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SUMMARY

Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to directly
acknowledge multiple levels of dependency and model different data types. For small sample sizes espe-
cially, likelihood-based inference can be unreliable with variance components being particularly difficult
to estimate. A Bayesian approach is appealing but has been hampered by the lack of a fast implementa-
tion, and the difficulty in specifying prior distributions with variance components again being particularly
problematic. Here, we briefly review previous approaches to computation in Bayesian implementations
of GLMMs and illustrate in detail, the use of integrated nested Laplace approximations in this context.
We consider a number of examples, carefully specifying prior distributions on meaningful quantities in
each case. The examples cover a wide range of data types including those requiring smoothing over time
and a relatively complicated spline model for which we examine our prior specification in terms of the
implied degrees of freedom. We conclude that Bayesian inference is now practically feasible for GLMMs
and provides an attractive alternative to likelihood-based approaches such as penalized quasi-likelihood.
As with likelihood-based approaches, great care is required in the analysis of clustered binary data since
approximation strategies may be less accurate for such data.

Keywords: Integrated nested Laplace approximations; Longitudinal data; Penalized quasi-likelihood; Prior specifica-
tion; Spline models.

1. INTRODUCTION

Generalized linear mixed models (GLMMs) combine a generalized linear model with normal random
effects on the linear predictor scale, to give a rich family of models that have been used in a wide variety
of applications (see, e.g.Diggleand others, 2002; Verbeke and Molenberghs, 2000, 2005; McCullochand
others, 2008). This flexibility comes at a price, however, in terms of analytical tractability, which has a
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number of implications including computational complexity, and an unknown degree to which inference
is dependent on modeling assumptions. Likelihood-based inference may be carried out relatively easily
within many software platforms (except perhaps for binary responses), but inference is dependent on
asymptotic sampling distributions of estimators, with few guidelines available as to when such theory
will produce accurate inference. A Bayesian approach is attractive, but requires the specification of prior
distributions which is not straightforward, in particular for variance components. Computation is also an
issue since the usual implementation is via Markov chain Monte Carlo (MCMC), which carries a large
computational overhead. The seminal article ofBreslow and Clayton(1993) helped to popularize GLMMs
and placed an emphasis on likelihood-based inference via penalized quasi-likelihood (PQL). It is the aim
of this article to describe, through a series of examples (including all of those considered inBreslow and
Clayton, 1993), how Bayesian inference may be performed with computation via a fast implementation
and with guidance on prior specification.

The structure of this article is as follows. In Section2, we define notation for the GLMM, and in
Section3, we describe the integrated nested Laplace approximation (INLA) that has recently been pro-
posed as a computationally convenient alternative to MCMC. Section4 gives a number of prescriptions for
prior specification. Three examples are considered in Section5 (with additional examples being reported
in the supplementary material available atBiostatisticsonline, along with a simulation study that reports
the performance of INLA in the binary response situation). We conclude the paper with a discussion in
Section6.

2. THE GENERALIZED LINEAR MIXED MODEL

GLMMs extend the generalized linear model, as proposed byNelder and Wedderburn(1972) and com-
prehensively described inMcCullagh and Nelder(1989), by adding normally distributed random effects
on the linear predictor scale. SupposeYi j is of exponential family form:Yi j |θi j , φ1 ∼ p(∙), wherep(∙) is
a member of the exponential family, that is,

p(yi j |θi j , φ1) = exp

[
yi j θi j − b(θi j )

a(φ1)
+ c(yi j , φ1)

]
,

for i = 1, . . . , m units (clusters) andj = 1, . . . , ni , measurements per unit and whereθi j is the (scalar)
canonical parameter. Letμi j = E[Yi j |βββ, bbbi , φ1] = b′(θi j ) with

g(μi j ) = ηi j = xxxi j βββ + zzzi j bbbi ,

whereg(∙) is a monotonic “link” function,xxxi j is 1× p, andzzzi j is 1× q, with βββ a p × 1 vector of fixed
effects andbbbi aq×1 vector of random effects, henceθi j = θi j (βββ, bbbi ). Assumebbbi |QQQ ∼ N(0, QQQ−1), where
the precision matrixQQQ = QQQ(φφφ2) depends on parametersφφφ2. For some choices of model, the matrixQQQ is
singular; examples include random walk models (as considered in Section5.2) and intrinsic conditional
autoregressive models. We further assume thatβββ is assigned a normal prior distribution. Letγγγ = (βββ, bbb)
denote theG × 1 vector of parameters assigned Gaussian priors. We also require priors forφ1 (if not a
constant) and forφφφ2. Let φφφ = (φ1, φφφ2) be the variance components for which non-Gaussian priors are
assigned, withV = dim(φφφ).

3. INTEGRATED NESTEDLAPLACE APPROXIMATION

Before the MCMC revolution, there were few examples of the applications of Bayesian GLMMs since,
outside of the linear mixed model, the models are analytically intractable.Kass and Steffey(1989) de-
scribe the use of Laplace approximations in Bayesian hierarchical models, whileSkene and Wakefield
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(1990) used numerical integration in the context of a binary GLMM. The use of MCMC for GLMMs
is particularly appealing since the conditional independencies of the model may be exploited when the
required conditional distributions are calculated.Zeger and Karim(1991) described approximate Gibbs
sampling for GLMMs, with nonstandard conditional distributions being approximated by normal distri-
butions. More general Metropolis–Hastings algorithms are straightforward to construct (see, e.g.Clayton,
1996; Gamerman, 1997). The winBUGS (Spiegelhalter, Thomas, and Best, 1998) software example
manuals contain many GLMM examples. There are now a variety of additional software platforms for
fitting GLMMs via MCMC including JAGS (Plummer, 2009) and BayesX (Fahrmeirand others, 2004).
A large practical impediment to data analysis using MCMC is the large computational burden. For this rea-
son, we now briefly review the INLA computational approach upon which we concentrate. The method
combines Laplace approximations and numerical integration in a very efficient manner (seeRue and
others, 2009, for a more extensive treatment). For the GLMM described in Section2, the posterior is
given by

π(γγγ , φφφ|yyy) ∝ π(γγγ |φφφ)π(φφφ)

m∏

i =1

p(yyyi |γγγ , φφφ)

∝ π(φφφ)π(βββ)|QQQ(φφφ2)|
1/2 exp

{

−
1

2
bbbT QQQ(φφφ2)bbb +

m∑

i =1

log p(yyyi |γγγ , φ1)

}

,

whereyyyi = (yi 1, . . . , yini ) is the vector of observations on unit/clusteri . We wish to obtain the posterior
marginalsπ(γg|yyy), g = 1, . . . , G, andπ(φv|yyy), v = 1, . . . , V . The number of variance components,V ,
should not be too large for accurate inference (since these components are integrated out via Cartesian
product numerical integration, which does not scale well with dimension). We write

π(γg|yyy) =
∫

π(γg|φφφ, yyy) × π(φφφ|yyy)dφφφ,

which may be evaluated via the approximation

π̃(γg|yyy) =
∫

π̃(γg|φφφ, yyy) × π̃(φφφ|yyy)dφφφ

≈
K∑

k=1

π̃(γg|φφφ
k, yyy) × π̃(φφφk|yyy) × 1k, (3.1)

where Laplace (or other related analytical approximations) are applied to carry out the integrations required
for evaluation of̃π(γg|φφφ, yyy). To produce the grid of points{φφφk, k = 1, . . . , K } over which numerical inte-
gration is performed, the mode of̃π(φφφ|yyy) is located, and the Hessian is approximated, from which the grid
is created and exploited in (3.1). The output of INLA consists of posterior marginal distributions, which
can be summarized via means, variances, and quantiles. Importantly for model comparison, the normal-
izing constantp(yyy) is calculated. The evaluation of this quantity is not straightforward using MCMC
(DiCiccio and others, 1997; Meng and Wong, 1996). The deviance information criterion (Spiegelhalter,
Best,and others, 1998) is popular as a model selection tool, but in random-effects models, the implicit
approximation in its use is valid only when the effective number of parameters is much smaller than the
number of independent observations (seePlummer, 2008).
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4. PRIOR DISTRIBUTIONS

4.1 Fixed effects

Recall that we assumeβββ is normally distributed. Often there will be sufficient information in the data forβββ
to be well estimated with a normal prior with a large variance (of course there will be circumstances under
which we would like to specify more informative priors, e.g. when there are many correlated covariates).
The use of an improper prior forβββ will often lead to a proper posterior though care should be taken. For
example,Wakefield(2007) shows that a Poisson likelihood with a linear link can lead to an improper
posterior if an improper prior is used.Hobert and Casella(1996) discuss the use of improper priors in
linear mixed effects models.

If we wish to use informative priors, we may specify independent normal priors with the parameters
for each component being obtained via specification of 2 quantiles with associated probabilities. For
logistic and log-linear models, these quantiles may be given on the exponentiated scale since these are
more interpretable (as the odds ratio and rate ratio, respectively). Ifθ1 andθ2 are the quantiles on the
exponentiated scale andp1 and p2 are the associated probabilities, then the parameters of the normal
prior are given by

μ =
z2 log(θ1) − z1 log(θ2)

z2 − z1
,

σ =
log(θ2) − log(θ1)

z2 − z1
,

wherez1 andz2 are thep1 and p2 quantiles of a standard normal random variable. For example, in an
epidemiological context, we may wish to specify a prior on a relative risk parameter, exp(β1), which has
a median of 1 and a 95% point of 3 (if we think it is unlikely that the relative risk associated with a unit
increase in exposure exceeds 3). These specifications lead toβ1 ∼ N(0, 0.6682).

4.2 Variance components

We begin by describing an approach for choosing a prior for a single random effect, based onWakefield
(2009). The basic idea is to specify a range for the more interpretable marginal distribution ofbi and use
this to drive specification of prior parameters. We state a trivial lemma upon which prior specification
is based, but first define some notation. We writeτ ∼ Ga(a1, a2) for the gamma distribution with un-
normalized densityτa1−1 exp(−a2τ). Forq-dimensionalxxx, we writexxx ∼ Tq(μμμ,���, d) for the Student’s
t distribution with unnormalized density [1+ (xxx − μμμ)T���−1(xxx − μμμ)/d]−(d+q)/2. This distribution has
locationμμμ, scale matrix���, and degrees of freedomd.

LEMMA 1 Let b|τ ∼ N(0, τ−1) andτ ∼ Ga(a1, a2). Integration overτ gives the marginal distribution
of b as T1(0, a2/a1, 2a1).

To decide upon a prior, we give a range for a generic random effectb and specify the degrees of free-
dom,d, and then solve fora1 anda2. For the range(−R, R), we use the relationship±td

1−(1−q)/2

√
a2/a1 =

±R, wheretd
q is the 100× qth quantile of a Studentt random variable withd degrees of freedom, to give

a1 = d/2 anda2 = R2d/2(td
1−(1−q)/2)

2. In the linear mixed effects model,b is directly interpretable,
while for binomial or Poisson models, it is more appropriate to think in terms of the marginal distribution
of exp(b), the residual odds and rate ratio, respectively, and this distribution is log Student’st . For exam-
ple, if we choosed = 1 (to give a Cauchy marginal) and a 95% range of [0.1, 10], we takeR = log 10
and obtaina = 0.5 andb = 0.0164.
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Another convenient choice isd = 2 to give the exponential distribution with meana−1
2 for σ−2. This

leads to closed-form expressions for the more interpretable quantiles ofσ so that, for example, if we
specify the median forσ asσm, we obtaina2 = σ 2

m log 2.
Unfortunately, the use of Ga(ε, ε) priors has become popular as a prior forσ−2 in a GLMM context,

arising from their use in the winBUGS examples manual. As has been pointed out many times (e.g.Kelsall
and Wakefield, 1999; Gelman, 2006; Crainiceanuand others, 2008), this choice places the majority of the
prior mass away from zero and leads to a marginal prior for the random effects which is Student’st with
2ε degrees of freedom (so that the tails are much heavier than even a Cauchy) and difficult to justify in
any practical setting.

We now specify another trivial lemma, but first establish notation for the Wishart distribution. For the
q × q nonsingular matrixzzz, we writezzz ∼ Wishartq(r, SSS) for the Wishart distribution with unnormalized

density|zzz|(r −q−1)/2 exp
{
−1

2tr(zzzSSS−1)
}
. This distribution has E[zzz] = r SSSand E[zzz−1] = SSS−1/(r − q − 1),

and we requirer > q − 1 for a proper distribution.

Lemma: Let bbb = (b1, . . . , bq), with bbb|QQQ ∼iid Nq(0, QQQ−1), QQQ ∼ Wishartq(r, SSS). Integration overQQQ
gives the marginal distribution ofbbb as Tq(0, [(r − q + 1)SSS]−1, r − q + 1).

The margins of a multivariate Student’st are t also, which allowsr and SSS to be chosen as in the
univariate case. Specifically, thekth element of a generic random effect,bk, follows a univariate Student
t distribution with location 0, scaleSkk/(r − q + 1), and degrees of freedomd = r − q + 1, whereSkk

is element(k, k) of the inverse ofSSS. We obtainr = d + q − 1 andSkk = (td
1−(1−q)/2)

2/(d R2). If a priori
we have no reason to believe that elements ofbbb are correlated we may specifySjk = 0 for j 6= k and
Skk = 1/Skk, to recover the univariate specification, recognizing that withq = 1, the univariate Wishart
has parametersa1 = r/2 anda2 = 1/(2S). If we believe that elements ofbbb are dependent then we may
specify the correlations and solve for the off-diagonal elements ofSSS. To ensure propriety of the posterior,
proper priors are required for666; Zeger and Karim(1991) use an improper prior for666, so that the posterior
is improper also.

4.3 Effective degrees of freedom variance components prior

In Section5.3, we describe the GLMM representation of a spline model. A generic linear spline model is
given by

yi = xxxi βββ +
K∑

k=1

zikbk + εi ,

wherexxxi is a p × 1 vector of covariates withp × 1 associated fixed effectsβββ, zik denote the spline
basis,bk ∼iid N(0, σ 2

b ), andεi ∼iid N(0, σ 2
ε ), with bk andεi independent. Specification of a prior for

σ 2
b is not straightforward, but may be of great importance since it contributes to determining the amount

of smoothing that is applied.Ruppertand others(2003, p. 177) raise concerns, “about the instability of
automatic smoothing parameter selection even for single predictor models”, and continue, “Although we
are attracted by the automatic nature of the mixed model-REML approach to fitting additive models, we
discourage blind acceptance of whatever answer it provides and recommend looking at other amounts of
smoothing”. While we would echo this general advice, we believe that a Bayesian mixed model approach,
with carefully chosen priors, can increase the stability of the mixed model representation. There has been
some discussion of choice of prior forσ 2

b in a spline context (Crainiceanuand others, 2005, 2008). More
general discussion can be found inNatarajan and Kass(2000) andGelman(2006).

In practice (e.g. Hastie and Tibshirani, 1990), smoothers are often applied with a fixed degrees of
freedom. We extend this rationale by examining the prior degrees of freedom that is implied by the choice
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σ−2
b ∼ Ga(a1, a2). For the general linear mixed model

yyy = xxxβββ + zzzbbb + εεε,

we have
ŷyy = xxxβ̂ββ + zzẑbbb = CCC(CCCTCCC + 333)−1CCCT yyy,

whereCCC = [xxx|zzz] is n × (p + K ) and

333 =

[
0p×p 0p×K

0K×p σ 2
ε cov(bbb)−1

]

(see, e.g.Ruppertand others, 2003, Section 8.3). The total degrees of freedom associated with the model is

df = tr{(CCCTCCC + 333)−1CCCTCCC},

which may be decomposed into the degrees of freedom associated withβββ andbbb, and extends easily to
situations in which we have additional random effects, beyond those associated with the spline basis (such
an example is considered in Section5.3). In each of these situations, the degrees of freedom associated
with the respective parameter is obtained by summing the appropriate diagonal elements of(CCCTCCC +
333)−1CCCTCCC. Specifically, if we havej = 1, . . . , d sets of random-effect parameters (there ared = 2 in
the model considered in Section5.3) then letEEE j be the(p + K ) × (p + K ) diagonal matrix with ones
in the diagonal positions corresponding to setj . Then the degrees of freedom associated with this set is
df j = tr{EEE j (CCC

TCCC + 333)−1CCCTCCC. Note that the effective degrees of freedom changes as a function ofK ,
as expected. To evaluate333, σ 2

ε is required. If we specify a proper prior forσ 2
ε , then we may specify the

joint prior asπ(σ 2
b , σ 2

ε ) = π(σ 2
ε )π(σ 2

b |σ 2
ε ). Often, however, we assume the improper priorπ(σ 2

ε ) ∝ 1/σ 2
ε

since the data provide sufficient information with respect toσ 2
ε . Hence, we have found the substitution of

an estimate forσ 2
ε (for example, from the fitting of a spline model in a likelihood implementation) to be a

practically reasonable strategy.
As a simple nonspline demonstration of the derived effective degrees of freedom, consider a 1-way

analysis of variance model
Yi j = β0 + bi + εi j

with bi ∼iid N(0, σ 2
b ), εi j ∼iid N(0, σ 2

ε ) for i = 1, . . . , m = 10 groups andj = 1, . . . , n = 5 observa-
tions per group. For illustration, we assumeσ−2

b ∼ Ga(0.5, 0.005). Figure1 displays the prior distribution
for σ , the implied prior distribution on the effective degrees of freedom, and the bivariate plot of these
quantities. For clarity of plotting, we exclude a small number of points beyondσ > 2.5 (4% of points).
In panel (c), we have placed dashed horizontal lines at effective degrees of freedom equal to 1 (complete
smoothing) and 10 (no smoothing). From panel (b), we conclude that here the prior choice favors quite
strong smoothing. This may be contrasted with the gamma prior with parameters(0.001, 0.001), which,
in this example, gives greater than 99% of the prior mass on an effective degrees of freedom greater than
9.9, again showing the inappropriateness of this prior.

It is appealing to extend the above argument to nonlinear models but unfortunately this is not straight-
forward. For a nonlinear model, the degrees of freedom may be approximated by

df = tr{(CCCT WWWCCC + 333)−1CCCT WWWCCC},

whereWWW = diag

{
V−1

i

(
dμi
dh

)2
}

and h = g−1 denotes the inverse link function. Unfortunately, this

quantity depends onβββ andbbb, which means that in practice, we would have to use prior estimates for
all of the parameters, which may not be practically possible. Fitting the model using likelihood and then
substituting in estimates forβββ andbbb seems philosophically dubious.
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Fig. 1. Gamma prior forσ−2 with parameters 0.5 and 0.005, (a) implied prior forσ , (b) implied prior for the effective
degrees of freedom, and (c) effective degrees of freedom versusσ .

4.4 Random walk models

Conditionally represented smoothing models are popular for random effects in both temporal and spatial
applications (see, e.g.Besagand others, 1995; Rue and Held, 2005). For illustration, consider models of
the form

p(uuu|σ 2
u ) = (2π)−(m−r )/2|QQQ?|1/2σ−(m−r )

u exp

(
−

1

2σ 2
u

uuuT QQQuuu

)
, (4.1)
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whereuuu = (u1, . . . , um) is the collection of random effects,QQQ is a (scaled) “precision” matrix of rank
m−r , whose form is determined by the application at hand, and|QQQ?| is a generalized determinant which is
the product over them−r nonzero eigenvalues ofQQQ. Picking a prior forσu is not straightforward because
σu has an interpretation as the conditional standard deviation, where the elements that are conditioned
upon depends on the application. We may simulate realizations from (4.1) to examine candidate prior
distributions. Due to the rank deficiency, (4.1) does not define a probability density, and so we cannot
directly simulate from this prior. However,Rue and Held(2005) give an algorithm for generating samples
from (4.1):

1. Simulatezj ∼ N(0, λ−1
j ), for j = m − r + 1, . . . , m, whereλ j are the eigenvalues ofQQQ (there are

m − r nonzero eigenvalues asQQQ has rankm − r ).
2. Returnuuu = zm−r +1eeen−r +1+z3eee3+∙ ∙ ∙+zneeem = EEEzzz, whereeeej are the corresponding eigenvectors

of QQQ, EEE is them × (m − r ) matrix with these eigenvectors as columns, andzzz is the(m − r ) × 1
vector containingzj , j = m − r + 1, . . . , m.

The simulation algorithm is conditioned so that samples are zero in the null-space ofQQQ; if uuu is a sample
and the null-space is spanned byvvv1 andvvv2, thenuuuTvvv1 = uuuTvvv2 = 0. For example, supposeQQQ1 = 0 so
that the null-space is spanned by1, and the rank deficiency is 1. ThenQQQ is improper since the eigenvalue
corresponding to1 is zero, and samplesuuu produced by the algorithm are such thatuuuT 1 = 0. In Section
5.2, we use this algorithm to evaluate different priors via simulation. It is also useful to note that if we wish
to compute the marginal variances only, simulation is not required, as they are available as the diagonal
elements of the matrix

∑
j λ−1

j eeej eeeT
j .

5. EXAMPLES

Here, we report 3 examples, with 4 others described in the supplementary material available atBiostatis-
ticsonline. Together these cover all the examples inBreslow and Clayton(1993), along with an additional
spline example. In the first example, results using the INLA numerical/analytical approximation described
in Section3 were compared with MCMC as implemented in the JAGS software (Plummer, 2009) and
found to be accurate. For the models considered in the second and third examples, the approximation was
compared with the MCMC implementation contained in the INLA software.

5.1 Longitudinal data

We consider the much analyzed epilepsy data set ofThall and Vail(1990). These data concern the number
of seizures,Yi j for patienti on visit j , with Yi j |βββ, bbbi ∼ind Poisson(μi j ), i = 1, . . . , 59, j = 1, . . . , 4. We
concentrate on the 3 random-effects models fitted byBreslow and Clayton(1993):

logμi j = xxxi j βββ + b1i , (5.1)

logμi j = xxxi j βββ + b1i + b0i j , (5.2)

logμi j = xxxi j βββ + b1i + b2i V j /10, (5.3)

wherexxxi j is a 1× 6 vector containing a 1 (representing the intercept), an indicator for baseline mea-
surement, a treatment indicator, the baseline by treatment interaction, which is the parameter of interest,
age, and either an indicator of the fourth visit (models (5.1) and (5.2) and denoted V4) or visit number
coded−3, −1, +1, +3 (model (5.3) and denoted Vj /10) andβββ is the associated fixed effect. All 3 models
include patient-specific random effectsb1i ∼ N

(
0, σ 2

1

)
, while in model (5.2), we introduce independent

“measurement errors,”b0i j ∼ N(0, σ 2
0 ). Model (5.3) includes random effects on the slope associated with
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Table 1. PQL and INLA summaries for the epilepsydata

Variable Model (5.1) Model (5.2) Model(5.3)

PQL INLA PQL INLA PQL INLA

Base 0.87± 0.14 0.88± 0.15 0.86± 0.13 0.88± 0.15 0.87± 0.14 0.88± 0.14
Trt −0.91± 0.41 −0.94± 0.44 −0.93± 0.40 −0.96± 0.44 −0.91± 0.41 −0.94± 0.44
Base× Trt 0.33± 0.21 0.34± 0.22 0.34± 0.21 0.35± 0.23 0.33± 0.21 0.34± 0.22
Age 0.47± 0.36 0.47± 0.38 0.47± 0.35 0.48± 0.39 0.46± 0.36 0.47± 0.38
V4 or V/10 −0.16± 0.05 −0.16± 0.05 −0.10± 0.09 −0.10± 0.09 −0.26± 0.16 −0.27± 0.16

σ0 — — 0.36± 0.04 0.41± 0.04 — —
σ1 0.53± 0.06 0.56± 0.08 0.48± 0.06 0.53± 0.07 0.52± 0.06 0.56± 0.06
σ2 — — — — 0.74± 0.16 0.70± 0.14

visit, b2i with [
b1i

b2i

]

∼ N(0, QQQ−1). (5.4)

We assumeQQQ ∼ Wishart(r, SSS) with SSS =
[

S11 S12
S21 S22

]
. For prior specification, we begin with the bivariate

model and assume thatSSS is diagonal. We assume the upper 95% point of the priors for exp(b1i ) and
exp(b2i ) are 5 and 4, respectively, and that the marginal distributions aret with 4 degrees of freedom.
Following the procedure outlined in Section4.2, we obtainr = 5 andSSS = diag(0.439, 0.591). We take
the prior forσ−2

1 in model (5.1) to be Ga(a1, a2) with a1 = (r − 1)/2 = 2 anda2 = 1/2S11 = 1.140 (so
that this prior coincides with the marginal prior obtained from the bivariate specification). In model (5.2),
we assumeb1i andb0i j are independent, and thatσ−2

0 follows the same prior asσ−2
1 , that is, Ga(2, 1.140).

We assume a flat prior on the intercept, and assume that the rate ratios, exp(β j ), j = 1, . . . , 5, lie between
0.1 and 10 with probability 0.95 which gives, using the approach described in Section4.1, a normal prior
with mean 0 and variance 1.172.

Table1 gives PQL and INLA summaries for models (5.1–5.3). There are some differences between
the PQL and Bayesian analyses, with slightly larger standard deviations under the latter, which probably
reflects that withm = 59 clusters, a little accuracy is lost when using asymptotic inference. There are
some differences in the point estimates which is at least partly due to the nonflat priors used—the priors
have relatively large variances, but here the data are not so abundant so there is sensitivity to the prior.
Reassuringly under all 3 models inference for the baseline-treatment interaction of interest is virtually
identical and suggests no significant treatment effect. We may compare models using logp(yyy): for 3
models, we obtain values of−674.8,−638.9, and−665.5, so that the second model is strongly preferred.

5.2 Smoothing of birth cohort effects in an age-cohort model

We analyze data fromBreslow and Day(1975) on breast cancer rates in Iceland. LetYjk be the number of
breast cancer of cases in age groupj (20–24,. . . , 80–84) and birth cohortk (1840–1849,. . .,1940–1949)
with j = 1, . . . , J = 13 andk = 1, . . . , K = 11. FollowingBreslow and Clayton(1993), we assume
Yjk |μ jk ∼ind Poisson(μ jk) with

logμ jk = logn jk + β j + βk + vk + uk (5.5)

and wheren jk is the person-years denominator, exp(β j ), j = 1, . . . , J, represent fixed effects for age
relative risks, exp(β) is the relative risk associated with a one group increase in cohort group,vk ∼iid
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N(0, σ 2
v ) represent unstructured random effects associated with cohortk, with smooth cohort termsuk

following a second-order random-effects model with E[uk|{ui : i < k}] = 2uk−1 −uk−2 and Var(uk|{ui :
i < k}) = σ 2

u . This latter model is to allow the rates to vary smoothly with cohort. An equivalent
representation of this model is, for 2< k < K − 1,

E[uk|{ul : l 6= k}] =
1

6
(4uk−1 + 4uk+1 − uk−2 − uk+2),

Var(uk|{ul : l 6= k}) =
σ 2

u

6
.

The rank ofQQQ in the (4.1) representation of this model isK − 2 reflecting that both the overall level and
the overall trend are aliased (hence the appearance ofβ in (5.5)).

The term exp(vk) reflects the unstructured residual relative risk and, following the argument in Section
4.2, we specify that this quantity should lie in [0.5, 2.0] with probability 0.95, with a marginal log Cauchy
distribution, to obtain the gamma priorσ−2

v ∼ Ga(0.5, 0.00149).
The term exp(uk) reflects the smooth component of the residual relative risk, and the specification of a

prior for the associated variance componentσ 2
u is more difficult, given its conditional interpretation. Using

the algorithm described in Section4.2, we examined simulations ofuuu for different choices of gamma
hyperparameters and decided on the choiceσ−2

u ∼ Ga(0.5, 0.001); Figure2 shows 10 realizations from
the prior. The rationale here is to examine realizations to see if they conform to our prior expectations
and in particular exhibit the required amount of smoothing. All but one of the realizations vary smoothly
across the 11 cohorts, as is desirable. Due to the tail of the gamma distribution, we will always have some
extreme realizations.

The INLA results, summarized in graphical form, are presented in Figure2(b), alongside likelihood
fits in which the birth cohort effect is incorporated as a linear term and as a factor. We see that the
smoothing model provides a smooth fit in birth cohort, as we would hope.

5.3 B-Spline nonparametric regression

We demonstrate the use of INLA for nonparametric smoothing using O’Sullivan splines, which are based
on aB-spline basis. We illustrate using data fromBachrachand others(1999) that concerns longitudinal
measurements of spinal bone mineral density (SBMD) on 230 female subjects aged between 8 and 27,
and of 1 of 4 ethnic groups: Asian, Black, Hispanic, and White. Letyi j denote the SBMD measure for
subjecti at occasionj , for i = 1, . . . , 230 and j = 1, . . . , ni with ni being between 1 and 4. Figure3
shows these data, with the gray lines indicating measurements on the same woman.

We assume the model

Yi j = xxxi βββ1 + agei j β2 +
K∑

k=1

zi jk b1k + b2i + εi j ,

wherexxxi is a 1× 4 vector containing an indicator for the ethnicity of individuali , with βββ1 the associated
4 × 1 vector of fixed effects,zi jk is thekth basis associated with age, with associated parameterb1k ∼
N(0, σ 2

1 ), andb2i ∼ N(0, σ 2
2 ) are woman-specific random effects, finally,εi j ∼iid N(0, σ 2

ε ). All random
terms are assumed independent. Note that the spline model is assumed common to all ethnic groups and
all women, though it would be straightforward to allow a different spline for each ethnicity. Writing this
model in the form

yyy = xxxβββ + zzz1bbb1 + zzz2bbb2 + εεε = CCCγγγ + εεε.
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Fig. 2. (a) Ten realizations (on the relative risk scale) from the random effects second-order random walk model
in which the prior on the random-effects precision is Ga(0.5,0.001), (b) summaries of fitted models: the solid line
corresponds to a log-linear model in birth cohort, the circles to birth cohort as a factor, and “+” to the Bayesian
smoothing model.

we use the method described in Section4.3to examine the effective number of parameters implied by the
priorsσ−2

1 ∼ Ga(a1, a2) andσ−2
2 ∼ Ga(a3, a4).

To fit the model, we first use the R code provided inWand and Ormerod(2008) to construct the basis
functions, which are then input to the INLA program. Running the REML version of the model, we obtain
σ̂ε = 0.033 which we use to evaluate the effective degrees of freedoms associated with priors forσ 2

1 and
σ 2

2 . We assume the usual improper prior,π(σ 2
ε ) ∝ 1/σ 2

ε for σ 2
ε . After some experimentation, we settled
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Fig. 3. SBMD versus age by ethnicity. Measurements on the same woman are joined with gray lines. The solid curve
corresponds to the fitted spline and the dashed lines to the individual fits.

on the priorσ−2
1 ∼ Ga(0.5, 5 × 10−6). Forσ 2

2 , we wished to have a 90% interval forb2i of ±0.3 which,
with 1 degree of freedom for the marginal distribution, leads toσ−2

2 ∼ Ga(0.5, 0.00113). Figure4 shows
the priors forσ1 andσ2, along with the implied effective degrees of freedom under the assumed priors.
For the spline component, the 90% prior interval for the effective degrees of freedom is [2.4,10].

Table2 compares estimates from REML and INLA implementations of the model, and we see close
correspondence between the 2. Figure4 also shows the posterior medians forσ1 andσ2 and for the 2
effective degrees of freedom. For the spline and random effects these correspond to 8 and 214, respec-
tively. The latter figure shows that there is considerable variability between the 230 women here. This is
confirmed in Figure3 where we observe large vertical differences between the profiles. This figure also
shows the fitted spline, which appears to mimic the trend in the data well.

5.4 Timings

For the 3 models in the longitudinal data example, INLA takes 1 to 2 s to run, using a single CPU. To
get estimates with similar precision with MCMC, we ran JAGS for 100 000 iterations, which took 4 to 6
min. For the model in the temporal smoothing example, INLA takes 45 s to run, using 1 CPU. Part of the
INLA procedure can be executed in a parallel manner. If there are 2 CPUs available, as is the case with
today’s prevalent INTEL Core 2 Duo processors, INLA only takes 27 s to run. It is not currently possible
to implement this model in JAGS. We ran the MCMC utility built into the INLA software for 3.6 million
iterations, to obtain estimates of comparable accuracy, which took 15 h. For the model in the B-spline
nonparametric regression example, INLA took 5 s to run, using a single CPU. We ran the MCMC utility
built into the INLA software for 2.5 million iterations to obtain estimates of comparable accuracy, the
analysis taking 40 h.
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Fig. 4. Prior summaries: (a)σ1, the standard deviation of the spline coefficients, (b) effective degrees of freedom
associated with the prior for the spline coefficients, (c) effective degrees of freedom versusσ1, (d) σ2, the standard
deviation of the between-individual random effects, (e) effective degrees of freedom associated with the individual
random effects, and (f) effective degrees of freedom versusσ2. The vertical dashed lines on panels (a), (b), (d), and
(e) correspond to the posterior medians.

Table 2. REML and INLA summaries for spinal bone data. Intercept corresponds to Asian group

Variable REML INLA

Intercept 0.560± 0.029 0.563± 0.031
Black 0.106± 0.021 0.106± 0.021
Hispanic 0.013± 0.022 0.013± 0.022
White 0.026± 0.022 0.026± 0.022
Age 0.021± 0.002 0.021± 0.002

σ1 0.018? 0.024± 0.006
σ2 0.109? 0.109± 0.006
σε 0.033? 0.033± 0.002

Note: For the entries marked with a? standard errors were unavailable.
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6. DISCUSSION

In this paper, we have demonstrated the use of the INLA computational method for GLMMs. We have
found that the approximation strategy employed by INLA is accurate in general, but less accurate for
binomial data with small denominators. The supplementary material available atBiostatisticsonline con-
tains an extensive simulation study, replicating that presented inBreslow and Clayton(1993). There are
some suggestions in the discussion ofRueand others(2009) on how to construct an improved Gaussian
approximation that does not use the mode and the curvature at the mode. It is likely that these suggestions
will improve the results for binomial data with small denominators. There is an urgent need for diagnosis
tools to flag when INLA is inaccurate. Conceptually, computation for nonlinear mixed effects models
(Davidian and Giltinan, 1995; Pinheiro and Bates, 2000) can also be handled by INLA but this capability
is not currently available.

The website www.r-inla.org contains all the data and R scripts to perform the analyses and simulations
reported in the paper. The latest release of software to implement INLA can also be found at this site.
Recently,Breslow (2005) revisited PQL and concluded that, “PQL still performs remarkably well in
comparison with more elaborate procedures in many practical situations.” We believe that INLA provides
an attractive alternative to PQL for GLMMs, and we hope that this paper stimulates the greater use of
Bayesian methods for this class.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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