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SUMMARY

The DNA of most vertebrates is depleted in CpG dinucleotide: a C followed by a G in the 5′ to 3′

direction. CpGs are the target for DNA methylation, a chemical modification of cytosine (C) heritable
during cell division and the most well-characterized epigenetic mechanism. The remaining CpGs tend to
cluster in regions referred to as CpG islands (CGI). Knowing CGI locations is important because they
mark functionally relevant epigenetic loci in development and disease. For various mammals, including
human, a readily available and widely used list of CGI is available from the UCSC Genome Browser.
This list was derived using algorithms that search for regions satisfying a definition of CGI proposed by
Gardiner-Garden and Frommer more than 20 years ago. Recent findings, enabled by advances in tech-
nology that permit direct measurement of epigenetic endpoints at a whole-genome scale, motivate the
need to adapt the current CGI definition. In this paper, we propose a procedure, guided by hidden Markov
models, that permits an extensible approach to detecting CGI. The main advantage of our approach over
others is that it summarizes the evidence for CGI status as probability scores. This provides flexibility
in the definition of a CGI and facilitates the creation of CGI lists for other species. The utility of this
approach is demonstrated by generating the first CGI lists for invertebrates, and the fact that we can cre-
ate CGI lists that substantially increases overlap with recently discovered epigenetic marks. A CGI list
and the probability scores, as a function of genome location, for each species are available at http://www
.rafalab.org.
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1. INTRODUCTION

DNA methylation is a type of chemical modification of DNA that can be inherited without changing the
DNA sequence. This type of heritable mechanism is referred to as “epigenetic inheritance.” DNA methy-
lation involves the addition of a methyl group to DNA and typically occurs at a C followed, in the 5′ to 3′

direction, by a G. Biologists refer to this dinucleotide as a CpG, where the p implies the 5′ to 3′ direction.
Figure1(a) is a simplified illustration of how DNA methylation is maintained during cell division. DNA
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methylation is of particular interest because it is involved in gene regulation. It affects the transcription
of genes in 2 ways. First, the methylation of DNA can impede the binding of transcriptional proteins
to the gene, thus blocking transcription. Second, methylated DNA may be bound by proteins that start
a series of chemical events that result in the formation of compact DNA that renders it inactive. Note
that although 2 cell types in an organism have the same genome, their methylation pattern can be differ-
ent (Figure1(b)). The fact that DNA methylation is heritable makes it the most prominent mechanism
used by differentiated cells to pass tissue-specific transcription patterns to daughter cells in cell division.
Therefore, DNA methylation is regarded as the “fifth base” of the genome and is of great interest to
biologists.

The DNA of most vertebrates is depleted in CpG dinucleotides. The remaining CpGs tend to cluster
in regions referred to as CpG islands (CGI) (Figure2). Interest in CGI grew when it was demonstrated
that, in vertebrates, they are enriched in regions of the genome involved in gene transcription referred to
as “promoters” (Bird, 1986). Furthermore, many investigators have observed altered DNA methylation
of CGI in development and cancer (Feinberg, 2007). Irizarry and others(2008) recently demonstrated
that “CGI shores,” defined as regions within 2000 (bp) but not inside CGI, are useful predictors for ge-
nomic locations that are differentially methylated across different tissues and between cancer and normal
samples.

Fig. 1. Cartoon illustrating how DNA methylation is inherited in cell division on how it could be involved in tissue
differentiation. (a) The fact that the complement of a CpG is also a CpG facilitates the inheritance mechanism. The
cartoon illustrates how, during mitotic cell division, DNA methylation is inherited. (b) This cartoon illustrates how 2
cells can have the same genomic sequence but a different methylation pattern.

Fig. 2. A genomic region of 40 000 bases from chromosome 1 is shown. The ticks on thex-axis represent CpG
locations. The points represent CpG rates in segments of length 256 bases The curve is the result of a kernel smoother
of the points. Approximately 20% of the genome are Cs and 20% are Gs. Thus, we expect about 4% of dinucleotides
to be CpG. However, most points are well below rates 4% with 2 clusters well above 4%. The latter are CGI.
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A specific example of the need for knowledge of CGI locations is their use in the construction of high-
throughput assays. The traditional technique for measuring DNA methylation, bisulfite modification-based
sequencing, is labor intensive and not suitable for genome-wide studies. New molecular biology tech-
niques, along with the use of microarrays or second-generation sequencing technologies, has made high-
throughput unbiased methylation profiling feasible. However, whole-genome assays are too costly for
most research groups. Knowledge of CGI locations provide manufacturers a way to construct cost-effective
products that focus on regions known to be associated with important epigenetic events (Agilent, 2008;
Meissnerand others, 2008).

Although existing CGI lists have been widely used, comprehensive measurements of methylation,
enabled by recent advances in technology, demonstrate that the current definition needs to be improved.
Furthermore, the current definition was developed for humans and interest in measuring DNA methylation
in other organisms motivates the need for a more general definition. In Section2, we describe existing
approaches to detecting CGI and point out their limitations. In Section3, we motivate the need for a new
approach and the statistical model that we use to redefine the concept of a CGI. In Section4, we present
the model. In Section5, we describe improvements over existing approaches obtained from fitting our
model. Finally, in Section6 we summarize our findings.

2. PREVIOUS WORK

A formal definition of a CGI was provided byGardiner-Garden and Frommer(1987). A CGI is defined
as a region of at least 200 bp, with the proportion of Gs or Cs, referred to as “GC content,” greater
than 50%, and observed to expected CpG ratio (O/E) greater than 0.6. The observed to expected ratio is
calculated by dividing the proportion of CpG dinucleotides in the region by what is expected by chance
when bases are assumed to be independent outcomes of a multinomial distribution. The formula currently
used is

O/E =
#CpG/N

#C/N × #G/N

with N the number of bp in the segment under consideration. Various computer algorithms have been
developed that efficiently scan the genome for regions satisfying the definition. The most widely used
CGI list is based on this definition and is hosted by the UCSC Genome Browser (Kentand others, 2002).
However, this definition is somewhat arbitrary because the choice of the cutoffs has a great influence
on what is considered an island. The cutoff choice was likely derived from exploratory data analysis
(Gardiner-Garden and Frommer, 1987, Figure 1) but neither a biological argument nor a formal statistical
motivation was used.

Alternative algorithmic definitions have been proposed. For example,Takai and Jones(2002) con-
sidered slightly different cutoffs: a minimum length of 500 bp, a minimum GC content of 55% and a
minimum O/E of 0.65. They demonstrated that by using the new cutoffs, the enrichment for promoter
regions of genes was largely not affected, whereas most undesirable Alu-repetitive elements were ex-
cluded compared to the UCSC Genome Browser’s CGI list. Repetitive elements are sequences that appear
over and over again on the genome. As a specific type of repetitive element, the Alu sequence appears
more than 1 000 000 times. They are not associated with epigenetic marks but satisfy the CGI definition,
therefore biologists rather exclude them.

Glassand others(2007) described a completely different algorithm. For every CpG, they recorded the
length of a segment needed to cover the nearest 27 CpGs. They then observed that, for certain species, a
histogram of these lengths shows a bimodal distribution. The histogram was used to select a cutoff and
regions associated with the first mode are defined as CpG “clusters” (their terminology for CGI). However,
both these alternative definitions also depend on cutoffs based on a difficult to interpret scale.
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Because we assume that the underlying structure of the genome includes unobserved states (CGI and
baseline), which are presumed to be locally correlated along the genome (see, e.g. Figure2), hidden
Markov models (HMMs) are a natural method to consider.Churchill (1989) introduced the use of HMM
to sequence analysis. More recently, HMMs have been effectively used to partition genomes into segments
of similar stochastic structure (e.g.Muri, 1998; Nicolasand others, 2002; Boys and Henderson, 2004).
In these approaches, the hidden state is assumed to be a homogeneous first-order Markov chain. The
distribution of the observed base at locationt , conditioned on the hidden state, is a heterogeneous first-
order Markov chain. States are then inferred from the base-to-base transitions observed in the genome
in question. In the examples cited above, this approach is effectively used to discover heterogeneities in
the genome of bacteria (Nicolasand others, 2002) and to segment these genomes (Boys and Henderson,
2004).

In general, HMMs have been extensively used in sequence analysis to discover functional elements
in various genomes. In a seminal book on the topic,Durbin and others(1998) proposed the use of
HMMs for the task of detecting CGIs. Specifically, 8 states are assumed: the 4 nucleotides in each
of the 2 states (CGI and baseline). Regions for which the state (CGI or baseline) is predetermined
(using the current definition) are used to estimate the transition probabilities. With the transition probabili-
ties in place and a sequence of dinucleotides, CGI and baseline states can be predicted by fitting an HMM.

3. MOTIVATION

3.1 Limitation of existing methods

Recent advances in technology have enabled high-throughput measurement of epigenetic events such as
differentially methylated regions (DMRs) across tissue types. Newly available data have motivated the
need for a more flexible CGI definition. For example, we examined data published byIrizarry and others
(2008) and found many DMRs not associated with CGIs but that were nevertheless in the shores of CpG-
enriched sequences. For example, one DMR reported byIrizarry and others(2008) was within 1000 bp
of a CpG cluster not currently defined as a CGI (Figure3(a)). Furthermore, this region coincides with a
gene promoter. Despite coinciding with 2 functional elements associated with CGI, this region meets only
2 of the 3 criteria of the formal definition: O/E is only 0.5. Therefore, this region is not in the Genome
Browser list of CGI. Visual inspection of the base composition around other DMRs not associated with
CGI demonstrated that this was a general problem (data not shown).

None of the existing competing algorithms solve this problem. By focusing only on promoters of
known genes, we find that the definition proposed byTakai and Jones(2002), although successfully
filtering out more undesirable repetitive regions, results in even less sensitivity for functional epige-
netic elements. Furthermore, the Genome Browser list was filtered to remove repeats, which is a viable
solution that does not involve changing to a more restrictive definition. The algorithm described byGlass
and others(2007) has limitations as well. A specific problem is that several smaller clusters agglomerate
into larger ones (Figure3(b) shows an example). As a consequence, relatively long stretches of CpG de-
pleted regions are included in the CGI. Furthermore, the 27 CpG requirement results in a list that leaves
out many shorter CpG clusters that are associated with DMRs. For example, the CGI described above
(Figure3(a)), is excluded.

Similarly, more statistically based approaches have limitations. Although the model proposed by
Durbin and others(1998) serves as an elegant illustration, implementing the approach has not yielded
a practical method for genome-wide identification of CGI. To elaborate, note that the typical HMM
approach in sequence analysis models the transitions between bases directly. When applied to CGIs, the
fundamental difference between the 2 states must therefore be the transition from C to G, with islands hav-
ing a bigger transition probability. However, below we demonstrate that for this approach to fit the data, we
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Fig. 3. The observed to expected ratio (green) and percentage of G+C (orange) are shown for 2 regions of the human
genome. CpG clusters are denoted with bars along the bottom or top of the plot. (a) For a region covering the 5′

end of CLSTN3 a CpG dense region that is not in current CGI list is denoted by the lime green bar at the bottom.
(b) The top (pink) bar denotes one of Glassand others(2007) CGI that engulfs 3 Genome Browser CGIs (denoted
with purple bars at the bottom). The regions between the Genome Browser CGI have low observed to expected ratio.

would have to include much more than 2 hidden states, due to the variability in base composition observed
in most genomes. Moreover, in our experience, the level of complexity required by an HMM, applied to
the individual bases, impedes the development of a procedure useful for the creation of CGI lists.

If CGIs are simply a cluster of CpGs, then a procedure that scans through the genome searching for
regions with larger than expected CpG rates would suffice. However, the evolutionary theory for CGI
motivates a more sophisticated approach. Briefly, the human genome is depleted of CpG because the mu-
tation rate for this specific dinucleotide is higher than others (Landerand others, 2001). CGIs are believed
to be the result of certain segments of the genome being somewhat protected from the mechanism that
leads to this mutation. This is a possible explanation for the association of CGI and locations relevant to
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development. This evolutionary argument, based on differing mutation rates, suggest that the fundamental
property that defines a CGI is not the CpG densityper sebut the CpG density conditioned on GC content.
This is because regions that originally had high GC content had more CpG dinucleotides which, even
unprotected, resulted in relatively high CpG counts. Gardiner-Garden and Frommer’s definition, based on
the observed to expected ratio as opposed to just the number of CpG, agrees with the above described
theory. Our data exploration, described below, supports and builds on this approach.

3.2 Data exploration

We divided the human genome into nonoverlapping segments of length 256 bases after removing the
Alu-repetitive elements. The histogram of the CpG rates of these segments (figure not shown) does not
provide a clear cutoff for distinguishing CGI from baseline. However, if we stratify the segments by GC
content (Figure4), distinct bimodal distributions of CpG rates are observed. The 2 modes support the
existence of 2 states: CGI and baseline. The fact that the center of the 2 modes increases with GC content
implies that we should consider rates of CpG counts relative to the GC content of the segments. That is,
we consider the number of CpGs relative to a quantity measuring the number of opportunities for CpGs,
similar to considering the number of events is relative to the size of the risk set in survival analysis. Note
that the O/E concept of Gardiner-Garden and Frommer is a clever and simple method for adhering to this
principal.

Our data exploration revealed another interesting characteristic of the human genome. Figure5 shows
GC content for a representative region of the genome (with no repetitive elements). There appears 2 states

Fig. 4. Histogram of CpG rates in nonoverlapping genomic segments of length 256 bases, stratified by the GC contents
in each segment. GC content strata is shown on top of each histogram.x-axis is the CpG rate.y-axis shows the
percentage of segments belonging to each CpG rate category.
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Fig. 5. GC content plots. A region with no Alu repeats was divided into nonoverlapping segments of length 256 bases.
The points are the GC content of each segment. The curve is the result of a kernel smoother of the points.

for GC content as well. In Section4, we describe the relevance of this characteristic in our approach to
defining islands.

Figures2 and4 support the claims that CpGs are clustered and that O/E can be satisfactorily modeled
by 2 states. Therefore, a 2-state HMM is a natural method to consider. However, modeling the emission
probability at a single location is complicated because GC content, needed to compute O/E, varies widely
across the genome, as seen in Figure5. Another complication is that the distribution of CpG counts at
a single location is somewhat complicated because outcomes from consecutive locations are not inde-
pendent. For example, CG dinucleotide cannot start at consecutive bases. In Section4, we described a
procedure, motivated by HMMs, that overcomes the described problems of existing approaches and the
difficulties of modeling sequence data directly. By modeling CpG counts in small bins instead of base-
to-base transitions, the complexity of the emission model is greatly reduced. The models are therefore
relatively simple and can be fit without cutoff choices which facilitated the extension to species for which
CGI have never been reported.

4. MODEL

For any given genome, we assumed that each chromosome is divided into 3 states: Alu repetitive ele-
ments, baseline, and CGI. Because the locations of the Alu-repetitive elements are well characterized,
they are inherently not of interest for the current statistical problem and therefore such regions were
removed. Hence, we characterize the problem as that of a semi-HMM, with a known state for Alu repet-
itive elements. Our analysis then considers the 2-state chain conditional on being in a non-Alu repetitive
state.

We followed the basic statistical concepts first used byChurchill (1989), described byDurbin and
others(1998) and used by bioinformatic tools such as Multiple EM for Motif Elicitation (Bailey and
others, 2006), Motif Alignment & Search Tool (Bailey, 1998), and Basic Local Alignment Search Tool
(Altschul and others, 1990). The foundation of these tools is the stochastic modeling of bases in the
genome. We denoteB(t) as the base at genomic locationt , pb(t) the probability thatB(t) = b for
b = A, T, G, C, and pCG(t) the probability of being CpG at locationt . The depletion of CpG implies
that the probability of a C at locationt followed by a G is less likely than would be predicted by chance
under independence:pCG(t) < pC(t) × pG(t + 1). We have argued that a useful model for detection
of CGI needs 2 states to describe changes inpC(t), pG(t), and pCG(t). However, we have specified
3 parameters for each genomic locationt , resulting in an overdetermined system. Placing parsimonious
modeling assumptions on the chain of bases that imply in a 2-state stochastic process for the chain of CpGs
would result in undue complexity. Instead, we describe and motivate simple assumptions that permitted
the derivation of a useful model from the general model described above.

We first divided the non-Alu regions into nonoverlapping segments of lengthL bp. For the results
shown here, we usedL = 16. This choice is justified in Section4.2. We denotedNC(s), NG(s), and
NCG(s) as the number ofC, G, and CpG in segments, andY(s) the hidden state for segments with 2
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states:Y(s) = 1 as CGI andY(s) = 0 as baseline. We assumeY(s) is a stationary first-order Markov
chain.

As discussed in Section 3.2, the GC contentNC(s) + NG(s) and CpG countNCG(s) are not indepen-
dent. In order to fit an HMM onY(s), one has to evaluate the joint likelihood by a complicated numerical
method such as Monte Carlo Markov chain. Given the size of genomes (3 billion bases for human), we
opted for an intuitive and computational feasible approach: we modeled the data generating process with
a hierarchical model that we subsequently fit using direct estimates in an iterative stepped approach. The
most complex portion of the model involves a model for the GC content,NC(s) + NG(s). We require a
model that adheres to the following: (i) it must account for jumps in GC content, (ii) slowly varying trends
must also be accounted for, and (iii) fitting must be reasonably fast and able to accommodate the large
size of the data.

We first defined a latent Markov processX(s) to be the hidden state for segments with states:X(s) =
1 as high GC count regions andX(s) = 0 as baseline. We assumed thatX(s) was a stationary first-order
Markov chain with invariant probabilitiesπi = Pr{X(s) = i }, say, and 2× 2 transition matrixP. Let {Sj }
be the collection of segments defined by a constant latent state. That is,S1 = {1, . . . , M1}, whereM1 is
the smallest index so thatX(M1) 6= X(M1 −1); S2 = {M1 +1, . . . , M2}, whereM2 > M1 is the smallest
index so thatX(M2) 6= X(M2 − 1); and so on. This process divided the segments into regions of low or
high GC content.

The lowest level of the hierarchy characterized the unknown proportion of GC content in segment
s and was denoted byp(s). The model forp(s) must account for the fast variation in the chain of GC
content as well as the slow variation within segments of similar type, as shown in Figure5. We posited
the following model onp(s):

p(s) | s ∈ Sj andX(M j ) = i ∼ Normal{ci + f (s), τ2},

where
∑

s f (s) = 0 represented smooth deviations, while the additive constantci represents jumps in the
GC contents. Conditioned onp(s), the observed GC contentNC(s)+NG(s) follows Binomial distribution:

NC(s) + NG(s) | p(s) ∼ Bin{L , p(s)}.

For this approach, we approximated the binomial distribution with the normal density. We did not force
a binomial variance and estimated it from the data when fitting HMM. This gives us added flexibility,
though it requires{NC(s) + NG(s)}/L to lie away from the 0 and 1 boundaries for the distributional
assumptions to be valid. However, this is well indicated by the data. Under the above model assumptions,
the GC content subtracting the slow variation forms a first-order HMM:

NC(s) + NG(s) − L f (s) | X(M j ) = i ∼ Normal(ci , σ
2).

Note that we originally tried using smoothed GC content instead of the proposed 2-state model. How-
ever, results showed that CGIs associated with low GC content are generally not associated with epigenetic
marks and need to be filtered out. Furthermore, we observed sharp changes in GC content as shown in
Figure5. To avoid arbitrarily selecting a cutoff for GC content and account for the GC content jumps, we
implemented the HMM approach.

Finally, conditioned on{p(s)} andY(s) = i , we assumed an HMM onNCG(s) with Poisson emission
probabilities with conditional means

ai × L × pC(s) × pG(s) = ai × L ×
1

4
p(s)2.

Here, we are making the parsimony assumption thatpC(s) = pG(s) = 1
2 p(s). This assumption, though

perhaps aggressive if the bin sizes are small, is biologically well motivated. Further, the Poisson
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assumption is motivated in Section 4.1. Note that the parametersa1 and a0 can be interpreted as the
O/E for the CGI and baseline regions, respectively.

4.1 Motivation for Poisson model

An important model assumption is that the number of CpG occurrences in a segment of the genome
approximately follows a Poisson distribution. Note that the counts are not binomial because CG dinu-
cleotide cannot start at consecutive bases. We termed the distribution nonconsecutive binomial and proved
that, asymptotically, we obtain the same results as if the counts were based on independent Bernoulli trials.
A detailed proof can be found at Section 1 of the supplementary material available atBiostatisticsonline.

We examined the properties of a our random variable using simulations. Figure6 shows the probability
mass function of a nonconsecutive binomial and Poisson are similar for differentL and p values.

4.2 Choosing the segment length

The Poisson approximation, described in Section4.1, requiresL to be “large.” However, there is a trade-
off in that smaller values ofL provide better resolution for the edges of CGI. In this section, we present a
simulation and data-motivated rationale for choosing this parameter.

Our simulations showed that the approximation was appropriate for length larger thanL = 8
(Figure6). We further assessed the performance on real data by creating CGI lists as described in Section
5 for the human genome using segment lengths ofL = 8, 16, and 32. The resulting lists were similar.
Visual inspection revealed that there are various instances where smaller proximalL = 16 CGIs were en-
gulfed into a largerL = 32 CGI, and usingL = 8 picked more short (less than 50 bp) CGIs. Finally, we
created validation plots based on the association of CGI with epigenetic marks as described in Section5
for each length;L = 16 showed the best performance (supplementary Figure S1 of the supplementary

Fig. 6. Probability mass functions for NCBIN(L , p) (black circle) and Poisson(Lp) (red triangle) for different values
of L and p. The pmf functions are similar so Poisson(Lp) is a good approximation of NCBIN(L , p).
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material available atBiostatisticsonline). Therefore,L = 16 was used throughout this manuscript and we
recommend its use in practice. However, we emphasize that for future applications, because of the com-
putational shortcuts proposed, performing a similar sensitivity analysis on this parameter can be easily
done.

4.3 Parameter estimation

We used an iterative stepped approach to fit the posited hierarchical model. The benefits of this strategy are
many and most notably include the ability to use existing software for fitting, as well as making the com-
putational problem of fitting the model feasible. Moreover, by fitting the model in stages, we thus obtain
values based on the most direct evidence. This provides some robustness against model misspecifica-
tion. However, this approach comes at the cost of theoretical continuity and perhaps leads to understating
uncertainty in parameter estimates.

A complicated aspect of our approach was dealing with our assumption of a nonconstant conditional
mean forNC(s) + NG(s). Typically, HMM algorithms presume a constant mean in each state. To solve
this problem, we used an iterative algorithm starting withf (s) = 0. Then the standard forward–backward
algorithm, as described byRabiner(1989), with an expectation-maximization (EM) algorithm (Dempster
and others, 1977) was applied toNC(s) + NG(s). This algorithm provided estimates for the conditional
means for each state, that is,c0 andc1, the varianceσ 2, as well as posterior probabilities for each state for
each segments. The posterior probabilities were thresholded to obtain a binary (0 or 1) estimateX̂(s) of
X(s). Then for each segment, we subtract the means from observed values to obtain the residuals:

r (s) = {NC(s) + NG(s)}/L − c1−X̂(s)
0 cX̂(s)

1 .

We then estimatef (s) by applying a smoother tor (s). Specifically, we used a moving weighted average
with weights obtained from Tukey’s biweight kernel with a certain window size. To choose a proper
smoothing window, we constructed CGI lists using different window sizes and evaluated their association
with functional elements. A window size of 400 bp showed the best result (supplementary Figure S2 of the
supplementary material available atBiostatisticsonline) and therefore we used it throughout this article.
We then iterated the process. Namely, we subtract the smooth estimate, sayf̂ (s), from the observed GC
content and apply the forward–backward algorithm to{NC(s) + NG(s)}/L − f̂ (s) and repeat the above
procedure until convergence.

The use of HMMs and this iterated scheme, as opposed to a complete maximum likelihood solution,
for example, is motivated by HMMs established applicability to sequence data, the availability of robust
fitting algorithms and the satisfactory performance we have seen on the data. Moreover, as stated above,
we have placed a high emphasis utilizing methods that can be easily implemented and use the most direct
information available. Convergence is usually obtained quickly, in 5 iterations or so.

The result of this algorithm is a smoothed estimate ofp(s) that accommodates change points from
regions of high GC content and a slowly varying trend. By iterating these steps, we mirror a blocked
maximization procedure, such as is common in backfitting and related procedures. At convergence. a
smoothed estimate off is obtained as well as estimates for theci terms, which represent local constant
increases or decreases in GC content.

With the estimate ofp(s) in hand, estimating the HMM onNCG is much simpler. Since, we assume

NCG(s)|Y(s) = i ∼ Poisson

(
ai × L ×

1

4
p(s)2

)
,

the HMM can be fit with standard forward–backward algorithm via an EM algorithm (Dempsterand
others, 1977). The result will give estimates fora1 anda0 and posterior probabilities forY(s). Now we
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have state probabilities for the 2 latent Markov chains, one defining areas of high GC content, and one
defining areas of high CpG content. Here, the areas of CpG content correctly accounts for the number
of opportunities for CpG, rather than looking at the raw number in isolation. We estimate the posterior
probabilities of being a CGI state, that is,Y(s) = 1, for each segments. We also obtain the posterior
probabilities of being in a high GC content state, that is,X(s) = 1, for each segments. Because the
forward–backward algorithm calculates these quantities, they are readily available. We can then estimate
the states forX andY using these posteriors.

5. RESULTS

Our main motivation for the development of a new CGI definition was the fact that recently discovered
epigenetic marks were not associated with CGI based on the current definition but were associated with
CpG-enriched regions. Specifically, many DMRs not associated with existing CGI lists, were in CpG
shores. Below we describe how CGI lists based on the results of fitting the HMMs, described in Section4,
improve coverage of these locations. As shown in supplementary Figure S3 of the supplementary material
available atBiostatisticsonline, the CGIs that reside in regions shown in Figure3 can be correctly detected
by thresholding posterior probabilities from 2 HMMs. To further evaluate the performance of the proposed
model, we compare our list, which we refer to as the model-based CGI, to CGI lists provided by the UCSC
Genome Browser (Kent and others, 2002), denoted as Genome Browser CGI, and the Glassand others
(2007) CGI (Glassand others, 2007).

We created a CGI lists by considering regions of locations with posterior probability greater than
0.5. We also found that the CGIs that coincided with regions of baseline GC content were not associated
with epigenetic marks (data not shown) and therefore we filtered these regions. Table1 shows the joint
distribution of the observed posteriors forX andY. Note that the majority of locations with evidence of
CGI state occur when the genome is in the high GC content state.

This CGI list is close to 93% of the DMRs reported byIrizarry and others(2008). This is a dramatic
increase from 81% by the Genome Browser CGIs and 86% by the Glassand others(2007) CGIs. This
improvement was made possible by the flexibility to control specificity. Note that the number of CGIs
produced with a posterior probability cutoff of 0.50 was 118 710 and the number in the Genome Browser
list is 28 226. To compare lists of similar specificity, we created model-based CGI lists with posterior
probability cutoffs ranging from 0.50 to 0.9995 for the human and mouse genomes. We compared the
association of each list with 2 functional elements: gene promoters and DMRs.

The Genome Browser CGIs are mostly annotated on the nonrepetitive region and the maximum per-
centage of repetitive bases for their CGIs is 35%. To make the results comparable, we filtered model-based

Table 1. Joint distribution of posterior probabilities for X (GC content) and Y (CpG rate) on human
hg18 genome. Numbers in each cell are the percentages of nonoverlapping 16 bp segments with posterior
probabilities fall in a category. For example, there are64.3% of the segments with both probabilities

between0 and0.1

Posterior probabilities for GC content Posterior probabilities for CpGrate

(0, 0.1] (0.1, 0.5] (0.5, 0.9] (0.9, 1] Total

(0, 0.1] 64.3 2.5 0.7 0.4 67.9
(0.1, 0.5] 1.6 0.1 0.0 0.0 1.7
(0.5, 0.9] 1.6 0.1 0.0 0.0 1.7
(0.9, 1] 23.0 1.9 1.2 2.6 28.7
Total 90.5 4.6 1.9 3.0 100
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CGIs and Glassand others(2007) CGIs and kept those with less than 35% repetitive bases. To assess
sensitivity, we computed the percentage of human DMRs within 2000 bp of a CGI. We also performed
comparisons similar to those previously used to assess CGI lists. Namely, we compared the percent of the
transcriptional starting sites (TSS) of refseq genes (Pruitt and others, 2006) covered by CGIs for human
and mouse, as done byTakai and Jones(2002) andGlassand others(2007), and the percent of mouse
DMRs (Yagi and others, 2008) within 2000 bp of a CGI. To assess specificity in a comparable way for
the 3 approaches, we computed the total number of bases covered by each CGI list. Figure7 shows plots
of sensitivity versus specificity.

Glassand others (2007)CGIs overlap with a larger percentage of human TSS than Genome Browser
CGIs (64.5% versus 55.9%). However, to achieve this gain in sensitivity, twice as many bases are used.
The ability to control specificity with the model-based CGIs demonstrates that small improvements in
covering human TSS over the Genome Browser and Glassand others(2007) CGIs are possible at the

Fig. 7. Receiver operating characteristic-like plots showing the sensitivity versus total length for different CGI lists
(used as a measure of specificity). The sensitivity is defined as the percentage of functional elements associated to
CGI. The 3 figures are for different functional elements: (a) Human (hg18) TSS, (b) human (hg18) DMRs, (c) mouse
(MM8) TSS, and (d) mouse (MM8) DMR, respectively.
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Table 2. In the HMM, the parameters a0 and a1 represent the average observed to expected ratios in the
baseline and island regions. The table below shows the estimated parameters in12 species. The numbers

in the parenthesis are the estimated standard errors

a0 a1

Human 0.16 (0.001) 0.56 (0.005)
Chimp 0.16 (0.001) 0.55 (0.005)
Mouse 0.14 (0.001) 0.46 (0.006)
Cow 0.17 (0.003) 0.50 (0.005)
Dog 0.16 (0.002) 0.64 (0.004)
Chicken 0.18 (0.003) 0.70 (0.003)
Bee 0.89 (0.028) 1.55 (0.008)
Fruit fly 0.82 (0.007) 1.00 (0.024)
Worm 0.84 (0.007) 1.26 (0.034)
Arabidopsis 0.50 (0.006) 0.95 (0.004)
Yeast 0.78 (0.011) 0.80 (0.016)
E. coli 1.12 (0.003) 1.12(0.003)

same specificity level (Figure7(a)). A more substantial improvement was achieved by the model-based
approach in the overlap with the human DMRs (Figure7(b)). Using a probability cutoff of 0.995, the total
lengths of the model-based CGIs (22.7 Mbp) was comparable to the total length of the Genome Browser
CGIs (21.1 Mbp), but the overlap with DMR increased from 81% to 86%. A cutoff of 0.9 made the
model-based CGIs (37.2 Mbp) a little smaller in size to the Glassand others(2007) CGIs (41.1 Mbp) but
the the overlap with DMR increased from 86% to 91%. We observed the same improvements for mouse
genome as shown in Figures7(c) and (d). Different biological applications may have difference sensitivity
and specificity requirements. Our approach is flexible in this regard. We provide the CGI list that uses a
cutoff value of 0.99 as the “canonical” list because it is associated with the inflection point of the receiver
operating characteristic curve (Figure7).

Another advantage of our approach is that we can easily fit the HMMs to genomes of other species.
We fitted the model to 12 species:Homo sapiens(human),Pan troglodytes(chimpanzee),Mus musculus
(mouse),Bos taurus(cow), Canis lupus familiaris(dog),Gallus gallus(chicken),Apis mellifera(bee),
Drosophila melanogaster(fruit fly), Caenorhabditis elegans(worm),Arabidopsis thaliana(Arabidopsis),
Escherichia ColiandSaccharomyces cerevisiae(yeast). CGIs have only been reported for vertebrates. We
therefore tested for the presence of CGI by computing a likelihood ratio comparing a model with 2 states
to a model with 1 state. Of the 12 species we tested, only the unicellular organisms, that is, yeast and
E. Coli, did not have significant evidence in favor of the presence of CGI. We are therefore reporting the
first CGI lists for bee, worm, and fruit fly. Previous approaches were not successful because the required
cutoffs for these species are very different than for humans. This is demonstrated by examining the fitted
a0 anda1 parameters as shown in Table 2. Note that these can be interpreted as the average O/E in the
baseline and CGI regions, respectively.

6. DISCUSSION

We have proposed a procedure for building CGI lists based on HMMs. The main motivation for the devel-
opment of a new approach was the observation that many DMRs were near regions of high CpG density
that did not meet the current definition or any of the alternative definitions. Our new approach improved
the overlap with known TSS and DMRs in both human and mouse. The improvements achieved with our
approach was mainly due to the data-driven nature of the procedure. Many of the CpG dense regions were
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Fig. 8. Statistical characteristics of model-based CGI list for human (hg18). (a) GC content versus O/E. The red
vertical and horizontal lines represent the cutoffs used by the Gardiner-Garden and Frommer definition: O/E> 0.6,
GC content> 0.5. (b) Histogram of CGI lengths. The vertical line is at the minimum length requirement of Gardiner-
Garden and Frommer CGI definition (200 bp).

left out by algorithmic approaches because they did not satisfy a predetermined rule. Rerunning these
algorithms with different cutoffs is no easy task. However, generating CGI lists with different cutoff for
the HMM-generated posterior probabilities is trivial. Furthermore, our model has been used to define CGI
for 30 species (Irizarry and others, 2009). Note that for some of these species, we are providing the very
first list of CGIs.

Figure8 shows GC content versus O/E for the model-based human CGI list. The red horizontal and
vertical lines are from Gardiner-Garden and Frommer CGI definition (GC content> 50%, O/E> 0.6).
Based on the current definition only the points above the horizontal line and to the right of the vertical
line are CGIs. Various of the model-based CGI do not satisfy the original definition. A histogram of the
lengths of model-based CGIs shows many model-based islands are smaller than the formal definition’s re-
quirement of 200 bases (Figure8(b)). These figures demonstrate how the added flexibility permits shorter
regions with slightly lower O/E.

Our probability-based estimates have units that are interpretable across species. Thus, in a sense, we
have transformed the problem onto a standardized scale which will facilitate discussion of thresholding
definitions. Because of this, fitting the model to the genomes of other species was simple—no additional
user input or algorithmic tweaking was required. To demonstrate this, we fitted the model to the genome
of 12 species.

In addition to providing CGI information for these species in isolation, it led to some interesting scien-
tific findings when compared across specifies within taxonomic and evolutionary classes. Strong evidence
for the presence of CGI was found for all multicellular organisms. The estimated model parameters con-
firmed that vertebrates are CpG depleted in their baseline level. Invertebrates were not CpG depleted in
their baseline levels but showed higher than expected levels in the CGI. Arabidopsis was somewhere in
between. Evidence of methylation has been reported for species for which we found evidence of CGI.
The fruit fly had the weakest evidence for the presence of CGI. Interestingly, only small amounts of
methylation are detected for this organism (Lyko and others, 2000).

A promising application of the newly defined CGIs is the creation of efficient DNA methylation arrays
or enrichment schemes for second generation sequencing. For example, we can construct microarrays that
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tile only CGI shores. For that purpose using the current Genome Browser definition will miss out on a
substantial number of DMRs. It would also be possible to construct this array for any species for which
the genome has been sequenced. Furthermore, the ability to control specificity will permit us to deal with
different array densities. Note that using a low cutoff value for posterior probabilities produces many new
CGIs as compared to the Genome Browser list. As our biological knowledge advances we will be able to
check how many of the new ones are functional.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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