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Abstract
Although prospective logistic regression is the standard method of analysis for case-control data, it
has been recently noted that in genetic epidemiologic studies one can use the “retrospective”
likelihood to gain major power by incorporating various population genetics model assumptions such
as Hardy-Weinberg-Equilibrium (HWE), gene-gene and gene-environment independence. In this
article, we review these modern methods and contrast them with the more classical approaches
through two types of applications (i) association tests for typed and untyped single nucleotide
polymorphisms (SNPs) and (ii) estimation of haplotype effects and haplotype-environment
interactions in the presence of haplotype-phase ambiguity. We provide novel insights to existing
methods by construction of various score-tests and pseudo-likelihoods. In addition, we describe a
novel two-stage method for analysis of untyped SNPs that can use any flexible external algorithm
for genotype imputation followed by a powerful association test based on the retrospective likelihood.
We illustrate applications of the methods using simulated and real data.
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1 Introduction
Case-control study designs are now widely used to study the role of genetic susceptibility in
the etiology of rare complex diseases. Typically, a case-control study involves recruiting all
or a large fraction of the diseased subjects (cases) that arise in an underlying study base and
then sampling a comparable number of healthy subjects (controls), ideally from the exact same
study base, and possibly matched with the cases by some socio-demographic characteristics
such as race, age and gender. Biological samples and questionnaire data collected on the
sampled subjects are then used to determine their genetic susceptibility, such as SNP genotypes
and history of some non-genetic (environmental) exposures. For rare diseases such as cancers,
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case-control studies are cost efficient compared to a cross-sectional or prospective cohort
studies because they dramatically reduce the number of non-diseased subjects to study.

In general, the standard method for analysis of case-control data is the prospective logistic
regression ignoring the retrospective nature of the underlying design. The validity of this
approach relies on the classic results by Cornfield (1956) who showed the equivalence of
prospective- and retrospective odds-ratios. The efficiency of the approach was established in
two other classic papers by Andersen (1970) and Prentice and Pyke (1979), who showed that
the prospective analysis of case-control data yields the proper maximum-likelihood estimates
of the odds ratio parameters of the logistic model under a “semiparametric” setup that allows
the distribution of the underlying covariates to remain completely unrestricted. More recently,
it has been shown that even in the presence of missing data and measurement error in covariates,
the “prospective” treatment of case-control data can yield proper maximum-likelihood
estimates as long as the distribution of the underlying covariates is allowed to remain
unrestricted (Roeder et al., 1996).

A special feature for studies in genetic epidemiology is that it is often reasonable to assume
certain models for the population distribution of the genetic and environmental covariates of
interest. The Hardy-Weinberg-Equilibrium (HWE) law, for example, which implies a simple
relationship between allele and genotype frequencies at a given chromosomal locus, is a natural
model for a random mating, large, stable population in the absence of new genetic mutations,
inbreeding and selective survivorship among genotypes (see Hartl and Clark, 2007, Chapter
3). Genes which are physically apart and hence are not expected to be in linkage disequilibrium
(LD) are also expected to be independently distributed in a homogeneous population. It is often
also natural to assume a subject’s genetic susceptibility, a factor which is determined at birth,
is independent of his/her subsequent environmental exposures. A pertinent question then is
what is the most appropriate method for analysis of case-control data in genetic epidemiology
where some natural model assumptions exist for the distribution of genetic and environmental
factors in the underlying population.

We will assume data on some genetic (G) and environmental (E) exposures are collected in a
case-control study involving N0 controls (D = 0) and N1 cases (D = 1). If one ignores the
retrospective nature of the case-control design, one can conduct inference based on the
prospective-likelihood

(1)

where N = N1 + N0. The fundamental likelihood for case-control data, however, known as the
“retrospective” likelihood, is given by

(2)

In the absence of any missing data, it is evident from the classical theory that the prospective-
likelihood (1) provides a valid way of testing and estimation of the odds-ratio association
parameters of the underlying logistic regression model. In fact, the prospective-likelihood
yields the same maximum-likelihood estimates for the odds-ratio association parameters that
could be obtained by maximization of the proper retrospective likelihood (2) while allowing
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pr(G, E), the joint distribution of G and E, to remain completely non-parametric. Under
constraints on pr(G, E), however, the retrospective likelihood would not yield the same
maximum-likelihood estimator as that from the prospective likelihood. More importantly, the
retrospective-likelihood can exploit various population genetics model assumptions such as
HWE, gene-gene and gene-environment independence to gain major efficiency over the
prospective-likelihood for inference on various association and interaction parameters. At the
same time, if the underlying model assumptions are violated, then the use of the retrospective
likelihood can lead to serious bias for both testing and estimation procedures. In the presence
of missing data, a further complication is that the use of the prospective likelihood may not be
even strictly valid in certain settings, such as that described in Section 4 for estimation of
haplotype effects, where for the purpose of identifiability LP also requires some modeling
assumptions, thus destroying its equivalence with LR that is known to hold under unspecified
covariate distribution. Thus, to date, a debate remains about the most appropriate method of
analysis of case-control studies in genetic epidemiology.

In this article, we will review some modern developments for analysis of case-control studies
in genetic epidemiology using the prospective- and retrospective-likelihoods. We will describe
the methods primarily through two different types of applications: (a) association testing for
genotyped and imputed single nucleotide polymorphisms (SNP) (Section 2 and Section 3) and
(b) estimation of haplotype effects and haplotype-environment interactions in the presence of
phase ambiguity (Section 4). In each section, we aim to provide new intuitive insights into the
alternative methods by constructions of various score tests (Section 2 and 3) and pseudo-
likelihoods (Section 4). As a byproduct, in Section 3, we also propose a novel “retrospective”
method for association testing for untyped SNPs which can easily use any external algorithm
for imputation of genotypes. In each section, we will use numerical examples to illustrate the
bias and efficiency trade-off between the alternative methods. We will conclude the article
with a discussion and recommendations for practical data analysis.

2 Association Analysis for Single Nucleotide Polymorphisms (SNPs)
2.1 The Prospective Approach

The genotype information for an individual SNP in a case-control study can be represented by
the 2 × 3 contingency table defined by cross-tabulation of case-control and genotype status.
Let D be the indicator of case (D = 1) or control (D = 0) status and let G be the number of
minor alleles carried by an individual (G = 0, 1, 2). Let ndg denote the number of subjects with
genotype G = g and disease status D = d observed in the case-control sample. Suppose we are
interested in testing the association of the disease outcome with a SNP-genotype using a
population logistic regression model of the form

(3)

where the function m(·) is chosen in a suitable way to reflect an assumed mode of genetic effect.
If, for example, G denotes the count for the minor allele at a SNP locus, then one can chose m
(G) = G, m(G) = I(G ≥ 1) or m(G) = I(G = 2) to model the effect of the minor allele as additive
(in the logistic scale), dominant or recessive. One can also consider a saturated model by
allowing m(G) to be a vector of two dummy variables associated with heterozygous (G = 1)
and homozygous variant (G = 2) genotypes and β to be the corresponding log-odds-ratios. The
prospective analysis of case-control data yields an asymptotically unbiased estimate for the
genotype-odds-ratio parameters β, but not for the intercept parameter α.
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The score-function for β under the prospective-likelihood (1) can be written as

Under the null hypothesis, β = 0, we can estimate p = pr(D = 1|Gi) as p̂ = N1/(N1 + N0) since
under that hypothesis, G does not influence D. Then the score function can be written as

which is proportional to the difference between the empirical mean of m(G) in the cases (D =
1) and in the controls (D = 0). We suppose without loss of generality that the indices for the
cases are {i = 1, …, N1} and those for the controls are {i = N1 + 1, …, N1 + N0}. If, for example,
we assume m(G) = G, i.e. the additive effect, then  corresponds to the numerator of the
Cochran-Armitage trend test (?, Chapter 7) that is widely used for single-SNP association
testing. More generally, a “prospective” score-test can be constructed under any genetic model
based on  and its variance under the null hypothesis of no association that be estimated by

where Vm(G) the pooled-sample variance of m(Gi).

2.2 Retrospective Approach
The retrospective likelihood, LR, for the genotype data of a single-SNP can be written as the
product of two sets of multinomial probabilities:

where pdg = pr(G = g|D = d), d = 0 and 1, denotes the population genotype frequencies for the
controls and the cases, respectively. Given the genotype probabilities for the controls, we can
characterize the genotype probabilities for the cases according to the formula (Satten and
Kupper, 1993)

(4)

where ψg(β) denotes the odds-ratio associated with the genotype G = g as specified by the
logistic model (3). Thus, the retrospective likelihood can be parameterized in terms of the
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genotype probabilities of the controls and the disease-odds-ratio parameters β. The
maximization of the retrospective likelihood LR, without imposing any further constraints on
the genotype probabilities for the controls, will lead to the same estimator for β that would be
obtained by maximization of LP (Prentice and Pyke, 1979). In fact, it can be shown that the
retrospective- and prospective-profile likelihoods of β become identical after maximization of
the corresponding likelihoods with respect to the associated nuisance parameters (Roeder et
al., 1996). Thus, the associated tests, including score-, Wald- and likelihood-ratio tests, are
identical under the retrospective and prospective likelihoods.

Now suppose we are willing to assume that HWE holds in the underlying population and that
the disease is rare so that HWE also holds approximately in the control population. In the
retrospective likelihood LR, we can write the genotype probabilities for the controls as a
function of the frequency, f, of the minor allele as

It is easy to show that the score-function for β associated with the retrospective likelihood can
be written as

which under the null hypothesis of no association reduces to

(5)

Moreover, under the null hypothesis, the allele frequency f can be substituted for by its
maximum-likelihood estimate

(6)

where n+g denotes the frequency for genotype G = g in the pooled sample of cases and controls.
Thus,  corresponds to the difference between the empirical mean of the function m(G) in
cases and its expected value under HWE and the null hypothesis of no association. In contrast,
note that,  corresponds to the difference between the empirical mean of the function m(G)
in cases and the empirical mean for the same function in the controls. If the expectation in the
retrospective score-function (5) is estimated empirically without assuming HWE then, as
expected, it can be easily shown that the retrospective and prospective scores are the same. If,
however, we assume HWE to evaluate the retrospective score function, then it would have
smaller variance than that for the prospective score. In particular, this can be seen from the
estimate of the variance estimate  given by
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where

By the Cauchy-Schwartz inequality,  asymptotically, implying that the retrospective
score test is asymptotically more powerful than its prospective counterpart when the
assumption of HWE is valid.

Chen and Chatterjee (2007) compared the performance of 2 d.f. Wald-tests of association based
on the retrospective and prospective likelihoods. They observed major gains in power for the
test based on the retrospective-likelihood for the detection of non-multiplicative effects, e.g.,
recessive effects. Notice that if we assume an additive model, i.e. m(G) = G, then the
prospective and retrospective score-functions  and  become identical because in this case

. The larger the departure of the effect of a SNP from the additive
form, the greater the gain in efficiency for the retrospective method. Application of
retrospective methods for association testing, however, requires caution because of their
sensitivity to the underlying model assumption. In particular, it can be seen from the formula
of  that the unbiasedness of that score function crucially depends on the assumption of HWE
being correct for the underlying population. Satten and Epstein (2004) and Chen and Chatterjee
(2007) have noted that even modest violation of HWE can cause serious inflation in Type-I
error in association tests based on the retrospective likelihood.

2.3 Empirical-Bayes Methods
Luo et al. (2009) considered an empirical-Bayes type shrinkage estimation approach to develop
a 2 d.f. single-SNP association test that can gain power by exploiting the model assumptions
of HWE for the underlying population and yet is resistant to bias when the model assumptions
are violated. The method involves estimation of genotype-specific disease odds ratio
parameters by data-adaptive “shrinkage” of a “prospective” model-free estimator that does not
require the HWE assumption towards a “retrospective” model-based estimator that directly
exploits the HWE constraints. The amount of “shrinkage” is sample-size and data-adaptive, so
that in large samples the method has no bias whether the assumption of HWE holds or not and
yet the method can gain efficiency by shrinking the analysis towards HWE, but only to the
extent that the data validate the assumptions. In what follows, we provide some insight into
the empirical-Bayes method through the construction of a score-test. For numerical illustration,
however, we will focus on the Wald test as originally developed in Luo et al. (2009).

Let  and  denote the
sample mean and variance for the function m(G), respectively. Further, let τ̂ = m ̄(G) −
Ef̂,HWEm(G) denote the difference between the empirical and expected means of m(G) when
the latter quantity is computed assuming HWE and under the estimate of allele frequency f̂
given in (6). Intuitively, τ̂ can be viewed as an estimate of the bias in estimation of the population
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mean of m(G) under the assumption of HWE. An empirical-Bayes type score function can be
now defined as

(7)

where EEB {m(G)} is the empirical-Bayes estimate for the mean of the function m(G)
underH0, given by

Thus, EEB {m(G)} corresponds to a weighted average of the empirical mean of m(G) and its
expected mean under HWE, with the weights defined by an estimate of the bias for the estimate
of the population mean of m(G) under HWE and an estimate of the variance of the empirical
mean of m(G). As τ̂2 decreases, i.e. the evidence of bias due to the violation of HWE becomes
smaller, EEB {m(G)} gives more weight to the more precise HWE-based estimator of the

population mean of m(G). Conversely, as  decreases, i.e the sample mean of m(G)
becomes more precise, then EEB {m(G)} puts more weight to the robust model-free estimator
m ̄(G). The original perspective for constructing such weighted combinations of model-based
and model free estimators from an empirical-Bayes point of view can be found in Mukherjee
and Chatterjee (2008). Simple methods for variance estimation for such estimators have been
also described in that article.

2.4 The Cancer Genetics Markers of Susceptibility (CGEMS) Study
We illustrate the performance of alternative 2 d.f. single SNP association tests using data from
the Cancer Genetics Markers of Susceptibility (CGEMS) study (Yeager et al., 2007; Hunter et
al., 2007; Thomas et al., 2008), an NCI enterprize initiative to conduct multi-stage whole-
genome association studies to identify susceptibility genes giving rise to increased risks of
prostate and breast cancers. In this article, we will focus on data from the initial scan for the
prostate cancer study, involving genotype data on about 550, 000 SNPs from 1, 172 cases and
1, 157 controls. The details of the CGEMS study design and the results from the initial scan
and subsequent replication studies can be found at the web site https://caintegrator.nci.nih.gov/
cgems/.

We consider 449, 698 SNPs from 22 non-sex chromosomes with minor allele frequencies larger
than 0.05. Table 1 displays the empirical proportions of the number of SNPs that are found to
be significant at different nominal significance levels using 2 d.f. tests based on three different
methods: (a) prospective; (b) retrospective and (c) empirical-Bayes (see Luo et al. (2009) for
more details). For a well-designed study and a robust analytic method, the empirical
proportions are expected to be fairly close to the nominal significant levels, given that vast
majority of the SNPs are likely to be not associated with the disease. In Table 1, we observe
that the empirical proportions of significant SNPs found by the prospective method closely
follows the nominal significance levels. In contrast, the corresponding proportions for the
retrospective test deviate severely from the nominal values in the range of α ≤ 10−3, indicating
significantly inflated type-I error due to the violation of HWE for many SNPs. The last column
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of Table 1 shows that the empirical-Bayes procedure essentially corrects for all the bias of the
retrospective method due to the violation of the HWE assumption.

Next, we conducted a simulation study to investigate the performance of various tests in ranking
a true susceptibility locus in a genome-wide association study (GWAS) that include hundreds
of thousands of “null” SNPs. To generate realistic linkage disequilibrium patterns, we
simulated GWAS data mimicking the CGEMS study itself. Given MAF among controls and
the disease-genotype odds-ratio parameters for a chosen susceptibility locus, we simulate
genotype data at that locus for the cases and controls separately from the corresponding
multinomial distributions. Given the genotype data at the susceptibility locus for a case or a
control, we simulate genotype data for the remainder of the SNPs by assigning the whole
genotype profile for a randomly selected subject from the controls of the CGEMS study who
have the same genotype data at the given susceptibility locus as the sampled subject in our
simulation study. This algorithm, as originally described by Yu et al. (2009), assumes that
given the genotypes for the susceptibility locus, the risk of the disease is independent of all the
remaining SNPs. We simulated 50 data sets with approximately 550 cases and 550 controls.
For each data set, we tested for association for each of the approximately 450,000 SNPs using
the prospective, retrospective and empirical-Bayes methods. The rank of the disease-associated
SNP is obtained by sorting all the p-values in ascending order.

Table 2 displays the median ranks obtained by three methods for a true disease-associated SNP
that has a recessive effect with a log-odds-ratio of β = log(3). As expected, the ranks of all tests
decrease as the MAF increases. Comparing the ranks of different tests at a specific MAF, we
can see that the standard prospective method generally has the lowest power in the sense that
it assigns much higher rank to the susceptibility SNP than the two other tests. When MAF=0.1,
we observe that the pure retrospective method performs the best in the sense that it assigns the
lowest rank to the susceptibility SNPs among all the methods. In contrast when MAF≥ 0.2, we
observe that the empirical-Bayes procedure assigns considerable lower rank to the
susceptibility SNP than the pure retrospective method. Intuitively, the results can be explained
from the fact that the retrospective method yields low p-values for many null SNPs due to the
violation of the HWE assumption (see Table 1) and thus dilutes the rank of the real
susceptibility SNP.

3 Association Analysis for Imputed SNPs
The forms of the prospective- and retrospective-scores suggest how they can be modified easily
for SNPs that may not have been directly genotyped, but can be “imputed” conditional on
neighboring SNPs and estimates of linkage disequilibrium from HapMap or other similar data
bases. Let (G) denote the neighboring genotype information for an untyped SNP-locus with
unobserved genotype G. The prospective score for such an untyped SNP can be defined by
taking the conditional expectation of the “complete data” score-function  given the observed
data, i.e the neighboring genotype information. More formally, the prospective score for an
untyped SNP can be written as

(8)

where the conditional expectations are taken with respect to a suitable imputation model such
as those described by Nicolae (2006), Marchini et al. (2007) and others. The retrospective score
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for an untyped SNP can be similarly defined by the conditional expectation of the “complete
data” retrospective score-function  given the observed data (G) in the form

(9)

Notice that in the retrospective score function, the contribution of the term EHWE,f {m(G)} is
a constant term given the allele frequency f. The estimation of the allele frequency f for an
untyped SNP, however, requires imputation. In particular, under the “complete data” model
we can write the estimate of the allele frequency under the null hypothesis of no association
as

Thus, given an imputation model, we can estimate the allele frequency f as

(10)

We further need the variances for  and  under the null hypothesis to obtain the
corresponding score tests. The variance of  can be estimated as

where VE{m(G)| (G)} is the pooled-sample variance of E{m(G)| (Gi)}. The prospective-score
test is based on the test statistic given by

where the superscripts T and – denote transpose and generalized inverse, respectively.
Asymptotically, this statistic follows a chi-squared distribution under the null hypothesis of
β = 0, with the degrees of freedom given by the dimension of m(G). The variance of the
retrospective score , after adjusting for the estimation of the allele frequency f by f̂ given
by (10) and can be estimated by
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where Q is pooled-sample covariance between E{m(G)|N(Gi)} and E{G|N(Gi)}. The variance
of  can also be alternatively estimated by the robust sandwich-type estimate given as

where the efficient score

The retrospective-score test is then based on the test statistic given by

which again follows a chi-squared distribution asymptotically under the null hypothesis, with
the degrees of freedom given by the dimension of m(G). In both the prospective- and
retrospective-sore tests given above, we obtain the conditional probability Pr{G| (Gi)}
directly from some external reference database, e.g. HapMap, a strategy similar to the proposal
of Nicolae (2006).

We now demonstrate the potential power advantages that might be achieved by imputing the
untyped SNP, using numerical studies following two scenarios as in Tables 1 and 2 of Nicolae
(2006). In Scenario 1, the untyped SNP can be perfectly predicted by the genotypes of the typed
SNPs, namely the  (see Stram et al., 2004, for definition), while in Scenario 2 the untyped
SNP is moderately predicted by the genotypes of the typed SNPs with . The SNP
profiles together with the haplotype frequencies estimated from HapMap CEU samples in the
two scenarios are summarized in Tables 3 and 4. Also listed in Tables 3 and 4 are the haplotype
frequencies we actually used to simulate the SNP data for the case-control sample, which
moderately deviate from those seen in the HapMap CEU sample to reflect the potential
discrepancy between the HapMap and study samples. The haplotype pair for each person is
generated according to HWE.

We simulated the case-control status by the logistic regression model (3), where the genetic
determinant G is given by the minor allele count of the untyped SNP, and the function m(·) is
given by the recessive, dominant, or additive genetic mode. The intercept α = −3.0, which
yields an overall disease rate around 5%. Each analysis is based on a case-control sample with
1000 cases and 1000 controls. The simulation results are based on 1000 (3000) repetitions for
evaluation of test power (size). All the tests are performed at a significance level of 0.01. The
score tests are performed using the correct genetic model, and the retrospective-score tests are
based on the robust sandwich-type variance estimates; results based on model-based variance
estimates are quite similar and are omitted. When performing the prospective- and
retrospective-score tests with imputed genotypes for the untyped SNP, we use thed haplotype
frequency estimates from HapMap to obtain the conditional probabilities Pr{G| (Gi)}, even
though the case-control sample is actually from a population with moderately different
haplotype frequencies. To see the degree of recovery of missing information achieved by
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imputation, we also perform the prospective-and retrospective-score tests based on the true
genotypes at the untyped SNP. In addition, we perform the multi-marker Hotelling’s T2 test
based on genotypes at typed SNPs (Xiong et al., 2002;Chapman et al., 2003), which is
equivalent to the prospective-score test derived from the logistic regression model (3) with the
covariates m(G) given as the vector of genotypes for all the typed SNPs.

Results for this simulation study are presented in Tables 5 (Scenario 1) and 6 (Scenario 2). It
is seen that the score tests with imputed genotypes have size matching reasonably well with
the nominal value of 1%, even though the imputation is based on haplotype frequencies that
are obtained from the HapMap data and are different from the true frequencies. From the results
regarding power, we see that imputing the untyped SNP in either the prospective- or the
retrospective-score test can achieve substantial power gains as compared with the Hotelling’s
T2 test based only on genotyped SNPs. The relative power improvement gained by imputation
can still be quite remarkable even when the accuracy for predicting the untyped SNP using the
genotyped SNPs is only of a moderate level (Scenario 2, where ). On the other hand,
the prediction accuracy does affect the degree of recovery of the missing information that may
be achieved by imputation: in Scenario 1, with perfect prediction of the untyped SNP, the tests
using imputed genotypes do attain the full power we would obtain if the tests were based on
the true genotype of the untyped SNP. In Scenario 2, with moderate prediction of the untyped
SNP, imputation of the untyped SNP can recover partial but not full power. It is worth
remembering that, with exact data, the retrospective-score test is usually more powerful than
the prospective-score under the dominant or recessive model, and the two tests are essentially
equivalent under the additive model. Here we observe the same phenomena when the
prospective- and retrospective-score tests are based on imputed genotypes.

As we noted earlier, when exact genotype data are available, the retrospective-score test is
more sensitive to violation of the HWE assumption than the prospective-score test; i.e., the
former is usually biased while the latter still remains unbiased when HWE does not hold. To
assess the robustness properties for the prospective- and retrospective-score tests with imputed
genotype data, we performed a further simulation study where the SNP haplotypes are still
given as in Tables 3 and 4, but the haplotype pair Hdi = (ha, hb) for each person is given by the
model with Pr{Hdi = (ha, hb)} = (1 − ζ)θa θb for ha ≠ hb and 
for ha = hb, where θa is the frequency for haplotype ha, and ζ, the fixation index quantifying
the departure from HWE, is set to 0.05. We can see from the results listed in Table 7 that, with
imputed genotype data, the prospective-score test, like its exact-data counterpart, still shows
greater robustness in maintaining the type I error rates than the retrospective-score test. In
particular, the retrospective-score test, based on the recessive or dominant model, may yield
high type I error rates under violation of HWE, no matter whether exact or imputed genotype
data are used. Thus, an empirical-Bayes type shrinkage method that can adapt between
prospective and retrospective methods depending on bias-variance trade-off could be useful
for analysis of both typed and untyped SNPs.

We conclude this section with a discussion on the two types of association analyses recently
developed for untyped SNPs: the full likelihood approach (Lin et al., 2008) and the two-stage
approach (Nicolae, 2006; Marchini et al., 2007). The full likelihood approach uses a
retrospective likelihood for the case-control sample and a likelihood for the external (such as
HapMap) data, by which the imputation and association analysis are simultaneously performed
in a one-stage manner. Conversely, the two-stage approach performs the imputation and
association analysis separately: imputing missing genotypes in the first stage and then
performing association analysis in the second stage. In the imputation stage of the two-stage
approach, one can apply existing powerful external imputation algorithms such as Nicolae
(2006) and Marchini et al. (2007), and hence the two-stage approach is convenient to
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implement. There has been some debate on the efficiency difference between the two
approaches (Marchini and Howie, 2008; Lin and Hu, 2008). Our simulation results (Tables 5
and 6) suggest that the efficiency difference between the full likelihood and the two-stage
approaches may be mostly due to the use of different likelihoods (prospective vs. retrospective)
and not so much due to the use of one-stage versus two-stage analysis. In this section, we have
shown that one can still use a retrospective likelihood even in a two-stage approach with
powerful imputation performed at the first stage.

4 Haplotypes
4.1 Definitions, Background and Missing Data

Although single-SNP association tests are often the primary methods for genome-wide
association scans, many secondary or “downstream” analyses are often useful for detailed
characterization of the risk of the disease associated with specific genomic regions of interest.
One popular technique is haplotype-based association analysis, which involves studying the
association of a disease with a genomic region in terms of the underlying “haplotypes”, the
combination of alleles at multiple loci along individual homologous chromosomes. Originally,
haplotype-based association analysis was considered a powerful technique for “indirect”
association testing in situations where a causal SNP may not have been genotyped, but the
haplotypes defined by multiple typed SNPs could serve as a good “surrogate” for the causal
variant. With the advent of various imputation methods, although haplotype analysis has
become less relevant for such indirect association testing, it remains a useful tool for
parsimonious characterization of disease-risk associated with multiple, possibly interacting,
loci within a given region. Moreover, it is conceivable that for some regions, the haplotypes,
and not the individual SNPs, are functional units and thus for these regions stronger signals of
associations could be detected by performing haplotype based regression analysis.

A technical problem for haplotype-based regression analysis is that typically the haplotype
information for the study subjects is not directly observable. Instead, locus-specific genotype
data are observed, which contain information on the pair of alleles a subject carries, but does
not provide the “phase information”, that is which combinations of alleles appear across
multiple loci along the individual chromosomes. In general, the genotype data of a subject will
be phase-ambiguous whenever the subject is heterozygous at two or more loci. Statistically,
the lack of phase information can be viewed as a special missing data problem.

For example, suppose A/a and B/b denote the major/minor alleles in two bi-allelic loci. A
particular haplotype pair, called a diplotype, is the pair of alleles that are inherited from one’s
parents. One such haplotype pair would be (AB) − (ab), and disease risk can be associated with
the number of copies of particular haplotypes that one inherits. Unfortunately, the diplotypes
are not observable directly, but instead we can observe only the unordered or combined
genotypes, in this case (Aa) at the first locus and (Bb) at the second locus, i.e., (AaBb). However,
when observing only the genotypes, the actual haplotype pair is unknown, or “phase
ambiguous”, because the haplotype pair (Ab)−(aB) has the same set of unordered genotypes.
Confronted with the unordered set of genotypes (AaBb), we know that the actual haplotype
pair is either (AB) − (ab) or (Ab) − (aB), but we must use probability models to take into account
the phase ambiguity when performing statistical inference.

In Section 2 we described “model-free” prospective and “model-based” efficient retrospective
methods for analyzing SNP data, and we also described empirical-Bayes methods that data-
adaptively move between the two. Just as in SNP data, for haplotype data there are also model-
free and model-based methods, and accompanying empirical-Bayes methods.
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A variety of methods have been developed for haplotype-based analysis of case-control data
using the logistic regression model (Zhao et al., 2003; Lake et al., 2003; Epstein and Satten,
2003; Satten and Epstein, 2004; Spinka et al., 2005; Lin and Zeng, 2006; Chatterjee et al.,
2006; Chen et al., 2009). Consider a general risk model similar to (3) but with the addition of
environmental factors (E) and written in terms of the diplotypes, denoted as Hdi:

(11)

where the function m(·) is chosen in a suitable way to reflect an assumed mode of genetic effect.
For example, suppose we are interested in the particular haplotype h*= (ab). A model that
assumes an additive effect of this haplotype would have m(Hdi = hdi, E) linear in the number
of copies of the haplotype h*.

4.2 Model-Based and Model-Free Methods
4.2.1 Identifiability—The data setup then is that we have observations on environmental
exposure (E), genotypes G and cases and controls D. What is missing is the underlying
diplotype Hdi. The retrospective likelihood is still (2), but the risk of disease depends on the
diplotype Hdi and not otherwise on the genotype.

While models such as (11) seem straightforward enough for random samples, in retrospective
samples a problem arises because of the phase ambiguity. In particular, all components of β
may not be identifiable if the distribution of (Hdi, E) is left completely unrestricted (Epstein
and Satten, 2003;Lin and Zeng, 2006). Thus, to make progress, some type of distributional
assumptions are needed. Here we will distinguished between two approaches, both of them
retrospective in nature but with different distributional assumptions. The first we call “model-
free” in that very little is actually assumed about the haplotype distribution. If haplotypes were
observable, this method reduces to ordinary prospective logistic regression, while in the rare
disease case with phase ambiguity, the method reduces to that of Zhao et al. (2003). The second
approach, which we call “model-based”, makes much stronger assumptions about the
haplotype distribution, and reduces to the efficient retrospective approach of Chatterjee and
Carroll (2005) if haplotypes were observable. The model-free method will thus be more robust
but less efficient than the model-based method.

4.2.2 Model-Based Method—The model-based method (Spinka et al., 2005) has three
aspects.

(A.1) Haplotypes and the environment are assumed independent in the population.

(A.2) The diplotypes are assumed to be in HWE in the population, so that

where θs denotes the population frequency for the haplotype hs.

(A.3) The distribution of the environmental variable E is left completely nonparametric.

The methodology Spinka et al. (2005) used to construct their profile likelihood was a
nonparametric maximum likelihood estimator over the unknown distribution of E. However,
there is an alternative derivation, one that is both more intuitive and much easier to work out.
Indeed, it is a not sufficiently well known fact that for most purposes a case-control study can
be viewed as a prospective study with missing data. Consider a sampling scenario where each
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subject from the underlying population is selected into the case-control study using a Bernoulli
sampling scheme where the selection probability for a subject given his/her disease status D
= d is proportional to Nd/pr(D = d). Inference with the actual case-control data can then be
based on the pseudo-likelihood derived for such an alternative sampling scenario. Let δ = 1
denote that a subject is selected in the case-control sample under this Bernoulli sampling
scheme and hence has been observed. Then in this alternative sampling scheme, and with the
assumptions stated above, Spinka et al. (2005) compute pr(D = 1, G = g|E, δ = 1). This
calculation is simple and in the rare disease case the resulting efficient model-based likelihood
function reduces to

(12)

where pd = Nd/N, πd = pr(D = d), κ = α + log(p1/p0) − log(π1/π0), Ω = (β, θ, κ), and ℋG is the
set of diplotypes consistent with the observed genotypes G.

4.2.3 Model-Free Method—The two important model assumptions in the model-based
estimator are (A.1) and (A.2). Although because of identifiability some model assumptions
must be made, they can be weakened tremendously, as follows (Chen, Chatterjee and Carroll,
2009):

(B.1) The haplotype and the environment are independent in the population given the
genotype G.

(B.2) There population distribution for the diplotypes given the genotype G, called
qfree(hdi|G, θ), can be derived assuming HWE.

Following the same alternative sampling scheme as described in Section ??, or by doing a
nonparametric maximum likelihood analysis, we can compute pr(D = 1|G, E, δ = 1) under
assumptions (B.1), (B.2) and (A.3) to be

(13)

To see why the likelihood Lfree requires far weaker assumptions than Lmodel, note that Lfree
requires the haplotype-environment independence and HWE assumption only to specify the
conditional distribution pr(Hdi|G, X) while Lmodel requires the same assumption to specify the
entire joint distribution pr(Hdi, X). As a result, Lfree requires the haplotype-environment
independence and HWE only to resolve the phase ambiguous genotypes. The likelihood
contribution for the subjects with phase unambiguous genotypes, ie. G = Hdi, is the same as
that for the standard prospective logistic regression. In contrast, Lmodel depends on the
assumptions (A.1) and (A.2) irrespective a subject has missing phase or not.

Note that Lfree(D, G, E, Ω) will contain little information on θ since it conditions on G. Thus,
when implementing methods based on this likelihood, Chen et al. (2009) proposed to replace
the score function for θ by the estimating function for θ based on the genotype data from the
controls and assuming that the haplotypes are in HWE in the population.
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4.3 Empirical-Bayes
In Section 4.2.2, we constructed a profile likelihood under strong assumptions leading to an
efficient method that will not be robust to violations of the two major assumptions. Conversely,
in Section 4.2.3 we computed a profile likelihood leading to much more robust inference, but
at the cost of a steep loss of efficiency. Similarly to Section 2.3, here we briefly review a fully
sample size- and data-adaptive empirical-Bayes method that Chen et al. (2009) described for
gaining efficiency when warranted but is still robust.

Let β ̂free and β ̂model be the model-free and model-based estimates, with jth components βj,free
and β ̂j,model. Let V be the covariance matrix of ψ ̂ = β ̂free − β ̂model, with the jth diagonal element
of V being vi: a sandwich estimator vi can be computed, although a nonparametric bootstrap
can also be used. Then one can define the empirical-Bayes estimator

(14)

The intuition behind (14) is that if the model fails, (β ̂j,model − β ̂j,free) will be large relative to
vi, which as a variance is proportional to N−1, hence Wj ≈ 0, and hence the empirical-Bayes
method will effectively become the model-free estimator. If however the model assumption
holds, then vi and (β ̂j,free − β ̂j,model)2 are proportional to one another, so that Wj > 0 and the
empirical-Bayes estimate goes part way towards the model-based estimator, and hence gains
efficiency over the model-free estimate. Chen et al. (2009) describe the limiting distribution
of (14) and how to compute an estimate of its variance.

Chen et al. (2009) illustrate application of the different methods in two case-control data
examples. The examples were chosen in such a way that from a priori biologic grounds one
would expect the gene-environment independence assumption to hold in one case, but not in
the other. The two examples together illustrate how the different shrinkage estimators adapt to
alternative scenarios of gene-environment distribution.

5 Discussion
Researchers now increasingly use the Cochran-Armitage trend test as the primary method for
single-SNP association testing in the GWAS. The test is known to have robust power for the
detection of effect of susceptibility SNPs under a range of realistic modes of inheritance that
give rise to some sort of monotone relationship between disease-risk and allele count. As noted
in Section 2, the retrospective and prospective methods have very similar, if not identical,
power under the trend model and thus either could be used as the primary method for analysis
of GWAS data. The trend test, however, can perform very poorly for the detection of SNPs for
which the minor allele has a recessive effect. Thus, it is often recommended that a test under
the recessive mode of inheritance be conducted as a secondary step to detect SNPs with
recessive effects that may be missed by the primary trend test of association. The use of the
retrospective method can be potentially beneficial at this stage. One, however, has to be
cautious about creation of false positive results due to the violation of the HWE assumption.
We recommend that if a retrospective method is to be used for potential power gain, then it
should be used in conjunction with the empirical-Bayes type shrinkage estimation. Our
numerical investigations suggest that such a method can indeed be more powerful than the
conventional “prospective” methods without creating excess false positives, see Tables 1 and
2.
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In this article, although we focus on association tests involving bi-allelic SNPs, the same issues
are relevant for genetic association tests involving loci with more than two alleles. In particular,
one can gain efficiency for analysis of case-control data by assuming HWE or other natural
population-genetic models (Satten and Epstein, 2004; Lin and Zeng, 2006) to specify multi-
allelic genotype frequency for the underlying population. The sensitivity of the methods to
underlying model assumption can be reduced by appropriate shrinkage estimation techniques.

The difference between prospective and retrospective methods become more relevant for
studies of gene-gene and gene-environment interactions, a topic that we have not directly
addressed in this article. In particular, retrospective methods, such as the case-only analysis
(Piegorsch et al., 1994), which assumes gene-gene or/and gene-environment independence for
the underlying population, can gain dramatic power for testing and estimation of odds-ratio
interaction parameters in the logistic regression model. Given that standard case-control
analyses often have poor power for detection of multiplicative interactions due to small
numbers of cases or controls in cells of crossing exposures, practitioners often find it is tempting
to use the more powerful retrospective methods. The assumption of gene-environment
independence, however, can be violated, either due to direct casual association between gene
and environment or indirect association due to effects of family history and hidden population
stratification. The assumption of gene-gene independence between physically distant genes
can also be violated due to population stratification. Thus, we believe the development of
shrinkage (Mukherjee and Chatterjee, 2008; Chen, Chatterjee and Carroll, 2009) and other type
of data-adaptive techniques (Li and Conti, 2009) has been valuable for robust inference in case-
control studies of genetic epidemiology.
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Table 1

The empirical proportions of significant SNPs detected by different methods at different nominal significance
levels in the CGEMS prostate cancer study.

α Prospective Retrospective Empirical-Bayes

5e-2 5.01e-2 5.66e-2 4.49e-2

1e-2 0.98e-2 1.43e-2 0.87e-2

1e-3 1.05e-3 3.85e-3 1.00e-3

1e-4 1.27e-4 2.24e-3 1.31e-4

1e-5 2.67e-5 1.76e-3 3.34e-5

1e-6 2.22e-6 1.47e-3 4.45e-6
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Table 2

Simulated median ranks of a true susceptibility SNP with a recessive effect and log-odds-ratio value of log(3)
for alternative tests. The results are based on 50 simulated datasets, each of which has approximately 550 cases
and 550 controls and 450,000 SNPs.

MAF Prospective Retrospective Empirical-Bayes

0.1 112163 8117 44319

0.2 1888 203 52

0.3 656 210 27

0.4 15 82 2
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Table 3

The SNP profiles and haplotype frequencies for the region considered in Scenario 1, where the untyped SNP can
be perfectly predicted by genotyped SNPs A1, …, A4 ( ). Also listed are the haplotype frequencies estimated
from the CEU sample in HapMap. Part of the data are from Table 1 of Nicolae (2006).

Haplotype of SNPs A1– T – A2– A3– A4 Frequency Frequency from HapMap

1-0-0-0-0 0.158 0.058

0-1-0-1-0 0.400 0.300

1-1-0-1-0 0.050 0.050

1-1-1-0-1 0.358 0.558

0-1-1-0-1 0.022 0.017

1-1-0-0-1 0.012 0.017
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Table 4

The SNP profiles and haplotype frequencies for the region considered in Scenario 2, where the untyped SNP is
moderately predicted by genotyped SNPs A1, …, A3 ( ). Also listed are the haplotype frequencies
estimated from the CEU sample in HapMap. Part of the data are from Table 2 of Nicolae (2006).

Haplotype of SNPs A1– T – A2– A3 Frequency Frequency from HapMap

0-0-0-0 0.088 0.058

0-0-1-1 0.027 0.017

0-1-0-0 0.302 0.342

0-1-1-0 0.008 0.008

1-0-1-0 0.242 0.142

1-0-1-1 0.333 0.433
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Table 5

Size/Power (%) of the prospective- and retrospective-score tests (significance level=0.01) based on the imputed
and true (in parenthesis) genotypes at the untyped causal SNP, using SNP data generated according to Table 3
(perfect prediction). Also shown are results for the Hotelling’s T2 test based only on genotypes at the typed SNPs.
Results for power (size) are based on 1000 (3000) simulated data sets.

β Prospective Score imputed (true) Retrospective Score imputed (true) Hotelling’s T2

Recessive model

0 1.1 (1.1) 1.1 (1.1) 0.9

0.5 26.1 (26.1) 33.7 (33.7) 3.6

0.6 40.1 (40.1) 55.3 (55.3) 5.6

Dominant model

0 1.0 (1.3) 1.0 (1.3) 0.9

0.3 68.6 (68.6) 72.9 (72.9) 39.0

0.4 96.0 (96.0) 96.7 (96.7) 79.3

Additive model

0 1.2 (1.2) 1.2 (1.2) 0.9

0.2 43.0 (43.0) 43.0 (43.0) 24.2

0.3 86.4 (86.4) 86.4 (86.4) 65.5
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Table 6

Size/Power (%) of the prospective- and retrospective-score tests (significance level=0.01) based on the imputed
and true (in parenthesis) genotypes at the untyped causal SNP, using SNP data generated according to Table 4
(moderate prediction). Also shown are results for the Hotelling’s T2 test based only on genotypes at the typed
SNPs. Results for power (size) are based on 1000 (3000) simulated data sets.

β Prospective Score imputed (true) Retrospective Score imputed (true) Hotelling’s T2

Recessive model

0 1.4 (1.2) 1.2 (1.2) 1.1

0.5 42.6 (92.2) 47.0 (97.6) 17.6

0.6 59.4 (99.1) 66.4 (99.9) 24.9

Dominant model

0 0.8 (1.1) 0.9 (1.0) 1.1

0.4 48.5 (95.6) 54.3 (98.2) 23.8

0.5 71.6 (99.6) 77.2 (100) 41.5

Additive model

0 1.0 (1.3) 1.0 (1.3) 1.1

0.3 60.2 (97.6) 60.1 (97.6) 40.6

0.4 92.5 (99.9) 92.4 (99.9) 77.4
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Table 7

Size (%) of the prospective- and retrospective-score tests (significance level=0.01) based on the imputed and
true (in parenthesis) genotypes at the untyped causal SNP, using SNP data generated according to scenarios 1
(Table 3) and 2 (Table 4) and a fixation index of 0.5 (violating HWE). Results are based on 3000 simulated data
sets.

Prospective Score imputed (true) Retrospective Score imputed (true)

Recessive model

scenario 1 0.8 (0.8) 1.7 (1.7)

scenario 2 1.2 (1.2) 5.9 (7.7)

Dominant model

scenario 1 0.9 (0.9) 1.4 (1.4)

scenario 2 1.0 (0.8) 3.2 (5.1)

Additive model

scenario 1 1.0 (1.0) 1.0 (1.0)

scenario 2 0.7 (0.8) 0.7 (0.8)
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