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Oral Microbial Interactions

The Oral Microbial Consortium’s Interaction
with the Periodontal Innate Defense System

Richard P. Darveau

The oral microbial consortium is the most characterized polymicrobial microbial community associated with the
human host. Extensive sampling of both microbial and tissue samples has demonstrated that there is a strong
association between the type of microbial community found in the gingival crevice and the status of innate host
mediator expression. The strong clinical association between the microbial community and the innate host
response in both clinically healthy and diseased tissue suggests that the oral consortium has a direct effect on
periodontal tissue expression of innate defense mediators. A preliminary study in germ-free mice has demon-
strated that the oral commensal consortium has direct effect on IL-1b expression, indicating that this microbial
community may contribute to the strong protective status of healthy gingival tissue. Likewise, the lipopoly-
saccharide composition and invasion characteristics of Porphyromonas gingivalis, an oral bacterium strongly
associated with periodontitis, suggest that it may be a keystone member of the oral microbial community and
facilitate a destructive change in the protective gingival innate host status.

The Microbial Oral Community Is the Most Completely
Characterized Group of Bacteria That Persistently
Colonize the Host

Examining the potential symbiotic relationships in
the oral cavity is greatly aided by the extensive studies

that have characterized the composition of dental plaque.
Dental plaque is an oral microbiological consortium that
forms a biofilm on the tooth and tooth root surface. The first
characterization of dental plaque was performed by van
Leeuwenhoek in 1683 where he described gingival bacteria
as ‘‘animacules’’ that contributed to the beginning of the
science of bacteriology (Dobell, 1958). Subsequently, de-
scriptive studies performed throughout the twentieth cen-
tury demonstrated that dental plaque was a distinct
structure containing layers of different morphological types
that formed on the tooth and tooth root surface in an orderly
ecological succession (Socransky and Haffajee, 1994). Mi-
crobiological analyses revealed that the composition of
commensal oral bacteria and the bacterial load isolated from
healthy sites is significantly different from that found in
diseased sites. In healthy sites the microbial load is low (102–
103 isolates may be cultured from an individual healthy
sulcus) (Darveau et al., 1997) consisting of mostly gram-
positive streptococci (e.g., Streptococcus gordonii) and Actino-

myces with about 15% gram-negative rod species, including
Fusobacterium nucleatum. In contrast, characterization of the
periopathogenic microbial flora has revealed that the micro-
bial load is higher (105–108 microorganisms may be cultured
from an individual pocket), and there is an increase in the
number of gram-negative organisms (15–50%) (Tanner et al.,
1996; Darveau et al., 1997) when compared to clinically heal-
thy sites. Further, the relative ease of sampling from the oral
cavity combined with DNA probe analysis of bacterial pop-
ulations facilitated multiple cluster and community ordina-
tion statistical methods (Socransky et al., 1998) and defined
the previously characterized shift from mostly gram-positive
to gram-negative species (Socransky and Haffajee, 1994) that
occurs in the transition from periodontal health to disease.
These analyses identified periopathogenic bacteria, including
Tannerella forsythia, Porphyromonas gingivalis, Treponema den-
ticola, and Prevotella intermedia (Socransky et al., 1998), that
group together in diseased sites (Ximenez-Fyvie et al., 2000).
These studies also laid a foundation for studies that utilize
molecular techniques to identify noncultivatable oral bacte-
ria (Kroes et al., 1999), define oral transmission routes (Li and
Caufield, 1998), and examine associations between species
genotypes and disease (Griffen et al., 1999). In addition, ad-
vances in our understanding of biofilm structure have led to
studies examining regulation of specific microbial adhesions
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(McNab et al., 2003) and how host microenvironmental
conditions influence the microarchitecture of the dental
plaque biofilm (Blehert et al., 2003). These studies validate
that the microbial community associated with oral clinical
health is not a random assortment of bacteria but rather
represents a highly organized microbial consortium that has
evolved to live with each other to occupy niches in the oral
host environment.

Innate Host Defense Status in Clinically Healthy
and Diseased Tissue

Similar to the highly organized microbial consortium as-
sociated with clinically healthy tissue, the innate defense
status of this tissue is also highly organized and regulated
(Fig. 1). The relative ease of tissue sampling from the oral
cavity and the identification of innate host response and in-
flammatory molecular mediators allowed a comprehensive
characterization of the tissue status in both gingival health
and disease. Clinically healthy periodontal tissue contains a
unique expression of select inflammatory mediators. Early
histological studies (Page and Schroeder, 1976) of clinically
healthy tissue demonstrated that it contains a cellular infil-
trate located in juxtaposition to the colonized tooth surface
(Kornman et al., 1997b). A portion of this cellular infiltrate
has been described as forming a wall of neutrophils precisely
located between bacteria and residing just outside the junc-
tional epithelium, the epithelial cell surface closest to the
dental plaque biofilm (Kornman et al., 1997a). Consistent
with these observations molecular characterization of heal-
thy periodontal tissue has demonstrated that IL-8, ICAM,

and E-selectin are expressed in clinically healthy tissue
(Moughal et al., 1992; Nylander et al., 1993; Gemmell et al.,
1994; Tonetti et al., 1994; Tonetti, 1997). These inflammatory
mediators are necessary for leukocyte diapedesis from the
vasculature and directed movement through tissue. E-selectin
expression on endothelial cells facilitates a tethering interac-
tion between the leukocyte and the endothelial cell wall ini-
tiating the rolling stage required for leukocyte exit (Springer,
1994). IL-8 is a key neutrophil chemoattractant, and ICAM
facilitates cellular adhesion. It has been demonstrated that a
gradient of IL-8 and ICAM-1 expression exists in clinically
healthy tissue (Tonetti et al., 1998). IL-8 expression was
greatest at the most superficial junctional epithelial cell layers,
and the levels of ICAM-1 increased toward areas exposed to
bacterial challenges. More additional immunohistochemical
and in situ studies have revealed that clinically healthy peri-
odontal tissue also expresses human b defensin molecules 1, 2,
and 3 (Lu et al., 2004, 2005) as well as soluble ( Jin and Dar-
veau, 2001) and membrane bound CD14 ( Jin et al., 2004) and
lipopolysaccharide binding protein (Ren et al., 2004). Lipopo-
lysaccharide binding protein expression was greatest in the
gingival epithelium (Ren et al., 2004). These innate defense
proteins function in either bacterial killing or bacterial re-
moval, consistent with the notion that healthy periodontal
tissue is armed by the innate host defense system to protect
against bacterial infection. Clinically healthy human gingival
tissue also expresses low levels of TLR2 (Ren et al., 2005;
Sugawara et al., 2006): while expression of TLR4 was reported
in one study (Sugawara et al., 2006), the other (Ren et al., 2005)
did not observe expression of this innate host defense receptor
in healthy tissue. A more recent study (Beklen et al., 2008)
describes the expression of TLR’s 1–10 in both clinically
healthy and diseased tissue. In addition, NOD1 and NOD2 act
synergistically with select TLR’s resulting in the expression of
antimicrobial peptides in response to microbial challenge
(Uehara and Takada, 2008). Further, gingival fibroblasts are
well equipped to respond to bacterial components and may
contribute to the IL-8 observed in clinically healthy tissue
(Mahanonda et al., 2007). These data are all consistent with the
notion that innate host defense mediator expression in clini-
cally healthy tissue is key to the maintenance of periodontal
health.

The contribution of the innate defense status observed in
clinically healthy tissue to periodontal health is highly sig-
nificant. Loss of the protective neutrophilic barrier function
either by congenital deficiency (Page et al., 1987; Waldrop
et al., 1987; Carrassi et al., 1989; Hart et al., 1994) or by che-
mical induction with antimitotic agents such as cyclophosa-
mide (Attström and Schroeder, 1979; Sallay et al., 1984;
Hemmerle and Frank, 1991; Yoshinari et al., 1994) invariably
leads to disease. Further, studies have shown that the lack of
an intact innate host defense system may be responsible for
the significantly increased incidence of severe periodontitis
observed in diabetic patients (type I and type II) and to-
bacco users (Bergstrom et al., 1988; MacFarlane et al., 1992;
Offenbacher et al., 1996; Zambon, 1996; Salvi et al., 1997).

Similar to the association found between the commensal
oral microbial flora and the innate host defense status of
clinically healthy tissue, there is a strong correlation between
the periopathogenic microbial flora and a destructive in-
flammatory response (Ximenez-Fyvie et al., 2000). The innate
defense status found in tissue obtained from periodontitis

FIG. 1. Innate host defense status in clinically normal
tissue. Recently, it has been demonstrated that clinically
healthy tissue displays low level expression of select in-
flammatory mediators. The expression of E selectin on the
vascular endothelium, for example, is believed to facilitate
leukocyte exit from the vasculature into surrounding tis-
sue where they remove bacteria. A gradient of IL-8 expres-
sion (indicated by shades of gray) exists in normal tissue to
guide leukocytes to the site of bacterial colonization. Recent
evidence (Darveau et al., unpublished) suggests that the
biofilm of gingival health may provide the stimulus for ex-
pression of these mediators, suggesting a commensal rela-
tionship between the host and these bacteria. This figure is
based on the work of Tonetti et al. (1994) and Moughal et al.
(1992). Reprinted with permission from Darveau et al. (1997).
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sites is significantly different from that found in healthy
tissue (Fig. 2). Periodontitis is associated with the expression
of more and different inflammatory mediators compared to
clinically healthy tissue. This has contributed to the notion
that periodontal disease is a result of both bacterial and host
response factors (Page et al., 1997). Although there is in-
creased expression of IL-8 and ICAM, the characteristic ex-
pression pattern of these mediators observed in clinically
healthy tissue is absent in tissue obtained from periodontitis
sites (Tonetti et al., 1994, 1998). There is no IL-8 gradient, but
rather patches of intense IL-8 expression are observed in the
gingival epithelium with areas of no or little expression
(Tonetti et al., 1994). ICAM and E selectin are both expressed
at much higher levels than that observed in healthy tissue
(Tonetti et al., 1994). In addition, there is an increase in the
expression levels of both TLR2 and TLR4 in periodontitis
sites compared to clinically healthy tissue (Ren et al., 2005;
Sugawara et al., 2006). The increase in these innate host
receptors may have profound effects on the innate host re-
sponse of periodontal tissue. Evidence that these mediators
contribute to the characteristic loss of connective tissue and
the alveolar bone that surrounds and supports the tooth root
associated with periodontal disease comes from studies that
demonstrate inflammatory mediator levels decrease after
successful treatment (Offenbacher et al., 1986; Masada et al.,
1990). Further, administration of antiinflammatory drugs
that reduce levels of these mediators can suppress bone and
tissue destruction (Offenbacher et al., 1987), and nonsteroi-
dal antiinflammatory drugs that block prostaglandin syn-
thesis can arrest tissue destruction (Offenbacher et al., 1987).
Finally, removal of dental plaque remains the most effec-
tive mechanism of restoring an appropriate innate host re-
sponse in periodontitis patients (Page et al., 1997), providing
more evidence that the bacterial composition associated
with periodontitis is directly responsible for a dysfunctional
innate host response.

Therefore, there are strong correlations between the type
of microbial consortium found in the gingival pocket and the
status of innate mediator expression in the adjacent peri-
odontal tissue. Since the gingival epithelium does not contain
tight junctions, bacterial components shed from the dental
plaque biofilm can penetrate gingival tissue (Schwartz et al.,
1972; Moore et al., 1986; Wilson et al., 1986; McCoy et al.,
1987; Hamada et al., 1990), providing a mechanism by which
this tissue may sample the oral bacterial plaque composition.
It seems likely, therefore, that the oral microbial consortiums
found in clinically healthy and diseased tissues contribute to
both the highly orchestrated innate mediator expression
found in healthy sites and the destructive innate mediator
expression found in diseased tissues.

The Use Germ-Free Mice to Define Direct Consortium
Effects on Gingival Tissue

The most definitive approach to determine the contribu-
tion of the oral microbial consortiums to the innate host
defense status in the periodontium is the use of germ-free
mice. For example, germ-free mice have been employed to
determine the contribution of commensal bacteria to normal
intestinal innate defense, and immune development has been
carefully studied with the use of germ-free mice (Gordon
and Pesti, 1971; Umesaki and Setoyama, 2000; Hooper et al.,
2001; Xu and Gordon, 2003; Macpherson and Harris, 2004).
Germ-free mice that are completely devoid of bacteria are
generated by sterile Caesarean section and raised aseptically
in an isolator with sterile filtered air and are housed using
sterile food, water, and bedding. Germ-free mice are distinct
from specific-pathogen-free mice that are only devoid of
known mouse pathogens and contain intestinal bacteria
(Macpherson and Harris, 2004).

It has been shown that commensal bacteria are required
for the complete development of Peyer’s patches, the lamina
propria, and the intraepithelial spaces, all three of the main
immune elements found in the intestine (Duncan and Edberg,
1995; Falk et al., 1998). Studies in germ-free mice have revealed
that the commensal bacteria induce angiogenesis, contributing
to the development of the complex vascular beds found just
underneath the mucosal surface (Stappenbeck et al., 2002).
Further, it has been found that constitutive ICAM-1 expres-
sion in these vessels is also regulated by the presence of the
commensal microbiota (Komatsu et al., 2000). In fact, the state
of controlled inflammation that normally exists in the intestine
has been attributed to both the quality and quantity of intes-
tinal commensal microorganisms (Chadwick and Anderson,
1992; Cebra, 1999). These studies demonstrate that commensal
colonization of the intestine orchestrates selective expression
of innate host defense components facilitating a mature tissue
state that provides immune protection for the host.

However, little is known concerning the contribution of
oral commensal bacteria to the armed protective state ob-
served in healthy human periodontal tissue. Germ-free mice
have been extensively utilized by oral researchers, however,
in the context of caries and periodontitis disease models
(Niederman et al., 2001) as opposed to elucidation of direct
effects of bacterial colonization on innate host mediator ex-
pression in periodontal tissue. Nevertheless, these early dis-
ease models in germ-free mice combined with periodontitis
mouse models of infection provide evidence that mouse

FIG. 2. Innate host defense status in adult periodontitis. In
adult periodontitis, the molecular mediators of inflammation
that are expressed in clinically healthy tissue are expressed at
higher levels, and new mediators are present. The gradient of
IL-8 expression found in healthy tissue is disrupted (see Fig. 1
legend), and a pocket epithelium forms. This figure is based
on the work of Tonetti et al. (1994) and Moughal et al. (1992).
TNFa, tumor necrosis factor a; PGE2, prostaglandin E2;
MMP, matrix metalloproteinase. Reprinted with permission
from Darveau et al. (1997).
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commensal bacteria influence periodontal tissue innate host
mediator expression. For example, the P. gingivalis gavage
model developed by Baker (Hart et al., 2004) has shown that
prior antibiotic treatment to reduce the commensal load is
necessary to facilitate P. gingivalis colonization of the oral
cavity, mRNA expression of many innate defense mediators is
elevated in healthy gingival mouse tissue (Hart et al., 2004),
and there are differences in the susceptibility to periodontal
infection that are genetically inherited among different inbred
mouse strains (Baker et al., 2000). However, these studies
cannot differentiate between the passive colonization resis-
tance effect of commensal colonization and the direct devel-
opment of the protective or destructive innate defense status
found in periodontal tissue by oral commensal bacteria.

We have conducted a preliminary investigation directly
comparing innate host mediator expression in germ-free and
conventionally reared mice (Dixon et al., 2004). It was found
that IL-1b levels were significantly higher in conventionally
reared mice, consistent with the notion that commensal bac-
teria in the periodontium, similar to the intestine, actively
participate in establishing the innate mediator expression of
clinically healthy or normal periodontal tissue. The reasons
only IL-1b was identified as being differentially expressed in
germ-free and conventionally reared mice included a limited
number of samples examined in the pilot study. The presence
of elevated amounts of this inflammatory mediator in healthy
conventionally reared animals compared to germ-free con-
trols may appear paradoxical since it has been associated with
the development of periodontitis (Masada et al., 1990).
However, we suspect that the presence of IL-1b in clinically
healthy periodontal tissue may serve as a priming mechanism
for several different cell types found in the periodontium.
These data suggest that the host genetically programs select
cytokine expression in the absence of bacterial colonization
that then may be altered depending upon the number and
type of bacterial species colonizing host tissue.

P. gingivalis Responds to Hemin by Generating
a TLR4 Antagonistic Lipid A Structure

We have been examining the potential contribution of
P. gingivalis, an oral bacterium strongly associated with per-
iodontitis, to altering the innate defense status of periodontal
tissue. A likely candidate for modulating innate mediator
expression in host tissue is lipopolysaccharide (LPS). Indeed,
LPS has been termed a pattern recognition receptor ligand for
the innate host defense system (Medzhitov and Janeway,
2000). The concept of pattern recognition, originally put for-
ward by Janeway ( Janeway, 1992), proposes that the host has
evolved receptors that recognize common conserved struc-
tures found in a variety of different microbes. LPS is present in
all gram-negative bacteria, is essential for bacterial viability
(one with notable exception [Steeghs et al., 1998]), and con-
tains a highly conserved lipid A structure consisting of a
phosphorylated beta-(1,6)-glucosamine disaccharide sub-
stituted with hydroxylated and nonhydroxylated fatty acids
(Takada and Kotani, 1992), completely filling the criteria for
innate host recognition. Consistent with its proposed role as a
sentry employed by the host to monitor bacteria infection,
in vitro studies have confirmed that whole bacteria and their
respective isolated LPSs yield similar responses (Darveau
et al., 1991; Somerville et al., 1996), and in vivo studies have

validated the important role LPS serves in host recognition of
bacterial infection (Khan et al., 1998; Somerville et al., 1999;
Haziot et al., 2001). Clearly, innate host recognition of LPS is a
key initiating event for the subsequent clearance of gram-
negative bacteria from infected host tissues.

We have found that P. gingivalis changes its lipid A
structural composition in response to the hemin concentra-
tion in the medium. Hemin binds host iron and represents
the major iron acquisition system for P. gingivalis (Olczak
et al., 2005). Hemin is a relevant microenvironmental factor
for P. gingivalis since its concentration is low in healthy tissue
and high in diseased sites where vascular ulceration leads
the leakage of blood into the underlying gingival epithelium.
The lipid A structural content of P. gingivalis after growth in
medium containing 1mg=mL hemin consists of a single major
monophosphoryl penta-acylated lipid A cluster (centered at
m=z 1690), while the lipid A content of bacteria incubated
with 10 mg=mL hemin showed a significantly reduced amount
of this lipid A structure and a significant increase in both
monophosphoryl tetra-acylated lipid A structures (m=z 1435
and 1449) and a diphosphoryl penta-acylated lipid A cluster
(centered at m=z 1770). The monophosphoryl penta- and
tetra-acylated lipid A structures have been purified and
shown to display distinctly different effects on endothelial
cell E selectin activation (Reife et al., 2006) due to the fact that
PgLPS1435=1449 is a TLR4 antagonist (Darveau et al., 1995;
Yoshimura et al., 2002; Coats et al., 2003; Reife et al., 2006),
whereas PgLPS1690 is a TLR4 agonist (Reife et al., 2006).
Consistent with PgLPS1435=1449 and PgLPS1690 displaying
different effects on E-selectin expression, it was shown that
these two LPS preparations interact with the TLR4 complex
differently (Reife et al., 2006). The expression of functionally
distinct lipid A structures that have opposing effects on TLR4
activation indicates that P. gingivalis may utilize its lipid A
structural content to modulate the innate host response in
different microenvironmental conditions.

P. gingivalis May Represent a Keystone Species
in the Oral Microbial Consortium

Two lines of evidence indicate that P. gingivalis may be a
keystone species in the oral microbial community. Keystone
species in this context means that this one bacterium serves
an essential function for the entire community, similar to a
differentiated cell serving a function for an entire tissue. The
first is that the presence of the P. gingivalis TLR4 lipid A
antagonist that can block TLR4 activation in response to
several different oral microbial bacteria (Darveau et al., 1995)
through competitive binding to MD-2 (Coats et al., 2005,
2007) combined with the observation that P. gingivalis re-
leases LPS that can penetrate gingival tissue (Schwartz et al.,
1972) supports the notion that the TLR4 lipid A antagonist
will dampen TLR4 responses for the entire oral microbial
community. This is especially relevant considering the pro-
posal by Munford (Munford and Varley, 2006) that TLR4
sensing prevents invasion into submucosal tissue by mucosal
gram-negative bacteria. Therefore, hemin may act as an
environmental sensor that P. gingivalis responds to by mak-
ing the lipid A TLR4 antagonist, and then this facilitates in-
vasion of tissue and modulation of innate host defense
mediator expression in response to numerous members of
the oral microbial consortium. Hemin, provided to the bac-
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teria in the form of hemoglobin, has been shown to signifi-
cantly increase in concentration in diseased sites (Hanioka
et al., 1990, 1991). Secondly, we have shown that when
P. gingivalis invades gingival epithelial cells it blocks the
epithelial cell IL-8 response to other oral bacteria (Darveau
et al., 1998). We have termed this process local chemokine
paralysis, since the ability to detect and locate bacterial col-
onization by IL-8 would be effectively paralyzed and unable
to function at sites of P. gingivalis invasion. Inhibition of IL-8
accumulation by P. gingivalis at sites of bacterial epithelial
cell invasion could have a devastating effect on innate host
defense in the periodontium, where bacterial exposure is
constant. The host may no longer be able to detect the
presence of bacteria and direct leukocytes for their removal.
This phenomenon represents another mechanism by which
the action of a single bacterial member of the oral consortium
can affect the host responses to a wide variety of different
bacteria.
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