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SUMMARY
Increased survival is a common goal of cancer clinical trials. Owing to the long periods of observation
and follow-up to assess patient survival outcome, it is difficult to use outcome-adaptive
randomization in these trials. In practice, often information about a short-term response is quickly
available during or shortly after treatment, and this short-term response is a good predictor for long-
term survival. For example, complete remission of leukemia can be achieved and measured after a
few cycles of treatment. It is a short-term response that is desirable for prolonging survival. We
propose a new design for survival trials when such short-term response information is available. We
use the short-term information to ‘speed up’ the adaptation of the randomization procedure. We
establish a connection between the short-term response and the long-term survival through a Bayesian
model, first by using prior clinical information, and then by dynamically updating the model
according to information accumulated in the ongoing trial. Interim monitoring and final decision
making are based upon inference on the primary outcome of survival. The new design uses fewer
patients, and can more effectively assign patients to the better treatment arms. We demonstrate these
properties through simulation studies.
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1. INTRODUCTION
Motivated by a cancer trial, we propose a new design for randomized clinical trials with
information available on a short-term response to treatment that is a good predictor of long-
term survival. Before describing our proposed design, we introduce its context.

Clinical trials involving new drugs are commonly classified into four phases: phase I trials
assess the toxicity of a new treatment; phase II trials test whether the treatment has any anti-
disease activity; phase III trials compare the new treatment with a standard treatment; and phase
IV trials assess outcome and side-effects of the new treatment through long-term follow-up
studies. The phase II ‘activity’ trials as mentioned above are also called phase IIa trials. Often
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phase IIb trials are conducted to further evaluate the level of efficacy of the new treatment.
The sample size of a phase II cancer trial is usually between 30 and 200 patients. If phase II
studies show good potential for a new treatment, then phase III trials are conducted. Phase III
trials are usually registered with government agencies (the U.S. Food and Drug Administration
or its counterpart in another country). Phase III trials involve sample sizes ranging from
hundreds to thousands of patients. If the benefit of the new treatment is confirmed in phase III
trials, the treatment will usually receive government approval for its market release. Phase IV
trials are then post-market studies to evaluate the long-term side-effects of the new treatment.

Traditionally, a phase IIa or IIb trial is a single-arm trial involving an experimental drug only.
However, many experimental drugs showing promise in such phase II trials fail in subsequent
phase III trials, effectively wasting a substantial amount of biomedical and human resources.
From 1991 to 2000, for example, the failure rate of phase III therapeutic trials conducted by
the 10 largest pharmaceutical companies in the United States and Europe was as high as 45
per cent. In the field of oncology, the failure rate of phase III trials was even higher, at 59 per
cent [1]. This high failure rate, coupled with the great expense and long duration of phase III
trials, has led many pharmaceutical companies and research centers to conduct more phase IIb
clinical trials in the hope of better evaluating treatment candidates for phase III clinical trials.
In a phase IIb trial, it is not sufficient for a new treatment to show ‘activity’. It must show some
‘superiority’ over the standard treatment to be a candidate for phase III trials. This inevitably
introduces comparisons into phase IIb trials. Many phase IIb trials have only a single arm and
compare the efficacy of a new treatment to historical data from a standard treatment. Such
comparisons can be biased, however, due to the differing patient populations. This was one of
the reasons for high failure rates of phase III trials. It is also the reason why randomized phase
IIb trials are becoming more common. Our proposal uses Bayesian techniques to conveniently
incorporate prior experience and historical information, and can incorporate interim monitoring
rules. It can be used for both randomized phase IIb and phase III trials, but in reality it might
be more suitable for the former. This is because the conduct of a phase III trial is highly
regulated by government agencies, so its design must follow the approved patterns. However,
pharmaceutical companies and clinical investigators have flexibilities in the conduct of phase
II trials. Certainly, good novel designs will eventually be adopted by government agencies.
That just takes time.

The features that are important to a good clinical trial design include interim analyses and
outcome-adaptive randomization. Interim analyses allow the researchers to terminate a trial
early when evidence for futility or efficacy is sufficient to make a conclusion. There are many
commonly used designs for interim analyses [2–8]. By this feature, the trial can be conducted
more efficiently to minimize the duration of the trial, the total number of patients (sample size),
and the use of other resources. Minimizing the duration of a trial is very important in the drug
discovery race where different drugs in different trials are competing to be the winner.
Minimizing the sample size is also critical because many types of cancer are rare. Even in the
same cancer center, there might be quite a few trials competing for the same group of patients.
The design we propose in this article is motivated by these considerations.

An outcome-adaptive randomization uses unbalanced randomization to assign more patients
to the treatment arms that appear to be better than others. Such a randomization is a medically
ethical design in that more patients participating in the trial are assigned to the superior
treatments as the trial proceeds. There are different outcome-adaptive randomization schemes
[9–12].

The choice of the primary endpoint is the first important question when designing a clinical
trial. To better answer the research question, the choice of a good efficacy criterion is critical
in phase II and III clinical trials. Patients with cancer usually receive a few cycles of treatment,
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with each cycle lasting a few weeks or somewhat longer. There are two ways to measure the
efficacy of the treatment. One is to look at patient response within the treatment period. Such
a response criterion could be, for example, tumor shrinkage. For patients with leukemia, the
most commonly used response criterion is complete remission (CR) of the disease, which is
currently used in many phase II leukemia trials. Although achieving CR is necessary for
prolonging survival, it is not sufficient because patients may relapse shortly after achieving
CR. Many chemotherapies have improved CR rates. However, because of their short CR
durations, the improvements on CR rate do not translate into significant benefit on survival.
Since survival is the ultimate goal of treatment, it is desirable to use survival as the primary
endpoint of a cancer trial.

However, the long lag time of many months or years to observe a survival endpoint poses some
difficulty when designing and conducting a clinical trial, especially when using outcome-
adaptive randomization. In order to conduct such a randomization, we need to be able to
compare the outcomes of patients currently in the different treatment arms of the trial, and to
use the comparison results to determine the assignment probabilities for future patients.
Consequently, it is relatively easy to implement adaptive randomization if the endpoint is
readily available shortly after the treatment, as is an endpoint of CR. Since it takes a long time
to observe the survival endpoint, adaptive randomization for a survival trial will not work as
effectively as for a trial using CR as the endpoint. Studies have been done on outcome-adaptive
randomization for trials with delayed response [13–15]. However, most of these studies focused
on the mathematical and statistical techniques of dealing with the challenges in such a design.
They did not consider the case in which the information on short-term response is available,
and thus did not take advantage of such information.

We propose a new clinical trial design to address this issue. We use survival as the primary
endpoint, but also incorporate the information about short-term patient response in order to
implement a more effective adaptive randomization. We use a Bayesian mixture distribution
to model the relationship between the short-term response and long-term survival. By
connecting the short-and long-term responses, our proposed design allows a comprehensive
evaluation and comparison of the treatment arms of the trial. We use the posterior distributions
to set up early stopping criteria and implement an outcome-adaptive patient allocation
algorithm. We calibrate the criteria and algorithm through extensive simulations to achieve
desirable operating characteristics. Such a Bayesian approach of designing clinical trials has
been used by many researchers [16–22,24].

Tamura et al. [23] reported a case study of an adaptive clinical trial for the treatment of
outpatients with depressive disorder. Owing to the time lag to observe the true response, they
used a surrogate response for the adaptive randomization. The true response was ignored, even
after its information became available. In contrast, we model the relationship between the
surrogate (the short-term response) and the true survival response. Before substantial amount
of information on the long-term survival (the true response) is available, our model uses
primarily historical survival information. The model is updated constantly during the trial and,
in particular, updated immediately after each ‘event’ (disease resistance, progression, relapse,
or death) is observed.

The new design is described in Section 2 with simulation studies in Section 3 to evaluate its
performance. The article is closed with a summary and discussion in Section 4.

2. A NEW DESIGN FOR RANDOMIZED CLINICAL TRIALS
Our proposed design is motivated by a real randomized phase II trial for acute myelogenous
leukemia. For confidentiality considerations, we do not name the specific treatments evaluated
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in the trial. Both the choices of the design parameters and the clinical scenarios for use in the
simulation study are similar to those for the real trial.

Many current leukemia trials simply classify patient response as CR or no CR. We classify
short-term response into four categories based on patient status at the end of treatment period:
(1) resistance to treatment or death, (2) stable disease, (3) partial remission (PR), and (4) CR.
We may assign scores such as 0, 1, 2, and 3, respectively, to these four responses. Such a
scoring system should work better than the simple classification of CR/no CR. However, as
the values of the four categories may not be equally spaced, we believe that it would be better
to use the mean progression-free survival time of each category. We define the progression-
free survival time as the elapsed time from treatment to resistance, disease progression, relapse,
or death, whichever happens first. For simplicity we call it survival time, but note that it does
not measure the overall survival time from treatment to death. Because patients will seek other
treatments after their diseases progress, the degree of relevance between current treatment and
their overall survival times may not be high. In addition, the information on overall survival
may be hard to obtain. Hence it is more appropriate to use progress-free survival than the overall
survival as the endpoint for a trial.

We use historical information to give each category an informative prior distribution for its
corresponding progress-free survival time. Anyone uncomfortable with the use of informative
prior distributions in clinical trial design should note that we do not use the informative prior
distributions to a priori favor either treatment arm as far as comparison is concerned; rather,
we use them as a more reasonable scoring system for the different patient responses. Moreover,
we dynamically update the scoring system according to the information being accumulated in
the ongoing trial.

A patient is assigned to receive either treatment A or B, using an adaptive procedure that bases
assignment probabilities on the results observed among the preceding patients. As efficacy
data accrue, patient assignment to the two regimens becomes unbalanced in favor of the better
treatment. We describe our model and the adaptive randomization scheme below.

Let x = a or b correspond to treatment A or B, respectively, and nx represent the number of
patients treated in arm x. If the patient i in arm x has a short-term response in the kth category,
k = 1,…,4, then denote this by Sx,k,i = 1 and Sx,j,i = 0 for 1 ≤ j ≤ 4, j ≠ k. We assume the vectors
(Sx,1,i,…,Sx,4,i) are independent and identically distributed across i = 1,…,nx, and each follows
a multinomial distribution Multi(1, px,1,…,px,4), with px,k representing the probability of a
patient in arm x having a short-term response in the kth category. Further, denote by Tx,i the
progression-free survival time of patient i in treatment arm x, i = 1,…,nx. Conditional on the
short-term response being in the kth category, we assume Tx,i follows an exponential
distribution with rate λx,k. Under the above specification, each Tx,i has a mixture of exponential
distributions. For simplicity, we assume that the short-term response is observed immediately
after treatment. We present our model below.
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where Exp (λx,k) is the exponential distribution, Dir(γx,1, γx,2, γx,3, γx,4) is the Dirichlet
distribution, and IG(αx,k, βx,k) is the inverse gamma distribution. The parameterizations for the
exponential and inverse gamma distributions are such that their expectations are equal to μx,k
and βx,k/(αx,k − 1), respectively. We assume, a priori, independence between px,k and μx,k.
Based on historical data about the progression-free survival for patients in the four short-term
response categories as mentioned above, we assume the parameters αx,k = 11 for k = 1,2,3,4,
and βx,1 = 40, βx,2 = 300, βx,3 = 750, βx,4 = 1100, x = a, b. The amount of information in these
prior distributions is approximately equal to that from 11 patients. The prior mean of μx,1 is
βx,1/(αx,1 − 1) = 4. Similarly, the prior means of μx,2, μx,3, and μx,4 are 30, 75, and 110,
respectively, for x = a, b. These choices reflect the information about mean progression-free
survival time (in weeks) from historical data. We choose these prior distributions based on the
following considerations: the priors should be reasonably informative in order to show the
difference between response categories, yet they are not so strong that they can be altered by
the data in the ongoing trial. We set the parameters for the Dirichlet distributions as γx,k = 0.5,
k = 1,…,4, x = a, b, resulting in prior distributions that contain reasonably vague information
for the response rates.

By the above assumptions, the posterior distributions of px,k and μx,k have closed forms.
Suppose that in treatment arm x, we observe nx,k patients with response k for k = 1,…,4. Based
on this information, the posterior distribution for (px,1, px,2, px,3, px,4) is Dir(γx,1 + nx,1, γx,2 +
nx,2, γx,3 + nx,3, γx,4 + nx,4). Suppose the observed or censored survival times for the nx,k patients

are  with corresponding indicators  (0 for censored and 1 for observed
time to progression). Then the posterior distribution of μx,k is IG

. At any given time point during the trial, we use Pr
(· | data) to denote the probability of an event conditional on the currently observed data.

Denote the mean of Tx,i by μx, x = a, b. Given (px,1,…,px,4, μx,1,…,μx,4), we have

. We continuously update and compare the distributions of μa and μb,
incorporating data from all patients. We use simulation to evaluate the posterior probability
p = Pr(μa > μb | data), and use this probability in the adaptive randomization. We assign patients
to treatment A with probability p and to treatment B with probability q = 1 − p. If at any point
during the trial (including at the end of the trial) p>pU (or p<pL = 1 − pU), then treatment A
(or B) is selected as the superior treatment. If the maximum number of patients is enrolled, and
at the end of the trial, still none of the arms is selected as superior, then the trial is inconclusive.
The cut-off value pU and the maximum sample size are calibrated in the simulation studies to
achieve desirable operating characteristics. That is to say, we keep adjusting these numbers in
our simulation studies until we get satisfactory operating characteristics for the design.

3. A SIMULATION STUDY
We use simulations to evaluate the performance of the above adaptive randomization procedure
under different clinical scenarios (5000 simulations per scenario). For the simulations, we set
the accrual rate to one patient per week. The maximum number of patients is 120. After the
initial 120 weeks of enrollment time, there is an additional follow-up period of 40 weeks. The
distributions of progression-free survival time (in weeks) are shown in Table I. In scenario 1,
the outcomes of the two arms A and B have the same distributions, namely the same
probabilities for CR, PR, stable disease, and resistance or death, and the same progression-free
survival time distributions for patients falling in each of the four short-term response categories.
Simply put, this is a scenario of the null hypothesis. In this scenario, by choosing pL = 0.025
for the proposed design, the probability of selecting arm A (or B) is 4.6 per cent (4.8 per cent)
by simulations. These correspond to one-sided type I errors in a frequentist design. We use the
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same pL in all of the scenarios, so that the selection probabilities for a treatment arm can be
interpreted as the power in a frequentist design at a two-sided significance level of roughly
0.10. In scenario 2, treatment B has higher CR and PR rates than treatment A, but the CR/PR
durations are the same for the two arms. As a result, treatment B has a higher mean survival
time than treatment A. Simulations of this scenario indicate that the chance of selecting arm
A (or B) as the better treatment is about 0.02 per cent (59.0 per cent). Using adaptive
randomization to assign more patients to the better treatment arm, on average, arm A has about
16 patients, and arm B has 71 patients. In scenario 3, arm B has higher CR and PR rates, and
also longer CR/PR durations. Simulations of this scenario indicate that the probability of
selecting arm A as the superior treatment is 0.02 per cent, and that for selecting arm B is 97.6
per cent. On an average, arm A has about 11 patients and arm B has 51 patients.

For the above design, if one is concerned that the inferior arm has too few patients and thus
may not have sufficient amount of information, then a simple remedy would be to use equal
randomization for the first, say 30, patients, and start adaptive randomization at the 31st patient.
The simulation results under this modification are also presented in Table I. It can be seen that
the results are of the same patterns as above, and now every treatment arm has a sufficient
number of patients. By using a less aggressive adaptive randomization, in some cases, the
numbers of total patients are actually reduced, and the power is greater. This gain is due to the
relatively more balanced patient distributions. The price paid is that slightly more patients are
assigned to the inferior treatment arm.

We compare our proposed design with an alternative design for survival trials that also uses
outcome-adaptive randomization, but not the information about short-term patient responses.
For convenience, we call it a common design, although actually it is also a relatively new design
that has not been commonly used in practice yet. In this design, we assume the survival times
for patients in the two treatment arms have exponential distributions with mean parameters
μa and μb, respectively. The prior distributions of μa and μb are assumed to be IG(α, β) with
α = 2 and β = 60. This is a very vaguely informative prior distribution with mean β/(α − 1) =
60, which is roughly equal to the mean survival time in scenario 1 mentioned above. We
compute the posterior probability p = Pr(μa>μb | data), and use it as we described previously
to determine patient assignment probabilities, early termination rules, and final decision rules.

We use 5000 simulations to evaluate the performance of the common design under the same
clinical scenarios we used to evaluate the proposed design. The operating characteristics of the
common design are presented in the far right panel of Table I. By choosing a cut-off value
pL = 0.007 in the stopping rules, the common design has a type I error rate that is similar to
that of the proposed design (see scenario 1). In scenario 2, the proposed design has greater
power (59.0 per cent vs 42.9 per cent) than the common design to detect the difference between
the two arms, using a smaller number of total patients (87 vs 103). The proposed design is also
more efficient than the common design in that it assigns less patients to the inferior treatment
arm A (16 vs 26, or 18 per cent vs 25 per cent of the respective total number of patients). In
scenario 3, treatment B has higher CR/PR rates, and also longer CR/PR durations. Under this
scenario, the proposed design has greater power (97.6 per cent vs 64.8 per cent), requires fewer
patients to reach a conclusion (62 vs 93), and assigns a smaller portion of patients to the inferior
arm A (11 vs 21, or 18 per cent vs 29 per cent of the respective total number of patients) than
the common design. The reduction in the total number of patients required under the proposed
design can result in substantial save of resources and time. In addition, the reduction in the
number of patients assigned to the inferior treatment arm is ethically very appealing.

Overall, we can see that the proposed design addresses the ultimate treatment goal of
prolonging patient survival, while also using early response information to increase the
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efficiency of adaptive randomization. When the information on early response such as CR/no
CR is available, it would be a waste if not using it.

4. DISCUSSION AND SUMMARY
In order to make the best use of resources and to carefully select candidate treatments for phase
III trails, there is an increasing need for phase II trial designs that evaluate the benefit of a new
treatment on survival. Many authors have addressed the problem of impressive phase II results
for an experimental treatment that later on fails in phase III trials [25–28]. These authors have
advocated the use of progression-free survival as the endpoint for phase II cancer trials, and
have emphasized the importance of making comparisons and using randomization in phase II
trials.

When using survival as the primary endpoint in either randomized phase II or III trials, the
information on short-term patient response is valuable and should not be ignored. We have
proposed a new statistical design that connects short-term response with long-term survival. It
has advantages over traditional designs that evaluate either short-term response or survival,
but not both. Traditional designs evaluating short-term response can implement adaptive
randomization in an almost real-time fashion, but may fail to address the ultimate concern of
patients, which is survival. Other traditional designs using survival as the endpoint can address
the ultimate goal of prolonging survival of patients. However, effective adaptive randomization
in such designs can be difficult, and may result in excessive patients assigned to the inferior
treatment arm. Our proposed design combines the advantages of these two types of traditional
designs, and avoids their disadvantages. To the best of our knowledge, the proposed design is
the first model-based design that uses short-term response information to facilitate adaptive
randomization in survival clinical trials.

The simplest design using both short- and long-term responses (such as CR and survival in
cancer studies) would be one that incorporates the short-term response (CR) in outcome-
adaptive randomization, and uses the survival outcome (say, a log-rank test) in interim and
final analyses for early stopping decisions and the final conclusion. Such a design lacks a model
to connect the short- and long-term responses. In some trials where the positive correlation
between CR and survival has been well established, such a näive design may not have serious
problems. However, in general, such a design is not well justified because the outcome-adaptive
randomization is not based on the evaluation of the primary endpoint. Our proposed design
takes care of this problem by modeling the relationship between the short- and long-term
responses.

We have not optimized our design for this study. Many authors have considered the
optimization of outcome-adaptive randomization methods. Optimization is a complicated
problem, and its solution depends on the criteria and constraints for optimality. Rosenberger
et al. [29] proposed to minimize the expected number of treatment failures in the trial under
fixed variance of the test statistic. Cheng and Berry [20] proposed to maximize the number of
total successes for patients in the trial and future patients combined. They set a constraint that
each arm must have a probability of at least r (0<r<1) of being chosen for each patient (r is
usually a small number such as 0.1). Future research may include further investigation of the
optimization of the proposed design.
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