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SUMMARY
Generalized linear mixed models (GLMMSs) continue to grow in popularity due to their ability to directly
acknowledge multiple levels of dependency and model different data types. For small sample sizes espe-
cially, likelihood-based inference can be unreliable with variance components being particularly difficult
to estimate. A Bayesian approach is appealing but has been hampered by the lack of a fast implementa-
tion, and the difficulty in specifying prior distributions with variance components again being particularly
problematic. Here, we briefly review previous approaches to computation in Bayesian implementations
of GLMMs and illustrate in detail, the use of integrated nested Laplace approximations in this context.
We consider a number of examples, carefully specifying prior distributions on meaningful quantities in
each case. The examples cover a wide range of data types including those requiring smoothing over time
and a relatively complicated spline model for which we examine our prior specification in terms of the
implied degrees of freedom. We conclude that Bayesian inference is now practically feasible for GLMMs
and provides an attractive alternative to likelihood-based approaches such as penalized quasi-likelihood.
As with likelihood-based approaches, great care is required in the analysis of clustered binary data since
approximation strategies may be less accurate for such data.

Keywords Integrated nested Laplace approximations; Longitudinal data; Penalized quasi-likelihood; Prior specifica-
tion; Spline models.

1. INTRODUCTION

Generalized linear mixed models (GLMMs) combine a generalized linear model with normal random
effects on the linear predictor scale, to give a rich family of models that have been used in a wide variety
of applications (see, e.figgleand others2002 Verbeke and Molenbergh200Q 2005 McCullochand

others 2008. This flexibility comes at a price, however, in terms of analytical tractability, which has a
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number of implications including computational complexity, and an unknown degree to which inference
is dependent on modeling assumptions. Likelihood-based inference may be carried out relatively easily
within many software platforms (except perhaps for binary responses), but inference is dependent on
asymptotic sampling distributions of estimators, with few guidelines available as to when such theory
will produce accurate inference. A Bayesian approach is attractive, but requires the specification of prior
distributions which is not straightforward, in particular for variance components. Computation is also an
issue since the usual implementation is via Markov chain Monte Carlo (MCMC), which carries a large
computational overhead. The seminal articlBodslow and Claytoi1993 helped to popularize GLMMs

and placed an emphasis on likelihood-based inference via penalized quasi-likelihood (PQL). It is the aim
of this article to describe, through a series of examples (including all of those consid&eztsiow and
Clayton 1993, how Bayesian inference may be performed with computation via a fast implementation
and with guidance on prior specification.

The structure of this article is as follows. In Sectidnwe define notation for the GLMM, and in
Section3, we describe the integrated nested Laplace approximation (INLA) that has recently been pro-
posed as a computationally convenient alternative to MCMC. Settiires a number of prescriptions for
prior specification. Three examples are considered in Sebt{aith additional examples being reported
in the supplementary material availableBabstatisticsonline, along with a simulation study that reports
the performance of INLA in the binary response situation). We conclude the paper with a discussion in
Section6.

2. THE GENERALIZED LINEAR MIXED MODEL

GLMMs extend the generalized linear model, as proposeldiger and Wedderburf1972 and com-
prehensively described ¥cCullagh and Nelde(1989, by adding normally distributed random effects
on the linear predictor scale. Suppo4gis of exponential family forml;j |6ij, 1 ~ p(-), wherep(.) is

a member of the exponential family, that is,

iiGij — b6
P(Yij 16, $1) = exp[%m)(”) + c(Vij» ¢1)} ,
fori =1,..., munits (clusters) and = 1, ..., nj, measurements per unit and whéjeis the (scalar)

canonical parameter. Let; = E[Yij |8, bi, #1] = b'(6ij) with
g(uij) = mij = Xij B + zij by,

whereg(-) is a monotonic “link” functionXjj is 1 x p, andzj is 1 x g, with # a p x 1 vector of fixed
effects and; aq x 1 vector of random effects, henég = 6;j (8, bi). Assumeb; |Q ~ N(O, QY), where
the precision matrbQ = Q(¢,) depends on parametaps. For some choices of model, the mat@xis
singular; examples include random walk models (as considered in S&cBoand intrinsic conditional
autoregressive models. We further assume ghistassigned a normal prior distribution. Let= (8, b)
denote theG x 1 vector of parameters assigned Gaussian priors. We also require prigrs(fobnot a

constant) and fog,. Let ¢ = (¢1, ¢,) be the variance components for which non-Gaussian priors are
assigned, with/ = dim(¢).

3. INTEGRATED NESTEDLAPLACE APPROXIMATION

Before the MCMC revolution, there were few examples of the applications of Bayesian GLMMs since,
outside of the linear mixed model, the models are analytically intractilalss and Steffey1989 de-
scribe the use of Laplace approximations in Bayesian hierarchical models, SWeilee and Wakefield
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(1990 used numerical integration in the context of a binary GLMM. The use of MCMC for GLMMs

is particularly appealing since the conditional independencies of the model may be exploited when the
required conditional distributions are calculat@gger and Karin{1991) described approximate Gibbs
sampling for GLMMs, with nonstandard conditional distributions being approximated by normal distri-
butions. More general Metropolis—Hastings algorithms are straightforward to construct (s€éaygan

1996 Gamerman1997. The winBUGS Epiegelhalter, Thomas, and Be4099 software example
manuals contain many GLMM examples. There are now a variety of additional software platforms for
fitting GLMMs via MCMC including JAGS Plummer 2009 and BayesX Fahrmeirand others2004).

A large practical impediment to data analysis using MCMC is the large computational burden. For this rea-
son, we now briefly review the INLA computational approach upon which we concentrate. The method
combines Laplace approximations and numerical integration in a very efficient manndRuysead

others 2009 for a more extensive treatment). For the GLMM described in Se&jdhe posterior is

given by

z(y.¢ly) <z (yi¢)z (@) [ p(yily. o)

i=1

x 7 ($)7(B)I Q)" exp[ —%bT Q(g2)b+ > log p(yily . ¢1)] :

i=1

wherey; = (Vi1, ..., Yin;) is the vector of observations on unit/cluste¥We wish to obtain the posterior
marginalsz (ygly), 9 =1, ..., G, andz (¢,]y), v = 1,..., V. The number of variance componeris,

should not be too large for accurate inference (since these components are integrated out via Cartesian
product numerical integration, which does not scale well with dimension). We write

7(rgly) = / 7 (gl y) x 7(y)dg,

which may be evaluated via the approximation

7 (gly) = / 7 (glp. y) x 7 (Bly)dd

=~

K
Z(rgld, y) x T ($X1y) x Ak, (3.1)

k=1

where Laplace (or other related analytical approximations) are applied to carry out the integrations required

for evaluation oft (yg|¢, ¥). To produce the grid of point®®, k = 1, ..., K} over which numerical inte-

gration is performed, the mode 8{¢|y) is located, and the Hessian is approximated, from which the grid

is created and exploited ir3(1). The output of INLA consists of posterior marginal distributions, which

can be summarized via means, variances, and quantiles. Importantly for model comparison, the normal-

izing constantp(y) is calculated. The evaluation of this quantity is not straightforward using MCMC

(DiCiccio and others 1997 Meng and Wong1996. The deviance information criteriofspiegelhalter,

Best,and others 1998 is popular as a model selection tool, but in random-effects models, the implicit

approximation in its use is valid only when the effective number of parameters is much smaller than the

number of independent observations (Bédammer 2009.
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4. PRIOR DISTRIBUTIONS
4.1 Fixed effects

Recall that we assumeeis normally distributed. Often there will be sufficient information in the datgsfor

to be well estimated with a normal prior with a large variance (of course there will be circumstances under
which we would like to specify more informative priors, e.g. when there are many correlated covariates).
The use of an improper prior fg# will often lead to a proper posterior though care should be taken. For
example,Wakefield (2007 shows that a Poisson likelihood with a linear link can lead to an improper
posterior if an improper prior is usetiobert and Casell§1996 discuss the use of improper priors in
linear mixed effects models.

If we wish to use informative priors, we may specify independent normal priors with the parameters
for each component being obtained via specification of 2 quantiles with associated probabilities. For
logistic and log-linear models, these quantiles may be given on the exponentiated scale since these are
more interpretable (as the odds ratio and rate ratio, respectivel§).dhd g, are the quantiles on the
exponentiated scale aru and py are the associated probabilities, then the parameters of the normal
prior are given by

22 log(61) — z110g(6-)
Iu =
Z2 — 77

5 — 109(62) — log(®)
-7
wherez; andz, are thep; and py quantiles of a standard normal random variable. For example, in an
epidemiological context, we may wish to specify a prior on a relative risk parametéf:@xwhich has
a median of 1 and a 95% point of 3 (if we think it is unlikely that the relative risk associated with a unit
increase in exposure exceeds 3). These specifications IgadddN (0, 0.668).

>

>

4.2 Variance components

We begin by describing an approach for choosing a prior for a single random effect, badédkeiield
(2009. The basic idea is to specify a range for the more interpretable marginal distributipawod use

this to drive specification of prior parameters. We state a trivial lemma upon which prior specification
is based, but first define some notation. We write- Ga(ay, ap) for the gamma distribution with un-
normalized density 2~ exp(—ay). For g-dimensionalx, we writex ~ Tq(u, Q, d) for the Student's

t distribution with unnormalized density = (X — p)TQ1(x — u)/d]~(@+D/2_ This distribution has
locationu, scale matrixX2, and degrees of freedoth

LEMMA 1 Letb|z ~ N(0, z~1) andz ~ Ga(ay, a»). Integration over gives the marginal distribution
of bas T1(0, az/ay, 2a1).

To decide upon a prior, we give a range for a generic random dffact specify the degrees of free-
dom,d, and then solve faa anday. For the rangé—R, R), we use the relationsh'tptf_(l_q)/za/ag/a =
+R, wheretéj is the 100x gqth quantile of a Studeritrandom variable witld degrees of freedom, to give
a; = d/2 anday = de/Z(tf_(l_ )/2)2. In the linear mixed effects moded, is directly interpretable,
while for binomial or Poisson mogels, it is more appropriate to think in terms of the marginal distribution
of exp(b), the residual odds and rate ratio, respectively, and this distribution is log Stutdfgisexam-
ple, if we choosal = 1 (to give a Cauchy marginal) and a 95% range of [Q(], we takeR = log 10
and obtaira = 0.5 andb = 0.0164.
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Another convenient choice &= 2 to give the exponential distribution with mea@1 for o —2. This
leads to closed-form expressions for the more interpretable quantilessofthat, for example, if we
specify the median for asom, we obtaina; = an% log 2.

Unfortunately, the use of Ge, €) priors has become popular as a prior 60t in a GLMM context,
arising from their use in the winBUGS examples manual. As has been pointed out many timi€si&aly.
and Wakefield1999 Gelman 2006 Crainiceanwand others2008), this choice places the majority of the
prior mass away from zero and leads to a marginal prior for the random effects which is Stuaetit’'s
2¢ degrees of freedom (so that the tails are much heavier than even a Cauchy) and difficult to justify in
any practical setting.

We now specify another trivial lemma, but first establish notation for the Wishart distribution. For the
g x g nonsingular matrixz, we writez ~ Wishar(r, S) for the Wishart distribution with unnormalized

density|z|"—9-1/2 exp{—%tr(z?l)}. This distribution has B =rSand Eg~1] = S™/(r —q — 1),
and we require > q — 1 for a proper distribution.

Lemma: Letb = (by, ..., by), with bjQ ~iig Ng(0, Q1), Q ~ Wisharg(r, S). Integration overQ
gives the marginal distribution df as Tq(0, [(r — g + DS Lr—qg+1).

The margins of a multivariate Student'saret also, which allows and S to be chosen as in the
univariate case. Specifically, théh element of a generic random effelot, follows a univariate Student
t distribution with location 0, scal&k/(r — q + 1), and degrees of freedoth=r — q + 1, whereSk
is elementk, k) of the inverse ofS. We obtair = d +q—1andS$* = (t{_,_, »)?/(dR?). If a priori
we have no reason to believe that elementb afe correlated we may specifyx = O for j # k and
Sk = 1/S, to recover the univariate specification, recognizing that gita 1, the univariate Wishart
has parameter® = r/2 anday = 1/(29). If we believe that elements &f are dependent then we may
specify the correlations and solve for the off-diagonal elemen& @b ensure propriety of the posterior,
proper priors are required f&; Zeger and Karinf1991) use an improper prior foE, so that the posterior
is improper also.

4.3 Effective degrees of freedom variance components prior

In Section5.3, we describe the GLMM representation of a spline model. A generic linear spline model is
given by
K
Y =XiB+ D zkbk+e,
k:].

whereX; is a p x 1 vector of covariates wittp x 1 associated fixed effeci, zx denote the spline
basis,bkx ~iig N(O, aﬁ), ande¢ ~iig N(O, 02), with bk ande¢; independent. Specification of a prior for
ag is not straightforward, but may be of great importance since it contributes to determining the amount
of smoothing that is appliedRuppertand otherg2003 p. 177) raise concerns, “about the instability of
automatic smoothing parameter selection even for single predictor models”, and continue, “Although we
are attracted by the automatic nature of the mixed model-REML approach to fitting additive models, we
discourage blind acceptance of whatever answer it provides and recommend looking at other amounts of
smoothing”. While we would echo this general advice, we believe that a Bayesian mixed model approach,
with carefully chosen priors, can increase the stability of the mixed model representation. There has been
some discussion of choice of prior fof in a spline context@rainiceanwand others2005 2008. More
general discussion can be foundNiatarajan and Kag2000 andGelman(2006.

In practice (e.g. Hastie and Tibshirani, 1990), smoothers are often applied with a fixed degrees of
freedom. We extend this rationale by examining the prior degrees of freedom that is implied by the choice
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Jb—z ~ Ga(ag, ap). For the general linear mixed model
y=x+2zb+te,

we have N
Vy=xB+zb=C(C'C+A)"'CTy,
whereC = [x|zZ]isn x (p+ K) and

Opxp Opxk
A= 2 -1
Okxp ofcov(b)
(see, e.gRuppertand others2003 Section 8.3). The total degrees of freedom associated with the model is
df =tr{(CTC + A)~*CTcC},

which may be decomposed into the degrees of freedom associate@ witdb, and extends easily to
situations in which we have additional random effects, beyond those associated with the spline basis (such
an example is considered in Secti®rd). In each of these situations, the degrees of freedom associated
with the respective parameter is obtained by summing the appropriate diagonal elem@@{sCof-
A)~1CTC. Specifically, if we have = 1,...,d sets of random-effect parameters (theredare 2 in
the model considered in Secti&imd) then letE; be the(p + K) x (p + K) diagonal matrix with ones
in the diagonal positions corresponding to $eThen the degrees of freedom associated with this set is
dfj = tr{E; (CTC + A)~ICTC. Note that the effective degrees of freedom changes as a functién of
as expected. To evaluate, 0'3 is required. If we specify a proper prior faf, then we may specify the
joint prior asz (02, 02) = 7 (c2)w (a2|02). Often, however, we assume the improper pzi¢s?) « 1/52
since the data provide sufficient information with respea;tﬁoHence, we have found the substitution of
an estimate fos? (for example, from the fitting of a spline model in a likelihood implementation) to be a
practically reasonable strategy.

As a simple nonspline demonstration of the derived effective degrees of freedom, consider a 1-way
analysis of variance model

Yij = fo+ bi + €

with b ~iig N(O, abz), €j ~iid N(0, 062) fori =1,...,m=10groupsand = 1,...,n = 5 observa-
tions per group. For illustration, we assun‘bé2 ~ Ga(0.5,0.009. Figurel displays the prior distribution
for o, the implied prior distribution on the effective degrees of freedom, and the bivariate plot of these
quantities. For clarity of plotting, we exclude a small number of points beyord?2.5 (4% of points).
In panel (c), we have placed dashed horizontal lines at effective degrees of freedom equal to 1 (complete
smoothing) and 10 (no smoothing). From panel (b), we conclude that here the prior choice favors quite
strong smoothing. This may be contrasted with the gamma prior with paraniete@d, 0.001, which,
in this example, gives greater than 99% of the prior mass on an effective degrees of freedom greater than
9.9, again showing the inappropriateness of this prior.

It is appealing to extend the above argument to nonlinear models but unfortunately this is not straight-
forward. For a nonlinear model, the degrees of freedom may be approximated by

df = tr{(CTWC + A)~1CTWC},

2
whereW = diag \/i‘1 (%%) andh = g~! denotes the inverse link function. Unfortunately, this

guantity depends off andb, which means that in practice, we would have to use prior estimates for
all of the parameters, which may not be practically possible. Fitting the model using likelihood and then
substituting in estimates fg& andb seems philosophically dubious.
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Fig. 1. Gamma prior fos —2 with parameters 0.5 and 0.005, (a) implied priordqib) implied prior for the effective
degrees of freedom, and (c) effective degrees of freedom versus

4.4 Random walk models

Conditionally represented smoothing models are popular for random effects in both temporal and spatial
applications (see, e.@esagand others1995 Rue and Held2005. For illustration, consider models of
the form

p(Ulo?) = (2)~ (12| Q|2 (D) exp(—z—lzuTQu) , (4.1)
v
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whereu = (ug, ..., Uny) is the collection of random effect® is a (scaled) “precision” matrix of rank

m—r, whose form is determined by the application at hand,|®idis a generalized determinant which is

the product over ther—r nonzero eigenvalues ). Picking a prior forg is not straightforward because

oy has an interpretation as the conditional standard deviation, where the elements that are conditioned
upon depends on the application. We may simulate realizations #aint0 examine candidate prior
distributions. Due to the rank deficiencyi.)) does not define a probability density, and so we cannot
directly simulate from this prior. HowevdRue and Held2005 give an algorithm for generating samples

from (4.1):

1. Simulatezj ~ N(0, /1]-‘1), forj=m—r +1,...,m, wherel; are the eigenvalues @ (there are
m — r nonzero eigenvalues &3 has rankm —r).

2. Returnu = zy_r;1€0-r41+ 2363+ - - +276m = EZ whereej are the corresponding eigenvectors
of Q, E is them x (m — r) matrix with these eigenvectors as columns, ansithe(m —r) x 1
vector containingj, j =m—-r +1,...,m.

The simulation algorithm is conditioned so that samples are zero in the null-sp&:afafi is a sample

and the null-space is spanneddyando,, thenuTo; = u' v, = 0. For example, suppos®1 = 0 so

that the null-space is spanned hyand the rank deficiency is 1. Th&nis improper since the eigenvalue
corresponding td is zero, and samplas produced by the algorithm are such thdtl = 0. In Section

5.2, we use this algorithm to evaluate different priors via simulation. It is also useful to note that if we wish
to compute the marginal variances only, simulation is not required, as they are available as the diagonal
elements of the matri}; 1;"eje].

5. EXAMPLES

Here, we report 3 examples, with 4 others described in the supplementary material avaikibstadis-
ticsonline. Together these cover all the exampleBriaslow and Claytoii1993, along with an additional

spline example. In the first example, results using the INLA numerical/analytical approximation described
in Section3 were compared with MCMC as implemented in the JAGS softwBtenimer 2009 and

found to be accurate. For the models considered in the second and third examples, the approximation was
compared with the MCMC implementation contained in the INLA software.

5.1 Longitudinal data

We consider the much analyzed epilepsy data s€hafl and Vail(1990. These data concern the number
of seizuresyij; for patienti on visit j, with Yjj |8, bj ~ing Poissofiuij),i =1,...,59,j =1,...,4. We
concentrate on the 3 random-effects models fitte8i®slow and Claytor§1993:

log pij = Xij B + bui, (5.1)
log uij = Xij B + bai + bij, (5.2)
log uij = Xij B + by + bz Vj/10, (5.3)

whereX;j is a 1x 6 vector containing a 1 (representing the intercept), an indicator for baseline mea-
surement, a treatment indicator, the baseline by treatment interaction, which is the parameter of interest,
age, and either an indicator of the fourth visit (modélsl and 6.2) and denoted Y) or visit number
coded-3, —1, +1, +3 (model 6.3) and denoted y/10) andp is the associated fixed effect. All 3 models
include patient-specific random effedtg ~ N(O, 012), while in model 6.2), we introduce independent
“measurement errorstipi; ~ N(O, 002). Model (6.3) includes random effects on the slope associated with
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Table 1. PQL and INLA summaries for the epilepigta
Variable Model (5.1) Model (5.2) Mod€b.3)
PQL INLA PQL INLA PQL INLA
Base 0.8A0.14 0.88+ 0.15 0.86+ 0.13 0.88+ 0.15 0.87+0.14 0.88+ 0.14
Trt —0.91+041 -0.944+0.44 -0.93+£040 -0.96+0.44 -091+041 -0.94+0.44
Basex Trt 0.33+0.21 0.34+ 0.22 0.34£0.21 0.35+0.23 0.33t0.21 0.34+ 0.22
Age 0.47+ 0.36 0.47+0.38 0.47£0.35 0.48+ 0.39 0.46+ 0.36 0.47+0.38
V4orV/10 -0.16+0.05 -0.16+0.05 -0.10+£0.09 -0.10+£0.09 -0.26+0.16 —-0.274+0.16
00 — — 0.36+ 0.04 0.41+ 0.04 — —
o1 0.53+ 0.06 0.56+ 0.08 0.48+ 0.06 0.53+ 0.07 0.52+ 0.06 0.56+ 0.06
o9 — — — — 0.74+0.16  0.70+0.14
visit, by with
by
' ~N@©, QY. (5.4)
bai

We assuméQ ~ Wishar{r, S) with S = [%1 %g] For prior specification, we begin with the bivariate

model and assume th& is diagonal. We assume the upper 95% point of the priors fofbexpand
exp(byi) are 5 and 4, respectively, and that the marginal distributions wi¢h 4 degrees of freedom.
Following the procedure outlined in Sectidt?, we obtainr = 5 andS = diag(0.439 0.591). We take
the prior foral_2 in model 6.1) to be Gday, ap) witha; = (r — 1)/2 =2 anday = 1/251 = 1.140 (so
that this prior coincides with the marginal prior obtained from the bivariate specification). In ntodel (
we assuméyj andbg;j are independent, and thasgz follows the same prior asl‘z, thatis, G&2, 1.140.
We assume a flat prior on the intercept, and assume that the rate ratigg,)exp= 1, ..., 5, lie between
0.1 and 10 with probability 0.95 which gives, using the approach described in Séctj@normal prior
with mean 0 and variance 147

Table1 gives PQL and INLA summaries for models.1-5.3). There are some differences between
the PQL and Bayesian analyses, with slightly larger standard deviations under the latter, which probably
reflects that withm = 59 clusters, a little accuracy is lost when using asymptotic inference. There are
some differences in the point estimates which is at least partly due to the nonflat priors used—the priors
have relatively large variances, but here the data are not so abundant so there is sensitivity to the prior.
Reassuringly under all 3 models inference for the baseline-treatment interaction of interest is virtually
identical and suggests no significant treatment effect. We may compare models usiriy)todor 3
models, we obtain values 6f674.8,—638.9, and-665.5, so that the second model is strongly preferred.

5.2 Smoothing of birth cohort effects in an age-cohort model

We analyze data frofBreslow and Day1979 on breast cancer rates in Iceland. gt be the number of
breast cancer of cases in age grquf20-24, . ., 80—-84) and birth cohok (1840-1849,. .,1940-1949)
withj =1 ..., =13 andk = 1,...,K = 11. FollowingBreslow and Claytor{1993, we assume
Yiklujk ~ind Poissollu jk) with

log i jk = lognjk + Bj + K + vk + Uk (5.5)

and wherenjy is the person-years denominator, @Xp, | = 1,..., J, represent fixed effects for age
relative risks, exfp) is the relative risk associated with a one group increase in cohort grQupiiq
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N(0, ¢2) represent unstructured random effects associated with ckhaith smooth cohort termsy
following a second-order random-effects model with{u; : i < k}] = 2uk—1 — uk—2 and Vakug|{u; :

i < k) = auz. This latter model is to allow the rates to vary smoothly with cohort. An equivalent
representation of this model is, forek < K — 1,

1
Efukl{u -1 #k}] = 6(4Uk—1 + 4UK11 — Uk—2 — Uk42),

o2
Var(ug|{u : | #Kk}) = F“

The rank ofQ in the @.1) representation of this model i — 2 reflecting that both the overall level and

the overall trend are aliased (hence the appearangerns.5)).

The term exfwk) reflects the unstructured residual relative risk and, following the argument in Section
4.2, we specify that this quantity should lie in [0 5.0] with probability 0.95, with a marginal log Cauchy
distribution, to obtain the gamma pria{j2 ~ Ga&a(0.5,0.00149.

The term exguy) reflects the smooth component of the residual relative risk, and the specification of a
prior for the associated variance compongis more difficult, given its conditional interpretation. Using
the algorithm described in Sectigh2, we examined simulations af for different choices of gamma
hyperparameters and decided on the cheipé ~ Ga(0.5,0.00); Figure2 shows 10 realizations from
the prior. The rationale here is to examine realizations to see if they conform to our prior expectations
and in particular exhibit the required amount of smoothing. All but one of the realizations vary smoothly
across the 11 cohorts, as is desirable. Due to the tail of the gamma distribution, we will always have some
extreme realizations.

The INLA results, summarized in graphical form, are presented in Figfime alongside likelihood
fits in which the birth cohort effect is incorporated as a linear term and as a factor. We see that the
smoothing model provides a smooth fit in birth cohort, as we would hope.

5.3 B-Spline nonparametric regression

We demonstrate the use of INLA for nonparametric smoothing using O’Sullivan splines, which are based
on aB-spline basis. We illustrate using data fr@@achrachand otherg1999 that concerns longitudinal
measurements of spinal bone mineral density (SBMD) on 230 female subjects aged between 8 and 27,
and of 1 of 4 ethnic groups: Asian, Black, Hispanic, and White. yigtdenote the SBMD measure for
subjecti at occasionj, fori = 1,...,230andj = 1,..., nj with n; being between 1 and 4. FiguBe
shows these data, with the gray lines indicating measurements on the same woman.

We assume the model

K

Yij = XiB1 +age f2+ D _ zijkbu + bz + €,
k=1

wherex; is a 1x 4 vector containing an indicator for the ethnicity of individiawith 8, the associated

4 x 1 vector of fixed effectszjk is thekth basis associated with age, with associated pararbgter

N(0, #2), andby ~ N(0, o2) are woman-specific random effects, finatly, ~iig N(0, 2). All random

terms are assumed independent. Note that the spline model is assumed common to all ethnic groups and
all women, though it would be straightforward to allow a different spline for each ethnicity. Writing this
model in the form

y=XB+21b1 +2b, + € =Cy +e€.
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Fig. 2. (a) Ten realizations (on the relative risk scale) from the random effects second-order random walk model
in which the prior on the random-effects precision is Ga(0.5,0.001), (b) summaries of fitted models: the solid line
corresponds to a log-linear model in birth cohort, the circles to birth cohort as a factor, and “+” to the Bayesian
smoothing model.

we use the method described in Sectiodto examine the effective number of parameters implied by the
priorse; > ~ Ga(ay, &) anda, % ~ Gaag, as).

To fit the model, we first use the R code providedWand and Ormero¢(?008 to construct the basis
functions, which are then input to the INLA program. Running the REML version of the model, we obtain
o = 0.033 which we use to evaluate the effective degrees of freedoms associated with pukfrarfd
o2. We assume the usual improper prie(s2) « 1/02 for s2. After some experimentation, we settled
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| 1 1 I 1
Hispanic White

Asian

1.4 4

Spinal BMD

Fig. 3. SBMD versus age by ethnicity. Measurements on the same woman are joined with gray lines. The solid curve
corresponds to the fitted spline and the dashed lines to the individual fits.

on the priors; % ~ Ga(0.5,5 x 10-%). Fors2, we wished to have a 90% interval fbg; of +0.3 which,

with 1 degree of freedom for the marginal distribution, Ieads;& ~ Ga(0.5,0.00113. Figure4 shows

the priors fore; andoy, along with the implied effective degrees of freedom under the assumed priors.
For the spline component, the 90% prior interval for the effective degrees of freedom is [2.4,10].

Table2 compares estimates from REML and INLA implementations of the model, and we see close
correspondence between the 2. Figdralso shows the posterior medians tarand o, and for the 2
effective degrees of freedom. For the spline and random effects these correspond to 8 and 214, respec-
tively. The latter figure shows that there is considerable variability between the 230 women here. This is
confirmed in Figure8 where we observe large vertical differences between the profiles. This figure also
shows the fitted spline, which appears to mimic the trend in the data well.

5.4 Timings

For the 3 models in the longitudinal data example, INLA takes 1 to 2 s to run, using a single CPU. To
get estimates with similar precision with MCMC, we ran JAGS for 100 000 iterations, which took 4 to 6
min. For the model in the temporal smoothing example, INLA takes 45 s to run, using 1 CPU. Part of the
INLA procedure can be executed in a parallel manner. If there are 2 CPUs available, as is the case with
today’s prevalent INTEL Core 2 Duo processors, INLA only takes 27 s to run. It is not currently possible
to implement this model in JAGS. We ran the MCMC utility built into the INLA software for 3.6 million
iterations, to obtain estimates of comparable accuracy, which took 15 h. For the model in the B-spline
nonparametric regression example, INLA took 5 s to run, using a single CPU. We ran the MCMC utility
built into the INLA software for 2.5 million iterations to obtain estimates of comparable accuracy, the
analysis taking 40 h.
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Fig. 4. Prior summaries: (a)1, the standard deviation of the spline coefficients, (b) effective degrees of freedom
associated with the prior for the spline coefficients, (c) effective degrees of freedom wergd¥o», the standard
deviation of the between-individual random effects, (e) effective degrees of freedom associated with the individual
random effects, and (f) effective degrees of freedom vessu3 he vertical dashed lines on panels (a), (b), (d), and

(e) correspond to the posterior medians.

Table 2. REML and INLA summaries for spinal bone data. Intercept corresponds to Asiap gr

Variable REML INLA

Intercept 0.560+ 0.029 0.563+ 0.031
Black 0.1064 0.021 0.106+ 0.021
Hispanic 0.013+ 0.022 0.013+ 0.022
White 0.0264+ 0.022 0.026+ 0.022
Age 0.021+ 0.002 0.024- 0.002
o1 0.018 0.024+ 0.006
02 0.109 0.109+ 0.006
O¢ 0.03% 0.033+ 0.002

Note: For the entries marked withatandard errors were unavailable.
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6. DISCUSSION

In this paper, we have demonstrated the use of the INLA computational method for GLMMs. We have
found that the approximation strategy employed by INLA is accurate in general, but less accurate for
binomial data with small denominators. The supplementary material availaBlestatisticsonline con-

tains an extensive simulation study, replicating that present8ddslow and Claytorf1993. There are

some suggestions in the discussiorRofeand otherg2009 on how to construct an improved Gaussian
approximation that does not use the mode and the curvature at the mode. It is likely that these suggestions
will improve the results for binomial data with small denominators. There is an urgent need for diagnosis
tools to flag when INLA is inaccurate. Conceptually, computation for nonlinear mixed effects models
(Davidian and Giltinan1995 Pinheiro and Bate2000 can also be handled by INLA but this capability

is not currently available.

The website www.r-inla.org contains all the data and R scripts to perform the analyses and simulations
reported in the paper. The latest release of software to implement INLA can also be found at this site.
Recently, Breslow (2009 revisited PQL and concluded that, “PQL still performs remarkably well in
comparison with more elaborate procedures in many practical situations.” We believe that INLA provides
an attractive alternative to PQL for GLMMs, and we hope that this paper stimulates the greater use of
Bayesian methods for this class.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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