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SUMMARY

We introduce a dose-finding algorithm to be used to identify a level of dose that corresponds to some given
targeted response. Our motivation arises from problems where the response is a continuously measured
quantity, typically some pharmacokinetic parameter. We consider the case where an agreed level of re-
sponse has been determined from earlier studies on some population and the purpose of the current trial is
to obtain the same, or a comparable, level of response in a new population. This relates to bridging studies.
The example driving our interest comes from studies on drugs for HIV that have already been evaluated in
adults and where the new studies are to be carried out in children. These drugs have the ability to produce
some given mean pharmacokinetic response in the adult population, and the goal is to calibrate the dose
in order to obtain a comparable response in the childhood population. In practice, it may turn out that
the dose producing some desired mean response is also associated with an unacceptable rate of toxicity.
In this case, we may need to reevaluate the target response and this is readily achieved. In simulations,
the algorithm can be seen to work very well. In the most challenging situations for the method, those
where the targeted response corresponds to a region of the dose–response curve that is relatively flat, the
algorithm can still perform satisfactorily.
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1. INTRODUCTION

An early phase clinical trial in children, aimed at establishing an effective dose and where we have in-
formation on effective doses for adults, calls for a particular kind of design. Bridging studies, in which
we have knowledge of effective doses for 1 group and we would like to extend this knowledge to an-
other distinct group, come under the same heading. The example of children is especially important in
light of recent Food and Drug Administration and National Institutes of Health requirements that drugs
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be evaluated rapidly in children following studies in adults. It is not enough to extrapolate based on the
adult data. In this case, a useful approach can be to establish a dose for children that results in comparable
pharmacokinetic levels (without excessive toxicity) shown to be safe and effective in adults. For some
diseases, instead of using pharmacokinetic measures, it may be possible to use direct measures of drug
activity. For example, in HIV studies, it may be possible to use the extent of suppression of viral load or
some other indicator of the antiviral effect of treatment. In some respects, the problem is similar to the
problem of bioequivalence, although the aim is not that of establishing the comparable effectiveness of
2 different compounds in the same population but rather that of establishing the effective equivalence of
potentially different doses of the same compound in 2 different populations. Our interest was motivated
by the study P1013 undertaken by the Pediatric AIDS Clinical Trials Group. In this study, a cohort of
6 children was to receive a test dose of an antiretroviral drug, indinavir. A criterion in that study for de-
ciding that the test dose was too low, and hence (provided the test dose did not raise safety concerns) that
a higher dose should be tested in a subsequent cohort of 6 children, was that the average AUC among the
6 children was below a target value determined on the basis of a previous adult study.

A range of candidate doses are available for study, and we aim to identify a dose providing an equiva-
lence in response to some dose that has already been established as being safe and effective in a different
population. Equivalence in this context is taken to mean the providing of a comparable pharmacokinetic
response. The dynamic updating is analogous to that of the so called CRM, the continual reassessment
method (O’Quigley and others, 1990) applied to a continuous rather than a binary outcome. Our moti-
vation comes from studies where a drug has been evaluated in adults and a dose is desired for pediatric
use and where the dose selection is based upon a pharmacokinetic parameter. However, the methods are
more general and address the issue of dynamic calibration, which is to say that of continuously updating
an estimated inversion of a monotonic relationship between dose and some outcome.

It will often be the case that pharmacokinetic studies have already been undertaken in the existing
population. From these, we might have established a dose level considered to be safe and effective.
In our own experience, an initial dose for evaluation in children (typically expressed as the number of
milligrams of a drug per kilogram of weight or per meter squared of body surface area of the child) would
have been established by the pharmacologists. The pharmacologists believe, or estimate, that this dose
will be approximately equivalent to the dose used in adults. The first included children in the study will
receive this dose. However, it often turns out that some further fine-tuning of the dose level is required.
Typically, the range of doses around this initial dose that need to be considered is relatively narrow.

The statistical objective will be determined by which measures we use in defining “equivalent.” Differ-
ent choices will often be available to us. For example, we may focus interest on establishing equivalence
with respect to thepth quantile(0 < p < 1), denoted byY∗

p, of the distribution of a particular pharma-
cokinetic parameter which we labelY. The goal would then be to identify a level of dose that produces
an effectp% greater than this target in the new population. A particular case of a percentile is the me-
dian, and, possibly following some symmetrizing transformation, we may often approximate this by the
mean. There may be a small finite numberk of fixed, ordered doses,d1, . . . , dk or it may be possible
to refine the dosing such thatd could be considered effectively continuous (e.g. where liquid formula-
tions of a drug are available, as is common for children). The goal studied here is to identify a level of
dosed such that, at that level, an average or median response corresponds to some predetermined target
response.

Note that, in practice, apparently different objectives can effectively coincide. For instance, the level
of dosed, which produces a percentagep of patients having pharmacokinetic responseY less thanY∗

p

will also be the dose producing an “average” response of, say,Ȳ(d). It may be simpler to construct a
design whose purpose is to located such thatȲ(d) is close to some value rather thand producing a given
percentage less thanY∗

p. If the form of the distribution ofY is known, for example, a transformed normal
with variance independent of dose, the 2 objectives can be made to coincide exactly.
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2. EFFICIENT CALIBRATION ALGORITHMS

There are 2 complementary components to any dose-finding algorithm. First, we use an allocation rule to
assign sequentially the incoming patients to one of the possible doses, with the intent of assigning to doses
ever closer to, and eventually recommending, a target dose. Second, we use a simple working linear model
in which the intercept is held fixed in order to sequentially update information on mean response at each
of the dose levels. Thek doses,d1, . . . , dk, are now ordered in terms of their mean response,E{Yj (di )},
at each of the levels. Here,Yj (di ) is the level of pharmacological response for patientj at dose leveldi ,
and, for givendi , we take theYj (di ), j = 1, . . . , n, to be i.i.d. The dose we aim to identify, the “target”
dose, is that dose having an associated mean response across the patients as close as possible to some
target responseθ . We suppose some monotonic relation forE{Yj (di )}. Whenk is large we can treat the
dose as though it were continuous and denote it simply byd.

2.1 Calibrating a dichotomous outcome

Consider a clinical trial in which no more thann patients are to be entered. The dose level for thej th
patient,X j , is viewed as random taking valuesxj , wherexj is either discrete, assuming some value from
{d1, . . . , dk}, or continuous assuming the valued. Let Yj be a random variable denoting some simple
function of pharmacokinetic response for thej th patient. Among possible choices for this function would
be the actual value of the pharmacokinetic parameter or an indicator variable taking the value 1 if some
threshold is reached and 0 otherwise. We could then defineP(Yj > Y∗

p|X j = di ) = R(di ). The goal of
the study is to find the smallest dosedi such thatR(di ) is greater than some valuep, typically of the order
p = 0.9.

In this case,R(di ) is the probability of a pharmacokinetic success at dose leveldi . In practice, the
observations obtained in the course of any study present themselves as a dichotomy; success or failure to
reach the pharmacokinetic threshold. In attempting to achieve the goal described above, we have also to
keep in mind an ethical requirement indicating that we treat each patient at a level which is expected to be
effective. Of course, the reason for the trial is that there is some uncertainty concerning which of the levels
are effective, but each entered patient provides information reducing this uncertainty. The CRM, originally
designed for use in the context of Phase I toxicity studies in cancer, can be readily adapted to this context.
For our purposes, we modify the focus of the basic rationale fromO’Quigleyand others(1990) to a design
in which (1) we use an allocation rule to assign sequentially the incoming patients to one of the possible
doses, with the intent of assigning doses ever closer to, and eventually recommending, the minimally
effective dose, and (2) we use a statistical procedure that updates the information on the probabilities
of pharmacokinetic success in light of the results obtained for the patients already observed. We model
R(xj ), the probability of obtaining a pharmacological success, atX j = xj ; xj ∈ {d1, . . . , dk} by

R(xj ) = Pr(Yj > Y∗
p|X j = xj ) ≈ ψ(xj ,a)

for some 1-parameter working modelψ(xj ,a). The working modelψ(xj ,a) is not anticipated to be
able to reproduceR(di ) at all dosesdi but will coincide with R(∙) at the target dose. The precise re-
strictions needed to specifyψ(x,a) were described byShen and O’Quigley(1996). The simple choice
ψ(di ,a) = α

exp(a)
i , (i = 1, . . . , k), where 0< α1 < ∙ ∙ ∙ < αk < 1 and−∞ < a < ∞, is widely used in

practice. Once a model has been chosen and we have data in the form of the set� j = {y1, x1, . . . , yj , xj },
the outcomes of the firstj experiments, we obtain estimatesR̂(di ), (i = 1, . . . , k) of the true unknown
probabilitiesR(di ), (i = 1, . . . , k) at thek dose levels. After the inclusion of the firstj patients, we can
write down the log-likelihood or a posterior distribution and (1) obtain the estimatesR̂(di ), (i = 1, . . . , k)
and (2) select dose levelxj +1 ∈ {d1, . . . , dk} to be given to the( j + 1)th included patient so that
|R̂(xj )− θ | < |R̂(di )− θ |, (i = 1, . . . , k; xj 6= di ).



540 J. O’QUIGLEY AND OTHERS

2.2 Calibrating a continuous outcome

For the observations(x1, y1), . . . , (xn, yn), we suppose for some unknownφ:

E(Yj ) = φ(xj )+ σε j ,

where the errorsε1, . . . , εn are i.i.d. random samples with mean 0 andσ is an arbitrary scale parameter.
The first derivative ofφ(x) is assumed to exist and to be positive for allx so that a local linear approxi-
mation toφ(x) can be made.

The model assumes that the scale parameterσ , and thereby the error distribution, does not depend
upon dose. Real situations may be more complex, and we consider the above model as only an approxi-
mation in any modeling context. The problem of robustness to these assumptions requires investigation.
We do not pursue this here in depth although, for the illustrations of the method (below), the mechanism
generating the data allowed for the error distribution to depend upon dose. Letθ be some target value for
E(Y) andξ0 be the solution forφ(x) = θ . We are interested in sequential determination of the design
valuesx1, . . . , xn, so thatξ0 can be estimated consistently and efficiently from the corresponding obser-
vationsy1, . . . , yn. Following Robbins and Monro(1951), stochastic approximation has been applied to
this type of problem and has been studied by many authors. The idea of the Robbins–Monro procedure is
to assume a linear approximation toφ(s), specificallyM(x) = α + βx and to calculate the design values
sequentially according to

xn+1 = xn − n−1c(yn − θ), (2.1)

wherec is some constant.Lai and Robbins(1979) pointed out the connection between (2.1) and the
following procedure based on the ordinary linear regression applied to(x1, y1), . . ., (xn, yn):

xn+1 = x̄n − β̂−1
n (ȳn − θ), (2.2)

whereβ̂n is the least squared estimate ofβ. Wu (1985) indicated that (2.1) can be approximated by (2.2).
Under certain circumstances, stochastic approximation can be considered as the fitting of an ordinary
linear model to the existing data, treating the regression line as an approximation ofM(∙) and using it
to calculate the next design point. However, the procedure can be unstable and slow to converge unless
M(x) is rather steep. The approach taken here, inspired by the underparameterized models of the CRM, is
to estimateξ0 by sequentially inverting an underparameterized working model. The model, in this case a
1-parameter linear model, needs only to be sufficiently flexible in order to be able to solve the regression
equation at a single point, notably the solution of the equation itself. The only requirement on the true
relationship between pharmacokinetic responseY and dosed is that it be monotonically increasing. Our
specific proposal here is to estimateξ0 by fitting the data with a linear model without an intercept. Intu-
itively, a 1-parameter model would be sufficient for determiningξ0 if most of the design values are around
it. Furthermore, unlike the Robbins–Monro procedure, the estimate of the slope becomes relatively stable
as a result of tying down the intercept parameter. The biggest concern is whether the estimate is consistent
as the model becomes less flexible and is not able to reproduce the distribution of the data across the
whole dose range. However, we will demonstrate that knowledge of the entire distribution is unnecessary
for consistency.

Consider then the simple case where the data are generated according to the equation (M(x) = α +
βx):

Y = α + βX + σε, α > 0, β > 0, X > 0. (2.3)

Thenξ0 is the solution for equationα + βx = θ > 0. Suppose that we have collected data(x1, y1), . . . ,
(xn, yn). The usual way to proceed would be to write down the likelihood on the basis of the errors
εi (i = 1, . . . , n). Suppose we fix the parameterα at some value which is, with probability 1, different
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from its true value, and, in particular, we decide to takeα = 0. The variance ofY given X might be
assumed known from studies in a reference population. This assumption can of course be relaxed in the
context of a more sophisticated set up where we put some prior onσ and allow the data to update this
prior information. An alternative approach, apparently less efficient and, at first glance, not even likely
to be consistent, would be to calculate a least squares fit of a regression line constrained to pass through
the origin. This avoids any consideration ofσ and results in an estimate of the slope. We then use this
estimate to obtain our next design pointxn+1 so that

xn+1 = β̃−1
n θ; β̃n = S−1

n
∑

i6n xi yi ; Sn =
∑

i6n x2
i . (2.4)

After having made an observation on the outcomeyn+1 at the pointxn+1, the whole process is then re-
peated. We iterate between the estimation process giving us the next design point and the new observation
made at that design point. Note that the model employed by the procedure is different from that gener-
ating the data. Not only is it different but also it is simpler and could be considered underspecified in
that a richer model, including an intercept term, would at least give an accurate linear approximation to
the unknown functionφ(x). Our poorer working model will not be rich enough to reproduce with any
accuracy the functionφ(x) over any range includingx, but, at the pointx itself, it will be rich enough for
equality to hold.

Other related estimators can also be considered, in particular the simple ratio of the means. This arises
from the observation that a straight line constrained to go through the origin and going through the point
(x̄n, ȳn), wherex̄n =

∑
xi /n andȳn =

∑
yi /n, provides an estimate of the slope, leading to an estimator

for β asβ̂n = ȳn/x̄n. Again, settingxn+1 = β̂−1
n θ would yield the recommended design value for the next

experiment. The design pointxn and the averagēxn can both serve as estimates ofξ0. These estimates
are “consistent” if they converge toξ0 almost surely whenn goes to infinity. The definition ofxn implies
that its consistency is equivalent to that ofx̄n. Below we shall establish consistency ofxn for 2 situations.
The first is wherex takes continuous values and the consistency result only essentially requires the mono-
tonicity and continuity ofφ. The second, whereX takes only a finite number of values is more difficult
and the conditions for consistency are more stringent. For the discrete case, there can be situations, where
xn fails to be consistent although it would still estimate a level providing a pharmacokinetic responseY
which is close, if not the closest, to the target.

We may also want to take into consideration toxic side-effects which, in practice, would limit the
level of dose which can be given. For this purpose, we would keep track of the number of toxicities
in the neighborhood of the dosex. A binary variablezj takes the value 1 for patientj in the presence
of unacceptable toxicity and the value 0 otherwise. We denote the neighborhood itself byL(x). This
could be a small interval centered aboutx although the restriction of being symmetrical aboutx is not a
necessary one. A running estimate of the rate of unacceptable toxicity in the neighborhood ofx is given
by P̃(x) =

∑
`6 j z` I (x` ∈ L(xj ))/

∑
`6 j I (x` ∈ L(xj )). In the neighborhood ofx, we wish to test the

composite hypothesesH0 : 0< P(x) < p0 againstH1 : p0 < P(x) 6 1. Associated with these intervals,
we have a prior onP, denoted byg(p). Then, if we letC(Hm) denote the event that the trial concludes
in favor of Hm, the type I and type II error rates are fixed byε1 = Pr{C(H1)|H0}, ε2 = Pr{C(H0)|H1}.
Obtaining a statistic for choosing between these 2 hypotheses is described inO’Quigleyand others(2001).

3. EXAMPLE

We illustrate our method with a simulated example, summarized in Table1 and Figure1. The first example
is illustrated in a step-by-step way in both the table and the figure. Further examples are illustrated in the
supplementary material available atBiostatisticsonline. For this example, the mean responses were driven
by the underlying curve shown in the left-hand panel of the Figure1. The variance was chosen to be large
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Table 1. Step by step calculations of recommendeddoses

i xi yi xi +1 i xi yi xi +1

1 1.00 5.29 1.25 21 2.20 5.57 2.24
2 1.25 4.21 1.50 22 2.24 10.02 2.21
3 1.50 3.28 1.75 23 2.21 9.54 2.19
4 1.75 1.81 2.00 24 2.19 5.69 2.22
5 2.00 10.13 2.25 25 2.22 10.77 2.18
6 2.25 7.60 2.42 26 2.18 13.32 2.13
7 2.42 8.54 2.38 27 2.13 6.69 2.14
8 2.38 12.32 2.15 28 2.14 8.20 2.14
9 2.15 6.91 2.19 29 2.14 6.29 2.15

10 2.19 6.35 2.25 30 2.15 1.68 2.21
11 2.25 9.68 2.19 31 2.21 8.52 2.21
12 2.19 9.09 2.16 32 2.21 6.46 2.22
13 2.16 9.98 2.12 33 2.22 8.82 2.22
14 2.12 6.04 2.16 34 2.22 12.36 2.18
15 2.16 2.85 2.27 35 2.18 3.30 2.22
16 2.27 7.10 2.29 36 2.22 7.04 2.22
17 2.29 7.59 2.30 37 2.22 14.67 2.17
18 2.30 11.27 2.23 38 2.17 7.42 2.18
19 2.23 7.85 2.24 39 2.18 4.81 2.20
20 2.24 10.23 2.20 40 2.20 11.31

in order to mirror realistic situations. For the purposes of illustration, we constructed a piecewise nonlinear
curve with varying amounts of curvature and for which, across the dose range, the probability of a very
high or a very low response was small. The variability, which was allowed to depend on dose level, was
taken to be as large as might realistically be encountered in practice. For smaller values of variance, the
algorithm will perform better since its task becomes easier and conversely, for greater values of variance.
A feature that experimenters will often want to include in these types of design is to limit the size of any
increment or decrement in successive choices of dose. Here, we used a value of 0.25.

For these illustrations, the targeted mean pharmacokinetic response was taken to be 8.00. The true
log-dose that corresponds to a level producing 8.00 as an average response, can be read off from Figure
1 as 2.20. The initial log-dose given to the first patient was 1.00. The response of this patient, 5.29, is
reasonably close to but still lower than the target. The algorithm indicated that the following patient ought
then to be administered a dose of 1.25. At this dose, we obtained a weaker response, 4.21. Such values,
quite far removed from the mean, are consistent with the relatively large value chosen for the variance. The
recommended dose was again increased to 1.50 and the third patient responded once more with a weaker
rather than a stronger response, 3.28. Note that had we simply fitted an unrestricted linear or higher-order
regression, we would conclude that the dose–response curve is decreasing. Our underparameterized model
forces the estimated dose–response relationship to be increasing despite being seemingly contradicted by
the data.

At the dose given to patient 4, the response decreased yet further to 1.81, leading to another dose
increment of 0.25 for patient 5. This time the response was higher than the target 8.00 (at 10.13) and yet
the algorithm continues to indicate a further increment in the dose, as a result of the earlier rather lower
responses. For the remaining patients, the increments quickly become smaller and patients 8–40 were
treated at a log-dose within 0.10 of the target 2.20. The ability to concentrate such a large percentage of
the patient observations at and around the target level is a central property of the design. This property is
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Fig. 1. Left-hand figure shows the true dose–response curve and random sampling of size 40 about that curve. The
right-hand figure illustrates dynamic calibration sampling of size 40 and where the target level is 8.0. The starting
dose is 1.0 and step sizes constrained to be no greater than 0.25.

seen equally well in quite different settings where the relationship between dose and response can follow
varying rules. It would be difficult not to do better than simple random sampling and this is only presented
for the purposes of illustration.

The 4 pairs of figures illustrated in the supplementary material available atBiostatisticsonline show 4
different situations corresponding to 4 different and arbitrary choices of the association between pharma-
cokinetic response and dose.

A consistent feature, already observed in the more classical CRM setting (O’Quigley, 2001), is that
the more incorrect the initial guess of dose turns out to be, the better the algorithm performs. At first
this is puzzling, but it is easily explained. The method can detect very quickly that we are far below
or far above the correct level. Once we are sampling in the vicinity of the correct dose level, then it
is much more difficult to “fine-tune” the procedure since the natural variation that we are dealing with
can often mask these smaller differences. Nonetheless, the sampling algorithm will quickly concentrate
observations at and around the target level. The studies reported here and in the supplementary material
available atBiostatisticsonline used a fixed sample size. For a fixed finite number of doses, we could
use an early stopping rule such as the one described inO’Quigley and Reiner(1998). For a continuum of
doses, it might be possible to derive analogous rules based on the construction of intervals within which
the responses are deemed to be approximately equivalent. This has yet to be studied.



544 J. O’QUIGLEY AND OTHERS

4. DISCUSSION

In the general approach to calibration described here, there are several design parameters that have to
be fixed by the investigator. Simulation, recommended by several authors as a means to study operating
characteristics, would also have its place in the implementation of dynamic calibration designs and in
assessing robustness to departures from distributional assumptions.

Other design parameters are not chosen for their impact on efficiency or their ability to enhance perfor-
mance in particular circumstances but more as a means to address clinical concerns arising in the context
of the trial. For HIV studies, we would be careful not to allow any procedure which might permit large
jumps to low levels of an antiviral agent because, at low levels, there is a high risk to the patient of devel-
oping resistance. For very toxic anticancer drugs, we might have a similar concern about too large steps
in the period of escalation.

It is common practice in dose-finding studies to include patients in small groups so that, for example,
a group of 3 would all have to be treated at the same level before recommending a different level. Such
modifications raise no difficulties in practice but their impact on operating characteristics needs future
study. In particular, it is likely that the effect of grouping would be similar to that of limiting the step size.

The clinical context, as much as statistical concerns, will provide guidance in setting certain design
features. For HIV studies, the concern at “undertreating,” that is, giving doses which may be ineffective
but still enough to produce resistance, would usually outweigh concerns of “overtreating” since toxicities
are typically reversible. In cancer studies involving cytotoxic drugs, the opposite can be the case. Here,
we often prefer to escalate cautiously, using groups of patients while disallowing the skipping of doses,
but to de-escalate quickly, on the basis of information from a single patient, and quite possibly skipping
dose levels. In the HIV setting, we might want to have more patients at a higher dose before applying any
indicated decrease because a lower dose may not only reduce efficacy but also be associated with a higher
risk of inducing viral resistance. In Phase II dose-finding studies for antibiotics, overdosing will typically
correspond to unnecessary cost, whereas underdosing is likely to be not only ineffective but also to lead
to resistance and, in the longer term, possibly greater cost. Such cost considerations, as reflected in any
decision to escalate or de-escalate, are not symmetrical and this fact could be mirrored in the design if so
desired.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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