-
tory proteins to ER, PR and HER2/neu.61 High AIB1 
expression was associated with poor patient outcome 
(P = 0.002), while no association was noted for TIF2 
(P = 0.376) or NCoR (P = 0.12). When subclassified 
by nodal or ER status, AIB1 was not prognostic in 
the node-positive and ER-positive subsets. However, 
in the ER-negative and node-negative subsets, high 
AIB1 expression was associated with poor patient out-
come (P = 0.02 and P = 0.007 respectively).61 There 
was significant positive correlation between AIB1 
and ER/PR status and with other cofactors (TIF2 and 
NCoR), but not with HER2/neu status. Thus, high 
AIB1 expression predicted worse overall survival in 
this study, suggesting that AIB1 may be involved in 
breast carcinogenesis.

HER2
HER2 (also known as c-erbB-2 or neu) is a proto-
oncogene that encodes a 185-kDa tyrosine kinase 
glycoprotein belonging to the EGFR family.62–65 The 
extracellular domain in HER2 is 44% homologous to 
the corresponding region in the epidermal growth fac-
tor receptor (EGFR), and the internal domain is 88% 
homologous to this region in EGFR.66 In addition to 
EGFR, the type I subfamily includes HER2, HER3, 
and HER4.62,63 These receptors all possess a large 
glycosylated extracellular ligand-binding domain, 
a single hydrophobic transmembrane domain, and 
a cytoplasmic tyrosine kinase domain. It is overex-
pressed in ~30 % of breast cancer cases, primarily 
due to gene amplification. Within these cases, 60% 
are ductal carcinomas in situ and 20–30% are infil-
trating breast carcinomas.60,67,68 A representative pic-
ture of HER2 overexpression in human breast cancer 
is shown in Figure 2a.

The HER2 status can be determined in human 
tumor samples using immunohistochemistry or fluo-
rescent in situ hybridization. Amplification and/or 
overexpression of the HER2 oncogene are/is associ-
ated with a poor DFS rate in patients with axillary 
node-positive breast cancer.64,69 To investigate the 
prognostic significance of HER2 overexpression, 
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immunohistochemical staining for HER2 was 
performed on sections from paraffin blocks of 292 
primary invasive breast cancers obtained from women 
enrolled in the National Surgical Adjuvant Breast and 
Bowel Project protocol B-06.70 A positive reaction 
indicative of HER2 overexpression was observed 
in 21% of their breast cancer samples. Patients with 
HER2 overexpression had a significantly worse over-
all survival (P = 0.0012) with twice the mortality rate 
of women without detectable HER2 expression.70 In 
multivariate analysis, detection of HER2 overexpres-
sion was the second most predictive independent 
variable for survival after nodal status. Overexpres-
sion of HER2 was more common among tumors of 
high nuclear grade (29%) than those of low nuclear 
grade (12%). The association of HER2 overexpres-
sion with decreased survival was evident only among 
women with tumors of low nuclear grade. In this 
subgroup, HER2 overexpression was associated with 
an approximately fivefold increase in mortality rate 
(P = 0.00001). Thus, the combined predictive value 
of HER2 overexpression and nuclear grade was evi-
dent regardless of lymph node status.71 Allred and 
colleagues71 evaluated HER2 expression using immu-
nohistochemistry in 613 patients with node-negative 
breast cancer enrolled in the Intergroup Study 0011. 
In their study, patients were stratified into low-risk 

groups (n = 307) and high-risk groups (n = 306). Low-
risk patients were defined as having small (,3 cm), 
ER-positive tumors and were observed without addi-
tional treatment after initial surgery. High-risk patients 
had either ER-negative tumors or large ($3 cm), 
ER-positive tumors; they were randomized to be 
observed (n = 146) or to receive adjuvant chemo-
therapy (n = 160) after surgery. In their study, HER2 
was overexpressed in 14.3% of all tumors combined, 
and overexpression was higher in invasive carcino-
mas associated with an extensive in situ component 
(21.5%) than in carcinomas without a significant non-
invasive or in situ histological component (11.2%; 
P , 0.0001). When patients with low-risk lesions not 
containing a significant in situ component (n = 179) 
were analyzed, HER2 was a strong prognostic fac-
tor. Patients in this group with HER2-positive tumors 
had only a 40% DFS at 5 years, compared with more 
than 80% in patients with HER2-negative tumors 
(P , 0.0001).71

Using cDNA microarrays, Perou and colleagues 
classified invasive breast carcinomas into five sub-
types based on their distinct gene expression profile 
(Norway/ Stanford dataset).72 These included a luminal 
epithelial cell phenotype (subtypes A and B), a basal 
epithelial cell type phenotype, a HER2(+) phenotype, 
and a group of cancers expressing a ‘normal-like’ 

Figure 2. Immunohistochemical staining of HER2, cyclin D1, and TBX2 proteins in human breast cancer samples. Human breast cancer tissues were 
stained for HER2 (panel a), cyclin D1 (panel b), and TBX2 proteins (panel c) with specific antibodies. For HER2: stained with A0485 (Dako, rabbit 
polyclonal); for cyclin D1: sc-20044 (Santa Cruz Biotech, mouse monoclonal IgG2a); and for TBX2: sc-17880 (Santa Cruz Biotech, goat polyclonal). 
Magnification, x40.
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gene profile. Patients whose tumors exhibited the 
basal-like and HER2-positive subtypes had the worst 
survival rates, while those with the luminal epithelial 
type had improved survival rates.73

HER2 expression is scored as 0, 1+, 2+, or 3+, 
depending on the number of cells with membrane 
staining and on the intensity of the staining. If the 
tumor is 0 or 1+, it is considered HER2-negative. If 
the tumor is 2+ or 3+, it is considered HER-2-positive. 
The humanized monoclonal antibody, trastuzumab 
(Herceptin®, Genentech, CA) is used for treatment of 
HER2-positive patients.68,74 Since HER2 is relatively 
uniformly overexpressed in human breast cancers 
(Fig. 2a), monoclonal antibodies have been devel-
oped to the extracellular domain to treat carcinomas 
overexpressing HER2. Trastuzumab is also approved 
for treating patients with metastatic breast cancer.75

A randomized phase III trial of 469 women with 
metastatic breast cancer with HER2 expression dem-
onstrated that chemotherapy plus trastuzumab was 
associated with a longer time to disease progression 
(median, 7.4 vs. 4.6 months; P , 0.001), a higher 
rate of objective response (50 percent vs. 32 percent, 
P , 0.001), a longer duration of response (median, 
9.1 vs. 6.1 months; P , 0.001), a lower rate of death 
at 1 year (22 percent vs. 33 percent, P = 0.008), lon-
ger survival (median survival, 25.1 vs. 20.3 months; 
P = 0.01), and a 20% reduction in the risk of death.68 
In a phase II study, HER2 status was measured 
weekly in women with HER2-normal and HER2-
overexpressing metastatic breast cancer given trastu-
zumab and paclitaxel. Efficacy was correlated with 
immunohistochemical and fluorescent in situ hybrid-
ization (FISH) assay results.76 HER2 status was 
evaluated using four different immunohistochemi-
cal assays and FISH. Patients received a median of 
25 weekly infusions (range, one to 85 infusions). 
The intent-to-treat response rate for all 95 patients 
enrolled was 56.8% (95% confidence interval, 47% 
to 67%). A response rate of 61.4% (4.5% complete 
response, 56.8% partial response) was observed in 
88 fully assessable patients.76 In patients with HER2-
overexpressing tumors, overall response rates ranged 
from 67% to 81% compared with 41% to 46% in 
patients with HER2-normal expression (ranges reflect 
the different assay methods used to assess HER2 sta-
tus). Differences in response rates between patients 
with HER2-overexpressing tumors and those with 

normal HER2 expression were statistically significant 
for all assay methods, with CB11 and TAB250 anti-
bodies and FISH having the strongest significance. 
Given the established efficacy of trastuzumab for the 
treatment of advanced breast cancer, the HER2 test-
ing will continue to be used as a standard laboratory 
test in breast cancer clinics.

p53
The p53 tumor suppressor gene, located on chromo-
some 17p13, has a regulatory function in the defense 
against various kinds of cancer, including breast 
cancer.77–83 The p53 gene transcription is activated by 
genetic, environmental, and metabolic stimuli, which 
direct cells to different pathways including cell cycle 
arrest, DNA repair, and apoptosis. It plays a central 
role in sensing genotoxic and non-genotoxic stresses 
and transducing an anti-proliferative effect80,82 (Fig. 1). 
p53 is activated and regulated by post-translational 
modifications to both the N- and C-terminal regions 
(e.g. phosphorylation, ubiquitination, and acetylation) 
and binds as a tetramer to specific DNA sequences 
via a central DNA-binding core region. p53 exerts 
its primary biologic function by modulating the tran-
scription of dozens of genes.81,84 In mice, loss of p53 
is associated with multiple spontaneous tumors77 and 
p53-loss accelerates the appearance of mammary 
tumors in murine mammary tissue that also over-
expresses Myc, HER2/neu, IGF1, and/or Wnt1.85,86 
Inheritance of a p53 mutant allele causes the rare 
familial Li-Fraumeni syndrome, characterized by 
multiple early-onset cancers, including breast cancer 
in women who survive childhood cancers. Germline 
mutations in ATM and CHEK2, which are involved in 
p53 activation, also increase susceptibility to breast 
cancer.87

Twenty to 35% of sporadic cases of breast cancers 
harbor somatic mutations in p53, based primarily on 
sequencing of exons 5 through 8 (the DNA-binding 
core), where approximately 90% of mutations are 
found.78,88,89 A total of 2,274 mutations in breast can-
cers are listed in the p53 database maintained by the 
International Agency for Research on Cancer.90

p53, when mutated, accumulates in the nucleus 
of neoplastic cells. Mutation of p53 is characterized 
by a common amino acid substitution resulting in 
a shift from an arginine (Arg) to a proline (Pro) at 
codon 72.91 Due to increased half-life and an altered 
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conformational structure, the mutant form of p53 
protein accumulates within malignant cells. Poly-
morphic variants have different biological properties; 
for example, the Arg/Arg genotype has been reported 
to induce apoptosis more effectively than the Pro/Pro 
genotype.92–94

The significance of p53 in carcinogenesis is mani-
fested by the frequent genetic alterations in human 
cancers, found as mutations within the DNA binding 
domain and as loss of heterozygosity (LOH) in the 
loci of the gene. Several studies have reported LOH at 
codon 72 with preferential loss of the Pro allele both 
in breast cancer and other malignancies.93,95–97 The 
p53 genotype, in addition to the LOH status of codon 
72, influences the prognosis in cancer. Two groups 
have studied this polymorphism in relation to breast 
cancer prognosis; they found a reduced survival for 
homozygous carriers of the Pro allele,98,99 consistent 
with the idea that the Pro72 variant of p53 is less effi-
cient in inducing apoptosis than the Arg 72 variant.

Initial studies trying to elucidate the role of a 
mutated p53 gene in breast cancer prognosis were 
based on detecting p53 accumulation using immuno-
histochemistry. However, even in a meta-analysis of 
more than 9,000 breast cancer patients, the prognos-
tic value of the p53 overexpression appeared weak.100 
Conversely, sequencing studies have shown strong 
prognostic significance of p53 mutations in breast 
cancer. In one study where p53 mutations from 1,794 
European patients with at least 10 years of follow-up 
were analyzed, mutations in p53 exons 5 through 8 
were more common in ductal and medullary tumors 
with an aggressive phenotype (i.e. high grade, large 
size, node-positive cases, and low hormone recep-
tor content), and in women less than 60 years old. 
Furthermore, the presence of a mutation conferred an 
overall 2.27-fold increased relative risk of breast can-
cer-specific mortality, independently of other known 
prognostic markers (e.g. tumor size, node status, and 
ER/PR expression).101 In a comprehensive meta-anal-
ysis of 16 studies including over 3,500 patients,102 the 
relative hazard of dying of breast cancer for unse-
lected patients with a p53 mutation in their tumor was 
2.0 (95% confidence interval, 1.7–2.5). For node-
negative patients the relative hazard was 1.7 (95% 
confidence interval, 1.2–2.3), and for node-positive 
patients the relative hazard was 2.6 (95% confidence 
interval, 1.7–3.9).

This and later studies have confirmed that p53 
mutations are associated with worse overall and 
disease-free survival in breast cancer cases, and this 
effect is independent of other risk factors. In several 
studies, the presence of a p53 mutation was the single, 
most powerful prognostic indicator for both recur-
rence and death. Whether the prognostic significance 
of all types of mutations is the same, is still controver-
sial. Borresen et al103 reported that patients with muta-
tions affecting or disrupting the zinc-binding domains 
L2 and L3 (p53 codons 163–195 and 236–251) have 
a worse prognosis than patients with mutations else-
where. In a later study, mutations affecting amino 
acids directly involved in DNA-binding—many in the 
zinc binding domain—were related with the poorest 
prognosis.104 These findings were confirmed in a dif-
ferent study, where patients with missense mutations 
affecting DNA-binding or zinc-binding domains had 
a very aggressive phenotype with a short survival.105 
Another group reported that the prognosis for muta-
tions in the conserved regions II and V was worse 
than for mutations in the conserved regions III and IV 
and non-conserved regions.106 The poor prognosis for 
patients with specific p53 mutations could mean that 
they have a gain-of-function effect or a particularly 
strong dominant-negative phenotype.107

Recent reports have described the detection of 
tumor-specific DNA circulating in plasma from 
breast cancer patients. Garcia et al108 examined 
plasma DNA from the breast cancer patients; in 61 
of the 142 patients, with an average 58 months of 
follow-up, similar molecular signatures in tumor and 
plasma DNA was detected. For patients with tumor 
DNA in their plasma, the hazard ratio for recurrence 
was 2.5. Disease-free survival was 37% for positive 
patients and 75% for negative patients (P = 0.005). 
Among the 35 recurrences observed, 25 were posi-
tive for tumor plasma DNA and 10 were negative, 
(P , 0.001). These results indicate that tumor plasma 
DNA at diagnosis can serve as a prognostic marker of 
the overall survival of breast cancer patients. Further 
work is required to determine the role of the p53 muta-
tions in plasma DNA in breast cancer prognosis.

Although both HER2 overexpression and p53 
mutations are important prognostic factors for breast 
cancer, only a few reports have described the signal-
ing cascades that link HER2 and p53. It was reported 
that HER2 overexpression in p53 wild-type human 
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ovarian carcinoma cell line induced apoptosis shortly 
after transfection, while HER2 expression was asso-
ciated with proliferation in cells with mutated p53.109 
It was also reported that HER2/neu induces p53 ubiq-
uitination via Akt-mediated Mdm2 phosphorylation 
and inactivates p53 in Arf-deficient cells.110 Thus, 
both ARF and p53 are important genetic determinants 
in susceptibility to HER2 overexpression in breast 
cancer. Further experiments should be conducted to 
characterize the signaling pathway between HER2 
and ARF/p53.

ARF
The INK4a/ARF locus encodes two unrelated tumor 
suppressor proteins, p16INK4a and p14ARF, which par-
ticipate in the two main cell-cycle control pathways, 
p16INK4a-Rb and p14ARF-p53111–115 (Fig. 1). p14ARF 
(p19Arf in mice), is a 14 kDa (19 kDa) protein pre-
dominantly localized in the nucleolus. It blocks the 
cell cycle in both G1 and G2 phases and inhibits the 
growth of incipient cancer cells by indirectly activat-
ing p53. It also inhibits ribosomal RNA processing 
and interacts with topoisomerase I.116 Arf triggers 
sumoylation of many cellular proteins, including 
Mdm2 and nucleophosmin (NPM/B23), with which 
p19Arf physically interacts in vivo. This occurs equally 
well in cells expressing or lacking functional p53.117 
Thus, Arf’s p53-independent effects on gene expres-
sion and tumor suppression might depend on Arf-
induced sumoylation.117

Methylation of CpG promoter islands has been 
described as a mechanism of gene silencing. Exon 
1 of the p16INK4a gene and the p14ARF promoter gene 
reside within CpG islands. Therefore, both can 
become methylated de novo and silenced. However, 
genetic alterations that selectively inactivate p14ARF 
have been poorly analyzed in breast cancer. One com-
prehensive analysis of the inactivation mechanisms 
(mutation, homozygous and hemizygous deletion, and 
promoter hypermethylation) in 100 primary breast 
carcinomas118,119 used RT-PCR to document variable 
expression of the p14ARF transcript, with 17% dem-
onstrating overexpression and 26% demonstrating 
decreased expression. No detectable alterations were 
observed in most cases with overexpressed p14ARF 
mRNA, but 77% of tumors with decreased expres-
sion had at least one of these genetic/epigenetic alter-
ations. A different group analyzed the methylation 

status of p16INK4a and p14ARF by methylation-specific 
PCR in 100 breast, 95 colon and 27 bladder carcino-
mas.120 Clinicopathological parameters were obtained 
from the medical records of the patients, and p14ARF 
showed a higher rate of hypermethylation than 
p16INK4a in all three tumor types.120 Sharma et al also 
found promoter hypermethylation of p14ARF in serum 
and tumor DNA from breast cancer patients. Aber-
rant methylation was significantly correlated with 
poor prognosis when analyzed with clinicopatho-
logical parameters of the breast tumor subtypes.121 
Thus, both p16INK4a and p14ARF hypermethylation may 
be useful markers to predict the prognosis of breast 
cancer patients.

TBX2/3
T-box proteins contain a T-domain that affects 
dimerization and DNA binding. TBX2 belongs to the 
Tbx subfamily of T-box transcription factors.122,123 
Other subfamilies of T-box genes are Brachyury, 
T-brain1, Tbx1 and Tbx6. TBX2, TBX3, TBX4 and 
TBX5 belong to the TBX2 subfamily. TBX2 and 
TBX3 are the only mammalian T-box factors with 
reported transcriptional repressor functions. Tbx2 
and Tbx3 are closely related T-box proteins that 
have been implicated in tissue development in dif-
ferent sites, including the mammary gland. TBX3 
is required for normal mammary development in 
mouse models and in patients with ulnar-mammary 
syndrome (UMS).123 TBX2 and TBX3 also have been 
implicated in tumor development through downreg-
ulation of the ARF tumor suppressor and an associ-
ated bypass of senescence.124,125 Overexpression of 
Bmi1, Pokemon, and Twist also contribute to tumor 
formation by repressing the INK4a/ARF locus.126 The 
TBX2 gene encoding a key developmental transcrip-
tion factor is amplified and overexpressed in BRCA1 
and BRCA2-mutated breast tumors.127 However, it is 
not known how Tbx2 mediates its repressive effect, 
nor whether endogenous Tbx2 or Tbx3 have a similar 
anti-senescence function in transformed cells. This is 
a particularly important question because the loss of 
CDKN2 A in many human cancers would, in principle, 
bypass the requirement for Tbx2/3-mediated repres-
sion of ARF in suppressing senescence (Fig. 1).

It has been reported that TBX2 is amplified in 
8.6 to 21.6 % of sporadic human breast carcinomas, 
where the protein is overexpressed.122 A representative 
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picture of TBX2 overexpression in human breast 
cancer is shown in Figure 2c. Ectopic expression of 
Tbx2 results in DNA polyploidy and cisplatin resis-
tance.128 Thus, overexpression of Tbx2 contributes to 
breast carcinogenesis by accelerating cell prolifera-
tion, changing DNA ploidy, and making cells resis-
tant to chemotherapy. More studies are needed to 
elucidate the mechanism of TBX2/3 overexpression 
in breast cancer.

Cyclin D1
D-type cyclins (cyclin D1, D2, and D3) are 
other key regulator proteins of the G1 phase 
progression.113,115,129,130 There are three cyclins in this 
family with differential effects on the development of 
the normal mammary gland.131 The cyclin D1 protein 
is synthesized in response to growth factors; its levels 
peak in the mid-G1 phase of the cell cycle. The asso-
ciation of cyclin D1 to Cdk is crucial to drive cells to 
the restriction point where the cell is committed to 
divide.129,130 D-type cyclins bind to Cdks 4 and 6 and 
phosphorylate downstream substrates, mainly pRb, 
and these complexes can also sequester Cdk inhibi-
tors (p21Cip1 and p27 Kip1) in the G1/S transition115,129,130 
(Fig. 1). Furthermore, cyclin D1, the first member 
identified, can have Cdk-independent functions and 
can act as a co-factor for ERα independently of the 
ligand.57,58 D-type cyclins inhibit the activity of the 
Dmp1 transcription factor, which is a critical regula-
tor of the Arf-p53 pathway.126,131–138

Human cyclin D1 is the product of a gene (CCND1) 
located on chromosome 11q13. Overexpression of 
cyclin D1 has been observed in many human tumors 
and is likely to promote cell proliferation and differ-
entiation by shortening the G1/S transition.129,130,139 
Amplification of the cyclin D1 gene has been detected 
in about 15% of breast cancers, while overexpression 
of cyclin D1 at mRNA and protein levels is seen in up 
to 50% of primary breast cancers, mostly ER-positive 
and well-differentiated tumors.129–131 A representative 
picture of cyclin D1 overexpression in human breast 
cancer is shown in Figure 2b.

Apparently the frequency of cyclin D1 gene 
amplification (~15%) is lower than the incidence of 
overexpression (~50%). Recently, Barbash et al140 
demonstrated that attenuation of cyclin D1 SCFFbx4 E3 
ubiquitin ligase activity occurs frequently in human 
cancer and may represent a common mechanism 

of overexpression and deregulation of cyclin D1. 
Significantly, inactivation of the Fbx4 ligase is the 
result of mutations in N-terminal regulatory regions 
of Fbx4 that disrupt ligase dimerization, thereby 
revealing the biological significance of SCF ligase 
oligomerization. They established Fbx4 as a tumor 
suppressor in human cancer, the function of which is 
abrogated by a unique category of mutations that tar-
get E3 ligase activity.140

The relationship between overexpression of cyclin 
D1 and breast cancer outcome has been controver-
sial, with studies reporting both positive and negative 
findings.141–143 Subgroup analyses within relatively 
few patients have also hampered definitive conclu-
sions. In addition, other molecules in the RB pathway 
have not been measured simultaneously. In spite of 
these limitations, there appears to be a relationship 
between cyclin D1 gene amplification and poor dis-
ease outcome in ER-positive patients.144–146 In con-
trast, cyclin D1 protein expression is associated with 
a good prognosis in some studies,141,147 potentially as 
a consequence of its positive relationship with ER 
expression and negative relationship with RB muta-
tions. However, other studies failed to confirm this 
relationship.142,148

Interpretation is further complicated by suggestions 
that under some circumstances, cyclin D1 overex-
pression may worsen clinical outcome by conferring 
resistance to endocrine treatments.149,150 Consistent 
with this possibility, one small clinical study sug-
gested that the duration of response to tamoxifen was 
significantly longer in ER-positive patients with low 
cyclin D1 than those with high cyclin D1.150 Resolu-
tion of these issues must await more detailed analysis 
of cyclin D1 expression and patient outcomes in the 
context of prospective randomized clinical trials.

The CCND1 locus encodes two gene prod-
ucts, cyclin D1a and cyclin D1b, which have dis-
crete mechanisms of regulation and impact on cell 
behavior.151,152 A polymorphism at nucleotide 870 in 
the CCND1 gene, rs603965, influences the relative 
production of the encoded proteins and can reveal 
increased risk for tumor development. Millar et al153 
studied the impact of both the G/A870 polymor-
phism and cyclin D1b protein production on breast 
cancer risk, disease phenotype and patient outcome. 
In a large multiethnic case-control study, the G/A870 
polymorphism conferred no significant risk for breast 

http://www.la-press.com


Taneja et al

26	 Clinical Medicine Insights: Oncology 2010:4

cancer overall, by stage or ER status. However, the 
cyclin D1b protein was upregulated in breast cancer, 
independent of cyclin D1a levels, and exhibited het-
erogeneous levels in breast cancer specimens. High 
cyclin D1a expression inversely correlated with the 
Ki67 proliferation marker, but was not associated 
with clinical outcome. In contrast, elevated cyclin 
D1b expression was independently associated with 
adverse outcomes, including recurrence, distant 
metastasis, and decreased survival.153 Cyclin D1b 
overexpression was particularly associated with poor 
outcome in ER-negative breast cancer. Thus, specific 
cyclin D1 isoforms are associated with discrete forms 
of breast cancer and high cyclin D1b protein levels 
hold prognostic potential.

Cyclin D2 is more ubiquitously expressed in tis-
sues than cyclin D1. Cyclin D2 is expressed in normal 
human mammary epithelial cells, but interestingly, its 
overexpression is rare in breast cancers.154,155 This is 
due to promoter hypermethylation in most cases.156 
Its functional significance, if any, in breast onco-
genesis has yet to be determined, although potential 
roles of cyclin D2 in terminal differentiation and 
senescence of human breast epithelium have been 
proposed. Indeed, MMTV-cyclin D2 mice show 
increased proliferation of mammary glands in preg-
nant females, but alveolar differentiation is partially 
or completely inhibited.157 In one report, cyclin D3 
was overexpressed in breast cancers, but there are 
limited data on its relationship to the phenotype of 
breast cancer and prognosis of patients.158 Keyomarsi 
et al showed that the absence of cyclin D1 or cyclin 
D3 protein expression was associated with improved 
disease-specific and overall survival, but the correla-
tions were less striking than those for cyclin E.159

Cyclin E
Cyclin E is the limiting factor for G1 phase progres-
sion and S phase entry. The cyclin E gene is a tar-
get of E2Fs and the protein associates with Cdk2 and 
activates its kinase activity shortly before entry of 
cells into the S phase113,115,129 (Fig. 1). The restriction 
point “R” at the transition between G1- and S-phases 
of the cell cycle has been recognized as the endpoint 
of regulatory pathways that are critical for growth 
control, and thus also for prevention of excessive 
or unrestricted growth. Deregulation of these path-
ways—or the deletion or overexpression of particular 

factors that are substantial for these pathways—have 
been linked to malignant transformation of cells 
and the development of cancer. While there is evi-
dence of the importance of cyclin D1 in mammary 
tumorigenesis,160 the role of cyclin E in this respect has 
only recently been established. Cyclin E is expressed 
in supra-physiological levels in many human can-
cers and its genomic locus (19q12-q13) is frequently 
amplified.161,162 High levels of cyclin E and low levels 
of the G1-specific cell cycle inhibitor p27KIP1 exhibit a 
good correlation.159,163–169 Another clue for the impor-
tance of cyclin E in breast carcinoma is the finding 
of centrosome amplifications in these tumors, which 
could pave the way for genomic instability.170–172

Two proteins codified by two different genes 
but with high homology, called cyclin E1 (formerly 
cyclin E) and cyclin E2 have been identified.173–177 
Cyclin E2, like cyclin E1, associates with Cdk2 and 
activates its kinase activity at the G1/S boundary.176 
Cyclin E2 shares 47% overall similarity to cyclin E1; 
whether its structural features outside the conserved 
regions reveal unique functions is unknown.176

Increased expression of cyclin E1 has been reported 
in approximately 40% of breast cancer cases,159,178,179 
and of cyclin E2 in 38% of primary ER-negative breast 
cancers.176 Elevated levels of both cyclins were more 
frequently found in ER-negative than in ER-positive 
tumors.176 The prognostic role of cyclin E (E1) has been 
retrospectively evaluated in a number of studies.180–187 
Keyomarsi et al found that the overexpression of the 
cyclin E protein was accompanied by the appearance 
of low molecular weight (LMW) isoforms, and both 
were a reliable prognostic marker in stage I–III breast 
cancer patients. In fact, the hazard ratio for death due 
to breast cancer in patients with high levels of cyclin 
E was higher than associated with any other biologi-
cal marker examined (seven times higher than the 
hazard ratio associated with lymph node metastases). 
Of note, all node-negative patients with high levels 
of cyclin E (12 out of 114) died of breast cancer. In 
some studies, a correlation between cyclin E and high 
histological grade181,182,184,186 or ER negativity180,187 
has been reported, while an inverse correlation with 
p27KIP1 was observed in a study where both factors 
were prognostic.168

To study the oncogenic potential of the LMW 
forms of cyclin E in breast carcinogenesis, transgenic 
mice expressing full-length cyclin E alone, full-length 

http://www.la-press.com


Prognostic Markers for Breast Cancer

Clinical Medicine Insights: Oncology 2010:4	 27

and the EL4 isoforms, or the EL2/3 isoforms of 
cyclin E were generated under the control of MMTV-
LTR.188,189 Both primary mammary tumor formation 
and metastasis were markedly enhanced in LMW 
cyclin E-transgenic mice. LMW cyclin E overexpres-
sion in mammary epithelial cells of mice was suffi-
cient to induce mammary carcinomas in 34 of 124 
(27%) animals compared with 7 of 67 (10%) mice 
expressing only the full-length cyclin E, suggest-
ing higher oncogenic activity of the LMW form.188 
In addition, metastasis was more frequently found 
in LMW cyclin E tumor-bearing animals compared 
with tumors in mice with the full-length cyclin E 
background (P , 0.05). They also reported that 
LMW cyclin E overexpression selected for inacti-
vation of p53 by LOH and frequent inactivation of 
p19Arf, canceling the protective checkpoint function 
of the Arf-p53 pathway and accelerating progression 
to mammary carcinomas.188,189

BRCA1 and BRCA2
Mutations of BRCA1 and BRCA2 located in chromo-
some 17q21 and 13q13, respectively, are involved in 
breast carcinogenesis.190 The gene was subsequently 
cloned and found to be novel, containing an amino-
terminal, zinc- and DNA-binding “ring finger” motif; 
a carboxyl-terminal BCRT domain; and a nuclear 
localization sequence. Interestingly, mutations are par-
ticularly prevalent in breast cancers of Ashkenazi Jew-
ish women and other select populations,191 but some 
families carrying BRCA mutations have few afflicted 
members. In other studies comparing different car-
rier populations, BRCA1 mutations were reported (but 
rarely) in women with no familial association of the 
disease.192 BRCA1 mutations were also associated with 
shorter survival (63% vs. 91%, P = 0.04) in a study of 
249 European patients (36 patients with BRCA1 muta-
tions, 8 with BRCA2 mutations, and 205 controls).193 
These studies emphasize the variable penetrance of 
inherited risk conferred by this gene.

Although mutations in the BRCA1 gene are widely 
prevalent in patients with familial breast and ovarian 
cancer, mutations are rarely detected in sporadic breast 
cancers. BRCA2 is associated with familial cancers of 
the female and male breast and, to a lesser extent, the 
ovaries. Its gene shares homology with BRCA1, and 
its encoded protein has similar biochemical functions 
to BRCA1. However, BRCA2 mutation appears 

less involved in risk of ovarian cancer compared to 
BRCA1. Mutations of BRCA2 confer risk of male 
breast cancer and (to a more limited extent) several 
other cancers, such as prostate cancer, pancreatic can-
cer, non-Hodgkin’s lymphoma, basal cell carcinoma, 
bladder carcinoma, and fallopian tube tumors.

Current studies using CGH and cDNA microar-
ray analysis suggest a distinct signature of chromo-
some gains and losses and gene expression for the 
different classes of familial breast cancers (BRCA1, 
BRCA2, and BRCAX) compared to sporadic breast 
cancers.194 BRCA1 appears to interact with the p53 
protein (leading to induction of the cell-cycle inhibi-
tor p21Cip1/WAF1; Fig. 1)195 directly, with the RNA 
polymerase holoenzyme, with the transcription fac-
tor CREB, with two proteins termed BAP1 and 
BARD1, with ERα (suppressing its function), with 
the promoter of c-MYC (suppressing expression of 
this protooncogene), and with promoters of other 
genes. BRCA1 and BRCA2 proteins are also found 
in complexes with Rad51, a protein important for the 
cellular response to DNA damage.192,194 In addition, 
BRCA1 is phosphorylated by the ATM/ATR kinases, 
in response to DNA damage (Fig. 1).

Thus, both BRCA proteins are now emerging as 
central gatekeepers of genomic stability.190,195 In stud-
ies of mice bearing a conditional knockout of the 
Brca1 gene, it has been implicated in mammary duc-
tal morphogenesis and checkpoint control in the G1/S 
and G2/M phases of the cell cycle. Perhaps the most 
interesting among BRCA1 protein-protein interac-
tions in mammary epithelial cells is the one with the 
ERα.196 This apparently key anti-estrogenic effect 
may place the BRCA proteins on center stage for 
control of the sex steroid-regulated pathways, long 
suspected to induce breast cancer.

Breast cancers of BRCA1/2 carriers more often 
have a high nuclear grade, poorly differentiated 
morphology, negativity to ER/PR/HER2, positiv-
ity to cytokeratins, overexpression of cyclin E, low 
expression of p27KIP1, and p53 mutations.194 BRCA1 
mutations are associated with a poor prognosis in 
breast cancer within an Ashkenazi Jewish popula-
tion in several studies.197 Chappuis et al198 reported 
that BRCA1/BRCA2 mutations were associated with 
shorter survival (58% vs. 82%, P = 0.003) in a Cana-
dian Ashkenazi Jewish population. In another Cana-
dian Ashkenazi Jewish population, Foulkes et al199 
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showed that the survival rate was 50% in those with 
BRCA1 mutations and 90% in their controls. Later, 
Robson et al200 studied 496 archived tissue blocks (43 
cases of BRCA1 mutations, 14 cases of BRCA2 muta-
tions, and 440 control patients); the overall 10-year 
survival rate was 62% in the BRCA1 mutation group 
and 86% in the control (P , 0.0001), but there was 
no difference in the BRCA2 mutation group versus 
controls.200

A recent study of BRCA1/2 mutations in young 
breast cancer patients (age 36 or less)201 showed that 
carriers of BRCA1/2 mutations had a ~25% lower 
3-year survival rate and were less likely to express 
ER, PR, and HER2, the so-called “triple-negative” 
form of the disease associated with poor prognosis. 
Another study showed that patients who were mutant 
BRCA1/2 carriers had increased 25-year contralat-
eral breast cancer recurrence compared with patients 
without those mutations; this recurrence was 1.6-fold 
higher in patients with BRCA1 mutations compared to 
BRCA2 mutations.202 Additionally, patients diagnosed 
prior to age 40 had a significantly better chance of 
survival compared to those diagnosed later in life.202 
However, other studies have failed to demonstrate 
the prognostic values of BRCA1/BRCA2 mutations in 
breast cancer, possibly because 1) the sample sizes 
of those with BRCA1/2 mutations was too small, 
2) studies were biased by including only surviving 
patients, 3) there was no adjustment for therapy or 
other factors.

Vascular endothelial growth factor 
(VEGF)
Vascular endothelial growth factor (VEGF) is com-
posed of a family of five isoforms (VEGFA, VEGFB, 
VEGFC, VEGFD, and PLGF) which act as ligands for 
tyrosine kinase receptors (VEGF-Rs).203 Upon binding 
of VEGF to its receptors (primarily VEGFR2), intra-
cellular signaling pathways, including MEK-ERK 
and PI3K-Akt, are activated that mediate angiogenic 
switches (Fig. 1). This activation of angiogenesis in 
both normal and cancerous tissue is dependent on 
increased endothelial cell proliferation and invasion, 
increased vessel permeability, and recruitment of 
other support cells that make up the vessel architec-
ture, such as pericytes.

VEGF and angiogenesis are important to tumor 
growth and metastasis across a range of solid tumor 

types.204–206 VEGF has been implicated as a key 
mediator of angiogenesis in breast cancer.206,207 In one 
study, Yoshiji et al207 found that VEGF expression was 
markedly upregulated compared with surrounding 
normal tissue in each of the 18 human breast tissue 
samples evaluated. In a separate study assessing the 
role of VEGF in breast cancer, Brown et al208 observed 
VEGF to be expressed at high levels in ductal carci-
noma (comedo-type, invasive, and metastatic), but not 
in infiltrating lobular carcinoma. In a series of elegant 
experiments, Relf and colleagues209 isolated selected 
angiogenic factors from 64 primary breast tumors 
and investigated their relationship to tumor growth 
and progression. These factors included VEGF, trans-
forming growth factor-β1 (TGF-β1), pleiotrophin, 
acidic and basic fibroblast growth factor (FGF), and 
platelet-derived endothelial cell growth factor. Over-
all, VEGF was one of the most important mediators of 
tumor angiogenesis in human breast cancer tissue, and 
elevated VEGF levels correlated with poor survival.

Toi and colleagues210 demonstrated that VEGF 
expression is associated with microvessel density 
in breast tumor biopsies. Their postoperative tis-
sue analysis of 328 primary breast cancer patients 
showed a positive correlation between the rate of 
VEGF expression and microvessel density. While 
many pro-angiogenic factors have been identified in 
breast cancer, VEGF appears to be the only factor 
expressed throughout the entire life cycle of a breast 
tumor. Hence all the above reports have confirmed 
that VEGF is associated with increased microvessel 
density in breast cancer.

The most important factor that determines survival 
of breast cancer patients is dissemination of cancer 
cells from primary site into distant organs and estab-
lishment of metastatic colonies. Comparison of gene 
signatures from primary tumor, regional, and distant 
metastasis indicates that VEGF is only overexpressed 
in distant metastasis and is associated with poor sur-
vival. More importantly and clinically significant, 
Shivakumar et al211 showed that increased serum 
VEGF levels were detectable in patients with meta-
static compared to benign lesions and were positively 
correlated with tumor grade. In a retrospective study 
of 679 patients, Linderholm et al212 showed signifi-
cantly higher levels of intra-tumoral VEGF in patients 
with triple-negative breast cancers compared to other 
types of breast cancers.
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Jacobs and colleagues showed that an increased risk 
of invasive breast cancer was correlated with 2 VEGF 
gene polymorphisms, VEGF-2578C and VEGF-
1154G,213 both hypothesized to increase expression of 
VEGF. Intense angiogenic activity has been observed 
in inflammatory breast cancer. In an attempt to char-
acterize the angiogenic phenotype of this disease, van 
der Auwera et al214 measured mRNA expression of 
tumor angiogenesis and lymphangiogenesis factors 
in patients with both inflammatory (n = 16) and non-
inflammatory (n = 20) breast cancer. Although both 
forms of the disease exhibited high levels of angio-
genic activity, inflammatory breast cancer showed 
significantly higher mRNA expression of angiogenic 
and lymphangiogenic genes, including those encod-
ing for VEGF-C and VEGF-D. These observations 
may help clarify why inflammatory breast cancer 
has a high metastatic potential via hematogenous and 
lymphatic routes.

Potential use of molecular prognostic 
markers for early detection, diagnosis, 
treatment and prevention of breast 
cancer
The use of classical markers such as Ki67, ER, 
PR, and HER2 for the prediction of patients’ sur-
vival and treatment response of breast cancer has 
been well established, and thus, they will be contin-
ued to be used as useful laboratory tests. Although 
numerous genetic and phenotypic alterations have 
been reported in breast cancer, only a handful have 
been fully identified and brought to clinical studies. 
Among molecules regulating the p53 and RB tumor 
suppressor pathways, mutation of p53, overexpres-
sion of cyclin D1b, LMW cyclin E are apparently 
associated with poor clinical outcome of patients. 
Experiments using transgenic/knockout mice for 
these molecules have provided unique perspectives 
of these molecules to the biology of breast cancer. 
Although p53 mutations have been extensively 
studied in human breast cancer, only a few studies 
have been conducted on the prognostic values of the 
upstream regulators for p53, such as overexpres-
sion of Hdm2, TBX2/3, Pokemon, or inactivation of 
p14ARF, hDMP1. It is expected that p53 will remain 
intact when upstream p53 regulators are altered in 
tumor cells. Examination of human breast cancer 

samples for the alterations of these molecules and 
determination of their prognostic values will be use-
ful for future diagnosis, development of novel thera-
pies, and prevention of breast cancer.
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