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Abstract
Purpose of review—The role of SGK1 in renal physiology and pathophysiology is reviewed with
particular emphasis of recent advances.

Recent findings—The mammalian target of rapamycin complex 2 (mTORC2) has been shown to
phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional
SGK1-phosphorylation sites required for maximal SGK1-activity. A 5′ variant alternate transcript
of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced
membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for
optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-
Cl− cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal
tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and
aldosterone, and in fetal programming of arterial hypertension.

Summary—The outlined recent findings advanced our understanding of the molecular regulation
of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease
and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of
the kinase as a new therapeutic target.
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Introduction
The serum- and glucocorticoid-inducible kinase 1 (SGK1) was originally cloned as an
immediate early gene transcriptionally stimulated by serum and glucocorticoids in rat
mammary tumor cells [1]. The human isoform has been discovered as a gene upregulated by
cell shrinkage [2]. As listed in Table 1, SGK1 is under transcriptional control of a variety of
further stimuli.
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The gene encoding human SGK1 has been localised to chromosome 6q23 [36]. Distinct
translational isoforms of SGK1 have been disclosed differing in regulation of expression,
subcellular localization and function [37-39]. The kinase forms dimers by two intermolecular
disulfide bonds between Cys258 in the activation loop and Cys193 [40]. SGK kinases were
detected in a variety of species including shark and Caenorhabditis elegans [7]. Yeast express
two orthologues, Ypk1 and Ypk2, kinases involved in the regulation of endocytosis and
required for survival [7].

Regulation of SGK1 expression and activity
SGK1 expression is virtually ubiquitous [2], but varies between different cell types, as observed
in brain [7,41,42], eye [7], inner ear [3,4,43], semicircular canal duct epithelium [4], lung [7,
44-48], kidney [7,49], liver [7], intestine [7], pancreas [7] and ovary [7]. Moreover, typical
expression patterns are found during embryonic as well as postnatal development [41,50-52].
The subcellular localisation of SGK1 may depend on the functional state of the cell. Activation
of SGK1 following exposure of cells to serum has been suggested to trigger importin-alpha
mediated entry of SGK1 into the nucleus [7] whereas activation by hyperosmotic shock or
glucocorticoids enhances cytosolic localization of the kinase [1]. SGK1 may further localize
to the mitochondrial membrane [53,54].

SGK1 transcription is rapidly regulated by a wide variety of stimulators and inhibitors (Table
1). Transcription factor binding sites have been identified in the promoter of the rat SGK1 gene
for the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), the progesterone
receptor (PR), the vitamin D receptor (VDR), the retinoid X receptor (RXR), the farnesoid X
receptor (FXR), the sterol regulatory element binding protein (SREBP), peroxisome
proliferator-activated receptor γ (PPARγ), the cAMP response element binding protein
(CREB), the p53 tumor suppressor protein, the Sp1 transcription factor, the activating protein
1 (AP1), the activating transcription factor 6 (ATF6), the heat shock factor (HSF),
reticuloendotheliosis viral oncogene homolog (c-Rel), nuclear factor κB (NFκB), signal
transducers and activators of transcription (STAT), TGFβ dependent transcription factors
SMAD3 and SMAD4, and fork-head activin signal transducer (FAST) [1].

SGK1 is activated by the phosphatidylinositol-3-kinase (PI3-kinase) pathway involving the 3-
phosphoinositide (PIP3)-dependent kinase PDK1 [7]. PIP3 is degraded and thus SGK1
activation discontinued by the phosphatase and tensin homolog PTEN [55]. SGK1 activation
by PDK1 may involve the scaffold protein Na+/H+ exchanger regulating factor 2 (NHERF2),
which mediates the assembly of SGK1 and PDK1 via its PDZ domains and PIF consensus
sequence [7]. Activation of SGK1 by PDK1 may further involve the mammalian target of
rapamycin mTOR [56-59] and the serine/threonine kinase WNK1 (with no lysine kinase 1)
[60-62].

PI3-kinase pathway dependent activation of SGK1 is triggered by insulin, IGF1 , hepatic
growth factor (HGF), and follicle stimulating hormone (FSH) [7]. SGK1 can further be
activated by bone marrow kinase/extracellular signal-regulated kinase 5 (BK/ERK5) or by
p38α [7], by feeding [63], by an increase of cytosolic Ca2+ activity with subsequent activation
of calmodulin-dependent protein kinase kinase (CaMKK) [7], and by the small G-protein Rac1
[7]. SGK1 is further activated by neuronal depolarization, cAMP, lithium, oxidation and
adhesion to fibronectin [7].

SGK1 is degraded with a half-life of 30 minutes [7]. SGK1 may be ubiquitinated [64,65] by
the ubiquitin ligase Nedd4-2 (neuronal precursor cells expressed developmentally
downregulated) [66].
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SGK1 dependent regulation of cellular functions
The SGK1 kinase consensus sequence R-X-R-X-X-(S/T)-phi (X stands for any amino acid, R
for arginine and phi indicates a hydrophobic amino acid) is shared by other kinases [7] and the
only exclusive SGK1 targets known are the N-myc downregulated genes NDRG1 and NDRG2
[7,67]. Thus, most SGK1 sensitive functions are similarly regulated by SGK and protein kinase
B isoforms or other related kinases. As listed in Table 2, SGK1 regulates a wide variety of
channels and carriers.

SGK1 regulates the channels and carriers partially by phosphorylating the target proteins [7].
Alternatively, SGK1 phosphorylates the ubiquitin ligase Nedd4-2 [7], which otherwise
ubiquitinates channel and transport proteins thus preparing them for clearance from the cell
membrane and subsequent degradation [7]. Phosphoprylated Nedd4-2 is bound to 14-3-3, and
is thus unable to ubiquitinate its targets [108-111]. The P355LNedd4-2 variant, found in patients
with end-stage renal disease (ESRD) suffering from arterial hypertension, was shown to be
more sensitive to phosphorylation by SGK1 and, accordingly, to exert a weaker negative effect
on ENaC [7]. Furthermore, SGK1 may phosphorylate WNK4, a kinase inhibiting ENaC
activity [112], and inhibit inducible nitric oxide synthase, and the decreased formation of nitric
oxide may then disinhibit ENaC [114]. SGK1 may also be effective through modification of
channel or carrier expression [113]. SGK1 may further regulate carriers and channels through
activation of the phosphatidylinositol-3-phosphate-5-kinase PIKfyve and subsequent
formation of PIP2 [95,115,116].

SGK1 phosphorylates and thus inhibits several enzymes, including the ubiquitin ligase
Nedd4-2 [7,66], the mitogen-activated protein kinase/ERK kinase kinase 3 (MEKK3) [7], the
kinase SEK1 [21], the B-Raf kinase [7], the phosphomannose mutase 2 [117], inducible nitric
oxide (NO) synthase [114] and the glycogen synthase kinase 3 GSK3 [7,118], which, however,
may be regulated by PKB/Akt rather than SGK1 [7].

SGK1 regulates several transcription factors, including the cAMP responsive element binding
protein (CREB) [119], nuclear factor kappa B (NFκB) [32,120,121], and the forkhead
transcription factor FKHR-L1 (FOXO3a) [7,122].

SGK1 phosphorylates a variety of further proteins such as the type A natriuretic peptide
receptor (NPR-A) [7], Ca2+ regulated heat-stable protein of apparent molecular mass 24 kDa
CRHSP24 [123], the adaptor precursor (APP) Fe65 [72], NDRG1 and NDRG2 [67], mosinVc
[124], filamin C [7], microtubule-associated protein tau [125] and huntingtin [7]. In most cases,
the functional significance of SGK1 dependent phorphorylation of those proteins is still
elusive. A wide variety of functions have, however, been described, which are regulated by
SGK1 (Table 3). Most of those functions have been reviewed previously [7].

In the following the role of SGK1 in the regulation of electrolyte metabolism and blood pressure
will be discussed in more detail.

The role of SGK1 in renal function and salt appetite
SGK1 stimulates a variety of renal tubular ion channels and transporters (Table 2) and thus
participates in the regulation of renal electrolyte excretion (for earlier references see [7,
151-154]).

Specifically, SGK1 participates in the regulation of renal Na+ excretion by aldosterone, insulin
and IGF1 [91,155]. The effect of aldosterone is only partially dependent on the presence of
SGK1 and effects of aldosterone and SGK1 are additive. In contrast, antidiuretic hormone
(ADH) or insulin do not further stimulate ENaC in cells expressing active SGK1 [156].
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Experiments in SGK1-knockout (sgk1−/−) mice indeed revealed subtle but relevant impairment
of renal salt retention [90]. In salt replete conditions arterial blood pressure and renal salt output
is similar in sgk1−/− mice and their wild-type littermates (sgk1+/+). The maintenance of salt
balance and blood pressure requires, however, increased plasma aldosterone levels in
sgk1−/− mice [7]. Under NaCl-deficient diet, NaCl excretion decreases in both sgk1−/− and
sgk1+/+ mice, the renal NaCl retention remains, however, insufficient in sgk1−/− mice, despite
an increase of plasma aldosterone concentration, decrease of arterial blood pressure, decrease
of glomerular filtration rate and enhanced proximal tubular Na+ reabsorption [7]. The renal
salt loss of sgk1−/− mice may not be only due to decreased stimulation of ENaC as enhanced
ENaC activity has been observed in salt depleted sgk1−/− mice [90], presumably as a result of
stimulation of ENaC expression by hyperaldosteronism [90]. Similarly, despite the lack of
SGK1 ENaC activity is enhanced in the colon of sgk1−/− mice, which is again likely due to
hyperaldosteronism [157]. The enhanced renal salt loss despite increased ENaC activity may
be due to decreased expression of the NaCl cotransport in early distal tubule [90]. Inhibition
of ENaC by triamterene leads to excessive, eventually lethal salt loss in sgk1−/− but not in
sgk1+/+ mice, an observation again pointing to a renal transport defect other than ENaC in
sgk1−/− mice [158]. SGK1 is particularly important for the antinatriuretic effect of insulin,
which is significantly blunted in sgk1−/− mice [136]. Renal salt loss does not appear to be more
pronounced in mice lacking both SGK1 and SGK3 [159].

In dehydration, the enhanced medullary osmolarity upregulates the expression of SGK1, which
in turn stimulates the expression of the natriuretic peptide receptor type A thus sensitizing the
epithelial cells to natriuretic peptides and triggering natriuresis [16]. The renal loss of Na+

counteracts hyperosomolarity during water deprivation [16].

Lack of SGK1 further impairs the ability of the kidney to excrete a K+ load. Despite enhanced
plasma levels of aldosterone, which should increase renal K+ excretion, sgk1−/− mice do not
adequately increase the renal K+ excretion following an acute K+ load [7]. Following a chronic
K+ load, sgk1−/− mice enhance renal K+ excretion only upon marked increase of plasma K+

and aldosterone concentrations [7]. SGK1 is further critically important for the effect of insulin
on cellular K+ uptake [160].

The sgk1−/− mice express significantly less TRPV5 Ca2+ channels [132], an observation
consistent with a stimulating effect of SGK1 on TRPV5 [7]. However, despite decreased
TRPV5 expression, the renal Ca2+ excretion is decreased in sgk1−/− mice [132]. The
extracellular volume contraction following renal salt loss due to impaired stimulation of NaCl
cotransport and ENaC enhances Na+ [7] and presumably Ca2+ reabsorption in the proximal
tubule and in the thick ascending limb of the loop of Henle, thus decreasing renal Ca2+

excretion. It is noteworthy that inhibition of NaCl cotransport by thiazide diuretics regularly
leads to anticalciuria [161] by a mechanism that involves upregulation of proximal tubular
Ca2+ reabsorption [162].

In normal kidneys, the proximal tubular SGK1 expression is low [7] and SGK1 is thus not
considered to participate in the regulation of proximal tubular transport. In diabetic
nephropathy, however, SGK1 is expressed throughout the kidney including proximal renal
tubules and thus stimulates renal tubular glucose transport [163]. The effect may be due to
stimulation of SGLT1 [7] or due to activation of KCNQ1/KCNE1 [7], which maintains the
electrical driving force for electrogenic glucose transport [164].

SGK1 is expressed in glomerular podocytes [22,165] and is upregulated in those cells by
aldosterone and oxidative stress [20,22]. Thus, SGK1 may participate in the development of
proteinuria during mineralocorticoid excess and inflammation. As a matter of fact, the
proteinuria following DOCA treatment is significantly blunted in SGK1 knockout mice
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[133]. The sgk1−/− mice are, however, not protected against doxorubicin induced glomerular
injury [135]. SGK1-dependent renal salt retention favor the development of edema during
treatment with PPARγ agonists [166] or in nephrotic syndrome [135]. Furthermore, increased
SGK1 expression has been found during ascites formation in cirrhotic rats [167].

SGK1 does not only participate in the regulation of salt excretion but contributes to the
regulation of salt intake [168]. Treatment of animals with the mineralocorticoid DOCA is
followed by excessive salt intake in sgk1+/+ but not in sgk1−/− mice. Thus, SGK1 plays a
dual role in mineralocorticoid-regulated NaCl homeostasis, stimulating both, intake and renal
retention of salt.

Role of SG1 in hypertension, obesity and metabolic syndrome
The effect of SGK1 on renal salt excretion and salt intake is expected to impact on blood
pressure control. As a matter of fact, a certain variant of the SGK1 gene (the combined presence
of distinct polymorphisms in intron 6 [I6CC] and in exon 8 [E8CC/CT]) is associated with
moderately enhanced blood pressure [7]. The gene variant is common, affecting 3-5 % of a
Caucasian population [7]. While one study failed to detect a correlation of the gene variant
with blood pressure in patients with renal failure [7], a subsequent study on more than four
thousand individuals confirmed the association of the gene variant with increased blood
pressure [169]. This latter study revealed a particularly strong correlation between insulinemia
and blood pressure in individuals carrying the SGK1 gene variant unravelling the decisive role
of SGK1 in the hypertension paralleling hyperinsulinemia [169]. Hyperinsulinemia by
pretreatment with a high-fructose diet [136] or a high fat diet [137] sensitizes arterial blood
pressure to high-salt intake in sgk1+/+ but not in sgk1−/− mice. This observation underscores
the role of SGK1 in insulin induced antinatriuresis and blood pressure control. Moreover,
SGK1 may participate in the hypertensive effects of glucocorticoids [170]. Lack of Nedd4-2
leads to hypertension in mice thus mimicking overactivity of SGK1 [171]. Beyond the
contribution of SGK1 to blood pressure increase in a given individual, maternal SGK1 appears
to be critical for the fetal programming of hypertension in the offspring by stress of the mother
[172].

As SGK1 is a powerful stimulator of the Na+ coupled glucose transporter SGLT1 [7], the SGK1
gene variant may further accelerate the intestinal glucose absorption. Enhanced SGLT1 activity
accelerates intestinal glucose absorption leading to excessive insulin release, fat deposition,
and subsequent decrease of plasma glucose concentration triggering repeated glucose uptake
and thus obesity [7]. Conversely, inhibitors of SGLT1 have been shown to counteract obesity
[7]. Accordingly, the same SGK1 gene variant associated with enhanced blood pressure proved
to be associated with increased body mass index [7]. Moreover, this SGK1 gene variant is more
prevalent in patients with type 2 diabetes than in individuals without family history of diabetes
[173]

Hypertension, obesity and susceptibility to develop type II diabetes are hallmarks of metabolic
syndrome, which is associated with enhanced morbidity and mortality from cardiovascular
disease [7]. Metabolic syndrome and Cushing’s syndrome share common clinical features ,
but the plasma cortisol levels are not typically elevated in metabolic syndrome [7]. The disorder
is rather caused by inappropriate activity of a downstream signaling element. To the extend
that SGK1 mediates effects of glucocorticoids on blood pressure and body weight, a SGK1
gene variant leading to increased SGK1 activity would trigger glucocorticoid actions without
enhanced plasma glucocorticoid concentrations. Metabolic syndrome is further typically
associated with enhanced coagulation [7], which is again stimulated by SGK1 [13]. Taken
together, compelling evidence suggests a participation of SGK1 in the pathophysiology of
metabolic syndrome.
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Conclusions
The serum- and glucocorticoid-inducible kinase SGK1 is a powerful regulator of metabolism,
transport, transcription and enzyme activity and thus participates in the regulation of a wide
variety of physiological functions including epithelial transport, excitability, cell proliferation
and apoptosis. The phenotype of SGK1 knockout mice is mild and obviously, the function of
this kinase is involved in but not critically important for the maintenance of house keeping
functions. However, following appropriate challenges the lack of SGK1 becomes obvious and
physiologically or pathophysiologically relevant. SGK1 plays a particularly important role in
electrolyte balance, extracellular volume regulation, metabolic syndrome, tumor growth,
inflammation, and fibrosing disease.
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Fig. 1. Renal function in SGK1 deficient mice
SGK1 deficiency decreases NCC and ENaC activity and blunts the stimulation of renal Na+

reabsorption by insulin and aldosterone as well as the stimulation of salt appetite by
mineralocorticoids. The extracellular fluid volume (ECV) contraction decreases cardiac output
(C.O.) thus compromising maintenance of mean arterial pressure (MAP) with subsequent
stimulation of the renin-angiotensin and aldosterone system. The hyperaldosteronism at least
partially reverses the decrease of ENaC, ROMK and Na+/K+ ATPase activity in principle cells.
Nevertheless, SGK1 deficiency impairs stimulation of renal K+ excretion during K+ excess.
Despite its stimulation of the distal tubular Ca2+ channel TRPV5, lack of SGK1 leads to
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anticalciuria due compensatory stimulation of Na+ (and Ca2+) reabsorption in proximal tubules.
(A II = angiotensin II; R= total peripheral vascular resistance).
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Table 1

Regulation of SGK1 transcription (due to space limits, only recent original papers are cited, for previous
citations see the cited reviews)

Stimulators References

glucocorticoids [1,3-7]

mineralocorticoids [7-9]

gonadotropins [7]

progestin [10]

medroxyprogesterone [11]

1,25-dyhydroxyvitamin D3 (1,25(OH)2D3) [7]

transforming growth factor β (TGFβ) [7]

interleukin 6 [12]

fibroblast and platelet-derived growth factor [7]

thrombin [13]

endothelin [14]

advanced glycation end products (AGE) [15]

further cytokines [7]

activation of peroxisome proliferator-activated
receptor γ

[7]

cell shrinkage [7,16]

chelation of Ca2+ [17]

A6 cell swelling [17]

excessive glucose concentrations [7,18]

metabolic acidosis [19]

salt loading of spontaneously hypertensive mice [20]

heat shock, UV radiation and oxidative stress [21,22]

DNA damage [7]

ischemia [23]

neuronal injury [7]

neuronal excitotoxicity [7]

neuronal challenge by exposure to microgravity [24]

fear conditioning [25]

plus maze exposure [26]

enrichment training [7]

amphetamine [7]

lysergic acid dimethylamide LSD [7]

electroconvulsive therapy [27]

sleep deprivation [27]

fluoxetine [27]

Rett syndrome [28]

organ rejection [29]

dialysis [30]

wound healing [7]
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Stimulators References

diabetic nephropathy [7,31]

glomerulonephritis [7]

liver cirrhosis [7]

fibrosing pancreatitis [7]

Crohn’s disease [7]

lung fibrosis [7]

cardiac fibrosis [32]

Inhibitors

heparin [7]

mutations in the gene MECP2 [7,28]

dietary iron [7]

nucleosides [33]

Signaling molecules

protein kinase C [7]

protein kinase Raf [7]

mitogen-activated protein kinase (BMK1) [7]

mitogen-activated protein kinase (MKK1) [7]

stress-activated protein kinase-2 (SAPK2, p38
kinase)

[7]

Nuclear factor of activated T cells (NFAT) 5 [16]

phosphatidylinositol-(PI)-3-kinase [7]

cyclic AMP [7,10]

extracellular signal-regulated kinase (ERK1/2) [7]

P53 [7]

cytosolic Ca2+ [7]

nitric oxide [7,34]

EWS/NOR1(NR4A3) fusion protein [35]
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Table 2

Regulation of carriers and transporters by SGK1 (due to space limits, only recent original papers are cited,
for previous citations see the cited reviews)

Channel Function References

ENaC Epithelial Na+ channel [7,68-77]

ROMK1 Renal outer medullary K+

channel
[7]

TRPV5 Ca2+ channel [7]

TRPV6 Ca2+ channel [78]

ClCKa/barttin Cl− channel [7,79]

ClC2 Cl− channel [7]

CFTR Cystic fibrosis transmembrane
conductance regulator

[80,81]

VSOAC volume-sensitive osmolyte and
anion channel

[7]

SCN5A Na+ channel [7]

KCNE1/KCNQ1 K+ channel [7,82]

KCNQ4 K+ channel [83]

Kv1.3 K+ channel [7,84]

Kv1.5 K+ channel [85,86]

Kv4.3 K+ channel [87]

ASIC1 acid sensing ion channel [88]

GluR6 glutamate receptor [89]

4F2/LAT cation channel [7]

NCC NaCl cotransport [90]

NKCC2 Na+,K+,2Cl- cotransport [7]

NHE3 Na+/H+ exchanger [7,91-93]

SGLT1 glucose transporters [7,94,95]

GLUT1 glucose transporter [96]

GLUT4 glucose transporter [97]

ASCT2 amino acid transporter [97]

SN1 glutamine transporter [7]

EAAT1 glutamate transporter [7]

EAAT2 glutamate transporter [7,98]

EAAT3 glutamate transporter [7]

EAAT4 glutamate transporter [7,99]

EAAT5 glutamate transporter [100]

PepT2 peptide transporter [101]

NaDC-1 Na+,dicarboxylate cotransporter [7]

CreaT creatine transporter [102,103]

SMIT Na+, myoinositol cotransporter [104]

NaPiIIb phosphate carrier [7,105,106]

Na+/K+-ATPase Na+/K+-pump [7,107]
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Table 3

SGK1 sensitive functions (due to space limits, only recent original papers are cited, for previous citations see
the cited reviews)

Function References

Cell volume [7,126]

Cell survival [7,127,128]

Cell proliferation [1,7]

Aldosterone release [1,7]

Insulin release [86,86,129]

Glucose metabolism [130]

Function of decidualizing cells [10,10]

Gastric acid secretion [131]

Intestinal transport [94]

Renal transport [7,16,90,132]

Proteinuria & nephrotic syndrome [133-135]

Blood pressure regulation [7,136,137]

Coagulation [13]

Pulmonary hypertension [13]

Cardiac excitation [7,82,138]

Cardiac hypertrophy [139,140]

Memory consolidation [7,24,25,125,141,142]

Pain perception [143]

Tumor growth and metastasis [7,39,144-146]

Inflammation and Fibrosis [7,32,147-150]
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