
Combinatorial Gene Regulation Using Auto-Regulation
Rutger Hermsen1*, Bas Ursem2, Pieter Rein ten Wolde2

1 Center for Theoretical Biological Physics, University of California, San Diego, California, United States of America, 2 FOM Institute AMOLF, Amsterdam, The Netherlands

Abstract

As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This
suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the
transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the
expression of the auto-regulator responds to changes in the concentrations of the ‘‘input’’ regulators (the response
function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to
optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of
transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations,
auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response
functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed
often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several
design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to
generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be
obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise
was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical
properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response
function only.
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Introduction

Many transcription factors (TFs) in Escherichia coli regulate the

transcription rate of their own gene. In fact, 59% of the TFs are

known to auto-regulate and the list is growing [1,2]. Negative

auto-regulation (auto-repression) occurs more frequently than

positive auto-regulation (auto-activation), but both are very

common: 71 auto-repressors and 34 auto-activators are found in

the current databases (including 9 TFs that have binding sites for

auto-activation as well as for auto-repression). This suggests that

auto-regulation has one or several important functions [3,4]. In

this paper, one possible function is explored. In general, the

expression level of a gene is a function of the concentrations of the

TFs that regulate its transcription rate. We propose that auto-

regulation can naturally be used to optimize the shape of this

response function.

Auto-regulating transcription factors are typically regulated by

other TFs too. In fact, 23 auto-regulating TFs in E. coli are known

to respond to at least two additional regulators [1,2]. In such cases,

the response of the regulated TF to changes in the ‘‘input’’ TF

concentrations must reflect an interplay between regulation and

auto-regulation. Conversely, this suggests that auto-regulation

could emerge as a result of natural selection on the shape of these

responses.

In the past years, several other functions of auto-regulation have

been proposed. Negative auto-regulation has been shown to

decrease the sensitivity of expression levels to intrinsic fluctuations

in the transcription rate under certain conditions [5–7] and to

mitigate variations due to changes in the bacterial growth rate [8].

In addition, auto-repression can speed up the response of

expression levels after a sudden change in conditions [9,10]. In

the presence of time delays, it can also create oscillations [11]. On

the flip side, negative auto-regulation tends to reduce the

sensitivity of the expression level to input signals [12,13]. The

effects of positive auto-regulation are usually opposite to those of

auto-repression: it slows down responses and tends to amplify

intrinsic fluctuations. At first sight, these qualities may not seem

very desirable. Yet, a slow response can be beneficial if a sensitive

response to persisting signals is desired while fast fluctuations in the

input signal should be ignored [12]. Occasionally the fact that

auto-activation can provide bi-stability may also be useful [14].

Each of these qualities could be relevant in some cases; our new

suggestion does not contradict or replace any of them.

To study the benefits of auto-regulation we use a computational

approach that we developed recently [15]. In this approach, an

evolutionary algorithm and a physical–chemical model of

transcription regulation are integrated to design in silico cis-

regulatory regions with predefined response functions. The

evolutionary algorithm subjects a population of model cis-

regulatory regions to rounds of mutation and selection. The

mutations are introduced at the level of base-pair sequences while

the selection step is based on the emerging network properties
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calculated using the model of transcription regulation. In the

course of these simulations complex promoter designs develop that

perform the desired function; these designs often reveal new design

principles. In earlier work, auto-regulation was not included in this

method. In contrast, we now use an extended version of the

method to design cis-regulatory constructs that can exploit

feedback.

Many cis-regulatory regions in real cells essentially implement

logical decisions [15–17]. We therefore study the class of response

functions that can be interpreted as analogue equivalents of logic

gates. Gates are computational devices that produce an output

signal depending on one or more input signals; logic gates are gates

that implement a binary (Boolean) decision rule. For example, a

transcriptional AND gate would be a gene whose expression (the

‘‘output’’) is regulated by two TFs (the ‘‘inputs’’, TF1 and TF2)

such that it is transcribed only if both TF1 and TF2 have a

sufficient expression level [16]. We refer to Table 1 for the

definitions of other logic gates. Even though it has proven fruitful

to think of promoters as analog approximations of logic gates, we

stress that gene expression levels are of course not actually binary

and that we do not treat them as binary in the models below.

We analyze the cis-regulatory sequences resulting from the

simulations by calculating DNA footprints for the resulting

transcription factors and promoter sequences. These footprints

show that auto-regulation—in particular auto-activation—is often

used in these cis-regulatory regions; indeed, further analysis shows

that auto-activation can be used to construct ‘‘better’’ transcrip-

tional logic gates by allowing for more switch-like, ‘‘steep’’

response functions. However, the use of auto-regulation in shaping

response functions is not limited to creating switch-like functions.

To demonstrate this, we also applied our method to the design of

cis-regulatory constructs that respond in a linear fashion to input

concentrations. Again we find that auto-activation emerges

spontaneously in the results.

Finally, we also performed simulations in which we selected for

designs with desirable dynamical qualities. First, we adjusted the

method to select for gates with a short response time. Second, we

performed selection against intrinsic fluctuations. In agreement

with earlier results [5–7,9,10], auto-repression evolved in both

cases, demonstrating how auto-repression can be used to speed up

response times or to reduce intrinsic fluctuations.

Before describing the results we first provide a detailed

description of the model and the algorithm used.

Methods

We combine a model of transcription regulation and an

evolutionary algorithm to design in silico cis-regulatory regions

with a predefined function. The model of transcription regulation

is constructed such that all properties of a model regulatory

network follow entirely from the sequences of TFs and cis-

regulatory regions. Binding sites of TFs are therefore not specified

beforehand but appear gradually in the course of the simulations.

The model is an extension to the one described in detail in our

earlier publication [15]. The main innovation is that auto-

regulatory interactions are now also included, so that auto-

regulation can evolve if this is beneficial.

Model of transcriptional regulation
We consider one ‘‘output’’ gene, tf3, and at most two ‘‘input’’

transcription factors, TF1 and TF2. The gene tf3 codes for another

transcription factor called TF3. All three TFs can regulate the

Table 1. Truth tables of transcriptional logic gates.

input TFs output (c�3)

c1 c2 AND OR NOR NAND ACT
{ IN{

low low low low high high low high

low high low high low high low high

high low low high low high high low

high high high high low low high low

{The ACT and INH gates have only one input; they depend on c1 only.
Logic gates are devices that perform elementary binary computations, mapping multiple input signals to one output signal. Here we consider transcriptional logic gates.
Transcription systems are analogue systems and therefore never truly binary, but it is often useful to think of them as continuous approximations of logic gates. Here,
we consider logic gates with one or two inputs (the concentrations c1 and c2 of two transcription factors), and one output (the steady-state expression level of the
regulated gene: c�3). The table specifies, for the six logic gates used in our study, the value of the appropriate output c�3 (‘‘low’’ or ‘‘high’’) for all input concentrations c1

and c2 (‘‘low’’ or ‘‘high’’). All gates are defined for input concentrations in the domain ½0,1mM� only; concentrations above 500nM are considered high and those below
500nM are low. The acronyms of the gates summarize their function; for instance, the output of an AND gate should be high only when both c1 and c2 are high. Note
that that by definition the ACT (activate) and IN (inhibit) gates have only one input, c1 ; indeed, their output does not depend on c2 .
doi:10.1371/journal.pcbi.1000813.t001

Author Summary

Bacteria adjust which proteins they make, and how many
copies of each kind, depending on their environment. The
production rate of each regulated protein is controlled by
a special class of proteins called transcription factors. The
rate at which a certain protein is produced usually
depends on the cellular concentrations of a few such
transcription factors. When circumstances change, the
concentrations of these transcription factors alter too and
consequently the production rates of all proteins regulated
by them are adjusted. Interestingly, many transcription
factors also regulate their own synthesis rate. This suggests
that this self-regulation must have one or more important
functions. In this article we study one possible function. In
order for cells to function properly each protein concen-
tration has to respond in a particular way to changes in
transcription factor concentrations. We have studied how
bacteria can optimize and fine-tune these responses. To
this end, we formulated a physical model of the regulation
by transcription factors and performed computer simula-
tions. These simulations show that self-regulation—and in
particular self-activation—is often a useful tool to achieve
the prescribed response. Therefore we conclude that
natural selection on the regulation of protein levels could
naturally lead to self-regulation.

Combinatorial Regulation Using Auto-Regulation
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transcription rate of tf3 by binding to its cis-regulatory region. (See

Fig. 1 for an illustration of the model.)

The cis-regulatory region and the TFs are represented as

nucleotide sequences and amino-acid sequences respectively. All

TFs can bind anywhere on the cis-regulatory region, but the

affinity of a TF for a particular site depends on the sequences of

the TF and the site. For our purpose, it is sufficient to only model

the DNA-binding domains of the TFs explicitly. We assume that

M amino-acids in these domains are responsible for the DNA-

binding specificity and therefore represent each TF as an amino-

acid sequence of length M. We choose M~10 in our simulations

because known binding sites in E. coli typically have length 6 to 15

and usually one base pair interacts with &1 amino acid in TF–

DNA binding [2]. The cis-regulatory region of tf3 is a base-pair

sequence of length N; we take N~100 because in E. coli most

transcription factors bind within &100bp from the start of

transcription [18]. By the rules specified below all interactions

between TFs, RNA polymerase (RNAP) and the cis-regulatory

region can be deduced from these sequences; therefore each

transcriptional gate is completely specified by them.

The various molecules interact in the following ways:

TF–DNA interactions. Each TF a can bind to any site O on

the cis-regulatory region, but the affinity of a for O depends on the

DNA sequence of O and the amino-acid sequence of a. Each

amino acid interacts with exactly one base pair, and the total

binding free energy Ea,O is the sum of the contributions of each

amino-acid–base-pair contact. This means that the binding free

energy of a TF with amino acids ai to a binding site with base pairs

Oi is given by

Ea,O~
XM
i~1

Uai ,Oi
: ð1Þ

Here Ulm is a 20|4 matrix containing the binding free energies

associated with each amino-acid–base-pair contact. We used the

matrix given in [19], based on christallographically solved protein–

DNA complexes.

TF–TF interactions. TFs are assumed to mutually interact in

two ways. First, TFs cannot bind simultaneously to overlapping

binding sites due to steric hindrance. This introduces competition

for binding to overlapping binding sites. Second, if two TFs bind

within a distance of d~4 base pairs, they interact cooperatively: if

one of the TFs is bound, the equilibrium dissociation constant of

the other TF is decreased by a factor v~30, corresponding to an

interaction energy ETF~ ln (v)kBT~3:40kBT. In reality, ETF is

typically 1 to 6kBT (about 1 to 4kcal=mol), leading to

v&10{100 [20]. Many TFs interact by direct contact, but

indirect interactions may also occur, for instance if one TF bends,

stretches or super-coils the local DNA and thus increases the

affinity of the other TF. In the context of this model it is irrelevant

which mechanism is responsible for the cooperativity.

RNAP–DNA interactions. RNAP is assumed to bind only to

the basal promoter. The affinity of the RNAP{s-complex for

the core promoter is determined by the {10 and {35 consensus

hexamer sequences on the cis-regulatory region of tf3. We

determine the binding free energy of RNAP{s for a core

promoter by comparing the {10 and {35 hexamers to a large set

of real E. coli promoters, taken from reference [21]. To every base

pair pi at position i within the {10 and {35 hexamers we assign

a score si; it equals the fraction of real E. coli promoters that have

pi at that particular position, normalized by the random fraction

1/4. Next, the binding energy Ep of RNAP to that particular core

promoter can be estimated by [22–24]:

Ep~kBT
X

i

log (si): ð2Þ

Thus, promoter sequences that are more similar to the consensus

sequence of real promoters yield a higher affinity.

TF–RNAP interactions. TFs interact with RNAP and

influence the transcription rate by the principles of regulated

recruitment [25]. If TFs bind to a site overlapping the basal

promoter they block the binding of RNAP and thus repress

transcription. On the other hand, if they bind within a distance

d~4 from the promoter we assume that the TF and RNAP

interact cooperatively. If the TF is bound to its binding site, this

decreases the dissociation constant of RNAP binding to the

promoter by a factor v~30 (corresponding to an interaction

energy ER~3:40kBT); thus, the TF recruits RNAP and activates

transcription.

The transcription rate of tf3 is assumed to be proportional to the

equilibrium fraction of time the promoter is occupied by RNAP

[20]. This occupancy can be computed given all sequences and the

concentrations of the TFs (denoted by c1, c2 and c3). For this we

use the statistical mechanics formalism originally developed in Ref.

[20] and explained in detail in references [26] and [15]. Briefly,

the method calculates the partition sum Zon(c1,c2,c3) of all states

of the system in which RNAP is bound to the promoter, and the

partition sum Zoff (c1,c2,c3) of all states in which RNAP is not

bound; the fractional occupancy of the promoter is then given by:

pon(c1,c2,c3)~
Zon(c1,c2,c3)

Zon(c1,c2,c3)zZoff (c1,c2,c3)
: ð3Þ

Note that, in general, pon is a function of all three TF

concentrations. To efficiently take into account all possible

configurations in which TFs could be bound to the cis-regulatory

region we use the efficient recursive (dynamic programming)

algorithm presented in [15].

Figure 1. Illustration of the model of transcription regulation.
The model describes the transcriptional regulation of a gene tf3 by two
transcription factors, TF1 and TF2. In addition, auto-regulation is
included: the gene product TF3 of tf3 can regulate the transcription of
tf3. TFs act by binding to tf3’s cis-regulatory region, represented as a
string of N~100bp located directly upstream of the start of
transcription. The TF binding domains count M~10 amino acids, and
bind to binding sites of length M bp. TFs can bind anywhere on the cis-
regulatory region but with varying affinity determined by the DNA
sequence. When two TFs bind within a distance less than d~4bp, they
interact with energy ETF~3:40kBT, as is indicated schematically by a
yellow connection between the TFs. This way cooperative binding is
included. The core promoter, consisting of the {10 and {35 hexamers,
is marked; when RNA polymerase (RNAP) binds to it, it blocks both
hexamers and the spacer between them. When a TF binds close to the
RNAP we assume an interaction energy ER~3:40kBT; thus the
mechanism of regulated recruitment is included. The TF that binds to
a site overlapping with the core promoter is red to indicate that it
represses transcription by steric hindrance; the green TF is an activator,
as it recruits RNAP from its binding site. The gray TFs bind too far
upstream to influence the transcription rate.
doi:10.1371/journal.pcbi.1000813.g001
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The model described above contains the generic mechanisms

that are responsible for many of the known transcription

regulatory interactions. Yet, several mechanisms that play a role

in specific systems are not included; for instance, the model does

not include DNA looping, extended {10 regions or twisting or

bending of the DNA by TFs. This suggests that real transcriptional

regulatory systems are probably more flexible than our model

systems. However, by endowing our model with only the basic

features known to be important in virtually any transcription

system we ensure that the resulting designs do not rely on exotic

mechanisms.

Model of the dynamics
We model the dynamics of the concentration of TF3, c3(t), by

the following ordinary differential equation:

dc3(t)

dt
~apon c1,c2,c3(t)ð Þ{bc3(t): ð4Þ

Here a is the maximal production rate of TF3, and b is the

degradation rate constant of TF3. The function pon(c1,c2,c3) was

defined above. In this simplified description, transcription and

translation are concatenated and translational regulation is not

included.

The concentrations c1 and c2 of TF1 and TF2 are considered

the inputs of the gate. Assuming that the system is mono-stable (bi-

stability is discussed below) equation 4 defines a unique steady

state for each set of input concentrations (c1,c2) in which c3 has a

value c�3(c1,c2). This steady-state concentration is considered the

output of the gate. Because time delays between transcription

initiation and translation are ignored, oscillations are excluded and

c�3(c1,c2) can be calculated by propagating the dynamics

numerically from any initial condition until the steady state is

reached. (If a gate has only one input, the dependence on c2 is

simply dropped.)

We choose the constants a and b such that a=b~1mM; this

ensures that c�3 stays within the range 0mM{1mM. Apart from this

ratio the values of a and b are irrelevant because in this work we

are not interested in absolute time scales of the dynamics; for

simplicity we use a time unit t such that bt~1.

Evolutionary algorithm
In order to design networks with a prescribed function an

evolutionary algorithm was used. A population of 200 transcrip-

tional gates was subjected to 1000 cycles of mutation, selection and

replication. Initially, all gates had random sequences. Auto-

regulation was not imposed, but the system was free to exploit it by

evolving binding sites for TF3. The details of the evolutionary

algorithm were chosen to combine an effective optimization of the

gates with computational efficiency; we emphasize that we do not

intend to faithfully mimic biological evolution.

Several types of mutations were included. First, a base

substitution could occur in cis-regulatory sequences (with proba-

bility Pbp~0:28 per cis-regulatory region). If this happened, a base

pair was selected at random from the cis-regulatory sequence and

substituted by a randomly chosen nucleotide. Second, insertions or

deletions of a random base pair occurred in cis-regulatory regions

(with probability Pindel~0:56). Third, we applied point mutations

to the sequences of the TFs (with probability Paa~0:30 per TF), in

which case one randomly chosen amino acid in the sequence was

replaced by a random alternative. The exact mutation rates are

not crucial for the results, as long as the rates are (i) high enough to

generate significant variation and (ii) low enough to allow high-

quality gates to persist in the population.

For the selection step a fitness score FRF:C{cRFMRF was

used. Here MRF (where RF stands for Response Function)

measures the deviation of the response function from a predefined

goal function (the desired response function). It was computed as

follows. When evaluating gates with two inputs, c1 and c2, the

output level c�3(c1,c2) was computed for 16 combinations of the

input concentrations: c1,c2[f0nM,333nM,667nM,1000nMg (see

the red dots in Fig. 2B). Next, the differences between these output

levels and the goal function were computed. MRF was defined as

the sum of the squares of these deviations. If the gate had only one

input, the definition was analogous, except that seven input values

were used, equally spaced in the interval ½0nM,1000nM�. The

constant cRF is required to make FRF dimensionless (for simplicity,

cRF~1mM{2) and C is an arbitrary constant large enough to

ensure FRFw0. Based on the fitness scores, the top 20% of the

population were selected and the remaining gates discarded.

Subsequently the population was brought back to its initial size by

duplicating gates randomly chosen from the survivors of the

selection process.

If auto-activation evolved, the system could become bi-stable.

In bi-stable systems, given the inputs (c1,c2) two different values

of c3 are stable under the dynamics of the system (equation 4) so

that the output concentration c�3 is not uniquely defined by the

input concentrations. Even though bi-stability is likely to occur in

some real transcription networks we decided that such systems do

not qualify as gates, since gates by definition map input states to a

uniquely defined output state. The fitness function therefore

contained an additional term that was designed to penalize bi-

stability. When evaluating the fitness of a gate, we always

computed the steady-state value c�3 twice for 12|12 input values

(c1,c2): once by propagating the differential equation 4 using

initial condition c3(0)~0mM and once using c3(0)~1mM. If the

results were different, the difference squared was added to the

fitness function, which was sufficient to assure that the particular

gate was eliminated by the selection process. However, because

this method did not exclude bi-stability for all possible input

values we also checked afterward whether the results were bi-

stable.

Definition of the gates
All gates are defined for input concentrations in the domain

½0mM,1mM� only. The logic gates are specified in Table 1. In

addition we define LACT, LIN, MEAN and NMEAN gates. A

LACT (linear activate) gate has one input, c1, and the output c�3(c1)
responds as c�3(c1)~c1. A LIN (linear inhibit) gate also has one input,

but responds according to c�3(c1)~1mM{c1. A MEAN gate is linear

in two inputs, c1 and c2, and obeys c�3(c1,c2)~(c1zc2)=2. Lastly, we

define NMEAN to have the following linearly decreasing response

function: c�3(c1,c2)~1mM{(c1zc2)=2.

We repeated the simulations for each of the gates 20 times with

different random seeds.

Quantifying the degree of auto-regulation
In order to quantify the importance of auto-regulation in a

particular design we defined the measure MAR (referred to as the

‘‘feedback measure’’). First, we calculated the response function

c�3(c1,c2) for the particular design. Then we artificially removed all

possible binding sites for TF3 by setting the affinity of TF3 for all

sites on the cis-regulatory region to zero and calculated the

response function again; we call the result cm
�(c1,c2). In the

absence of auto-regulation one should find cm
�(c1,c2)~c�3(c1,c2),

but if auto-regulation does play a role the two functions differ.

Therefore the difference between these functions is a measure of

the degree of auto-regulation; we define MAR as the mean of the

Combinatorial Regulation Using Auto-Regulation
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squared differences cm
�(c1,c2){c�3(c1,c2) over 16 combinations of

the input concentrations c1,c2[f0nM,333nM,667nM,1000nMg
(again, the red dots in Fig. 2). If auto-regulation is not being

exploited by a certain design MAR is generally small (v1nM2). If,

on the other hand, auto-regulation is used the resulting value is

typically in the range 103{106nM2. (For instance, if all 16 points

shift by 100nM when auto-regulation is removed MAR~104nM2.)

Recognizing binding sites
During the simulations, binding sites emerge in the initially

random cis-regulatory promoter sequences. However, since the

equilibrium binding constants have continuous values there is no

fundamental distinction between binding sites and non-binding

sites. Recognizing binding sites is further complicated by the fact

that, in particular in the presence of cooperativity, weak binding

sites can be important. Nevertheless, in order to understand the

design principles of a particular gate we wish to identify which

binding sites are necessary and sufficient to explain the observed

promoter response. This problem is not an artifact of our models:

the exact same conceptual problems occur whenever one tries to

identify the binding sites of real TFs by experiment.

Since a direct cutoff in terms of the equilibrium constants would

eliminate possibly important weak sites we use computational

‘‘DNA footprints’’ (analogous to experimental techniques such as

DNase I footprinting) to select those sites that are likely to be

important. For each TF a and each site O, we calculate the steady-

state occupancy oa,O(c1,c2) for four sets of input concentrations

(c1,c2)[f(0,0),(0,1mM),(1mM,0),(1mM,1mM)g. Sites that influ-

ence the response of the gate should have a significant occupancy

in at least one of these digital footprints.

Figure 2. Conditional auto-activation. In some simulation results, auto-activation occurs only in the presence of another transcription factor (TF).
We call this conditional auto-activation. The figure presents two examples. Fig. A: The promoter of an AND gate using conditional auto-activation
and, for comparison, one using hetero-cooperative activation. Both designs emerged in the simulations. In the first case, the regulated gene tf3 codes
for a transcription factor TF3 that binds to its own cis-regulatory region. However, from its binding site, TF3 can activate transcription only indirectly,
by facilitating the binding of TF1 and TF2 to their binding sites. As a result, the auto-activation depends on the presence of TF1 and TF2 (c1 and c2).
Fig. B shows plots of the expression level of tf3 (fold-change f vs. the concentrations c1 and c2 of TF1 and TF2) resulting from the cis-regulatory
regions in Fig. A. The red dots show the values of (c1,c2) that were used to evaluate the fitness of the gate (see Methods). Fig. C and D show the same
mechanism in a simplified model inspired by the simulation results. Plot D compares the response functions corresponding to three activation
systems depicted in C. In all cases, a single TF activates the expression of a gene tf3 coding for another transcription factor, TF3. The first two
scenarios constitute conventional activation systems with one or two binding sites. In the third scenario, one binding site is replaced by an operator
for TF3, which introduces a positive feedback loop depending on the presence TF1. The binding affinities of all sites are optimized using the fitness
function described in the main text. The response of the conditional auto-activation system is clearly sharper/more sensitive than the one using a
single activation site. Cooperative auto-activation by two sites, however, leads to a slightly sharper response. The results suggest that conditional
auto-activation is an alternative design principle that can be used to sharpen responses.
doi:10.1371/journal.pcbi.1000813.g002
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We define omax
a,O to be the maximal occupancy of site O by TF a

over the four conditions. Figure 4 in Text S1 shows a histogram of

these occupancies for all TFs and all sites using data gathered from

the results of 200 simulations. This histogram is bi-modal. The vast

majority of the maximal occupancies omax
a,O have negligible values

but a second peak occurs at omax
a,O &0:9. This peak is the result of

selection pressure and is associated with functional binding sites.

Based on this histogram, we use a rather stringent cut-off at

omax
a,O ~0:3 to separate binding sites from pseudo binding sites.

Simplified models that only take into account these selected

binding sites and assume that all other binding affinities are zero

usually accurately reproduce the response function of the full,

unsimplified system. In rare cases where this is not the case the

threshold can be lowered to obtain more accurate but more

complex models; this was not necessary for the examples presented

below. (See the Text S1 for more details and examples of

footprinting profiles.)

Results

Below, we describe the results of the simulations. We regularly

compare the results to our previous work in which auto-regulation

was excluded (Ref. [15]). In some cases the simulations presented

here resulted in the same designs as before. But in other cases the

designs exploited auto-regulation to arrive at novel and often

superior designs. We identified several mechanisms that are used

repeatedly in the results and present them below. Details about

several of the analyses below can be found in Text S1.

Conditional auto-activation leads to steep responses
The first mechanism that our scheme elucidated, we called

conditional auto-activation. This mechanism occurred in AND and

ACT (activation) gates (see Table 1 for the definitions), in which

cooperative activation plays a key role. In those gates, conditional

auto-activation is used to create a steep, switch-like response. As an

example, we first discuss the design of AND gates.

In simulations in which auto-regulation was excluded by the

method, the resulting AND gate designs always consist of a

tandem array of binding sites to which TF1 and TF2 bind

cooperatively (see Fig. 2A) [15,16]. We called this a hetero-

cooperative module. This design functions as follows. Crucially,

the binding site from which RNAP is recruited (the site directly

next to the core promoter) is too weak to considerably activate

transcription on its own. As a result, only when TF1 and TF2 are

both present at sufficient concentrations they bind cooperatively

and activate transcription, as the definition of an AND gate

requires. In the new simulations, in which auto-regulation can

evolve, this design still emerged in 14 out of 20 simulation runs.

Each of these gates has a feedback measure MARv10{7nM2,

proving that auto-regulation does not play any role.

The remaining 6 simulation runs resulted in conditional auto-

activation. In these gates the feedback measure MAR was high, in

the range 2:0|103{1:5|104nM2. The new design looks very

similar to the old one (see Fig. 2A and B). However, the hetero-

cooperative module now also contains a binding site for TF3,

which leads to a positive feedback loop. Importantly, TF3 bound

at its binding site cannot recruit RNAP directly; instead, it

interacts with the hetero-cooperative activation module. As a

result, the auto-activation is conditional on the presence of TF1

and TF2. As the concentrations of TF1 and/or TF2 increase, the

auto-activation is gradually turned on, leading to a sudden (steep,

switch-like) response.

The exact same mechanism is exploited by some ACT gates.

Out of the 20 simulations of ACT gates, 3 resulted in conditional

auto-activation (MAR values were 3:6|102nM2, 3:4|103nM2

and 1:6|104nM2), while the other 17 did not use auto-regulation

(MARv10{7nM2).

The basic mechanism can be studied in minimal models

inspired by the simulation results. In Fig. 2C and D, we compare

three activation mechanisms. The first scenario is conventional

activation by a single TF1 binding site. In the second scenario only

a homo-cooperative activation module is present, consisting of two

binding sites for TF1. In the third scenario, the auxiliary TF1 site

is replaced by a binding site for TF3, introducing conditional auto-

activation. In all designs we chose the binding site affinities such

that they maximize the fitness function for the ACT gate.

Conditional auto-activation indeed produces a response that is

steeper than the one resulting from the design with a single

activator binding site (Fig. 2D). However, the conventional

cooperative design with two binding sites gives an even steeper

result. The results imply that, after one binding site has evolved for

the activator TF1, the response can be improved in two ways: by

adding an additional site for TF1 (leading to cooperative

activation) or by adding a site for TF3 (resulting in conditional

auto-activation). Which design emerges therefore depends criti-

cally on the actual sequences and mutations occurring in the

population. This explains why cooperative activation and

conditional auto-activation show up as alternatives in the

simulations.

The effect of conditional auto-activation can be understood

quantitatively by studying the minimal model mathematically. The

response function c�3(c1) for the minimal model follows from the

condition apon(c1,c�3)~bc�3 and is given by

c�3(c1)

k�
~

{B(c1)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B(c1)2z4A(c1)C(c1)

q
2A(c1)

, ð5Þ

with

A(c1):r qp(1zv2c1=k)z1zvc1=k
� �

,

B(c1):r(qp(1zvc1=k)z1zc1){qp(1zv2c1=k),

C(c1):qp(1zvc1=k):

Here k and k� denote the dissociation constants for TF1 and TF3

binding to their respective operator, qp is the concentration of

RNAP normalized by the dissociation constant of RNAP binding

to the promoter, and r:bk�=a. We first consider the limit of

qp%1 and vqp 1. In this limit C(c1) is small as long as c1vk.

The numerator of 5 can then be approximated by

{B(c1)zDB(c1)D. As a result we can distinguish two regimes

depending on the sign of B(c1):

c�3(c1)

k�
&

0 if c1vc1
b
,

DB(c1)D
A(c1)

if c1wc1
b
,

8<
: ð6Þ

where c1
b

is the border between the two regimes, implicitly given

by B(c1
b
)~0:

c1
b
~

k

v

r(qpz1){qp

qp(v{r){rk=v
: ð7Þ
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Note that c1
b%k provided r%v; under this condition approxi-

mation 6 holds around the transition c1~c1
b. As both B(c1) and

A(c1) are linear functions of c1, the second regime has the form of

a Hill function with Hill coefficient n~1. Therefore equation 6

shows that equation 5 behaves like a sharp threshold response.

This threshold effect is responsible for the increased steepness of

the response due to conditional auto-activation.

The maximal expression following from equation 5, at full

activation, is vqp=(1zvqp). This demonstrates that in the limit of

qp%1 the maximum expression level becomes very low (for a

given value of v). On the other hand, if qp is increased the term

4A(c1)C(c1) becomes more and more significant and the

transition between the two regimes in equation 6 becomes more

and more gradual. Consequently, in the optimized functions

plotted in Fig. 2 the values of qp reflect a compromise between the

opposing requirements of having a high maximal expression

(requiring a large qp) and a sharp threshold response (requiring a

small qp).

The steepness of a function f (x) in the point x can be formalized by

the sensitivity, defined by S(x):Dd log f (x)=d log xD~Dxf ’(x)=f (x)D.
The sensitivity of a Hill function is limited by the Hill coefficient n,

which is equal to the number of cooperatively interacting binding sites

for the input TF. We therefore ask if a similar limitation applies to the

minimal model of conditional auto-activation. From equation 5 the

sensitivity function S(c1) can be derived straightforwardly. The result

is rather cumbersome and therefore an exact expression for the

maximal sensitivity is hard to obtain. However, since the most sensitive

part of the function is in the region where B(c1)&0 (i.e., close to c1
b),

the maximal sensitivity can be approximated by S(c1
b). In the limit of

large v this expression converges to

lim
v??

S(c1
b
)~

(1{qp(r{1))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp(qpzrz1)

p
{qp

� �
2qp(qpzrz1)

: ð8Þ

Importantly, since we evaluated the sensitivity in a point close to but

not exactly at the maximum, this approximate result is a conservative

estimate: the true maximum cannot be lower than this. In the limit of

small qp the maximum sensitivity diverges as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qp(1zr)

p
, which

proves that the sensitivity of response function 5 does not have a

theoretical upper limit, unlike those of Hill functions.

So far we have neglected the dynamical properties of the

designs because the current model only considers the steady-

state response of the system. As we mentioned, auto-activation

tends to slow down the response time of the system. Therefore,

in systems where the speed of response is of great importance

cooperative regulation is expected to outperform conditional

auto-activation. Selection on response speed is discussed in more

detail below.

Auto-activation can sharpen repression
A second feedback pattern emerges in logic gates in which

repression is important, notably the NAND, NOR and IN

(inhibition) gates. As it turns out, whenever steep repression is

required, we also find strong auto-activation; this occurred in

every simulation run for our NAND, NOR and IN gates (20

repeats each), with MARw6:9|104nM2 in all cases. We present

the NAND gate as an example.

Fig. 3A shows the cis-regulatory region of a typical NAND gate

using auto-activation. The corresponding response function

plotted in Fig. 3B indeed shows an excellent NAND-like behavior.

As quantified below, in fact it performs better than the design

without auto-activation reported earlier and reproduced for

comparison in Fig. 3A and B [15].

The design that resulted when auto-activation was excluded is

composed of a hetero-cooperative repression module (a tandem

series of repressor sites to which both input TFs bind coopera-

tively). The function of this module is to repress transcription only

when both TF1 and TF2 are present in sufficiently high

concentrations, as required of a NAND gate. In Ref. [15] we

pointed out that in the simulation results such a repression module

was always accompanied by strong activation sites for both input

TFs. This counter-intuitive feature turned out to enhance the

sharpness of the response. At low TF concentrations, the activation

sites counter-act the repression module, so that the expression

stays high. At higher TF concentrations, however, the repression

module dominates and represses transcription. Under the

parameters used designs of this type reached a modest fold-

change of &6 and a deviation measure MRF~8:5|105nM2 (see

section ‘‘Evolutionary algorithm’’ in the methods section for the

definition of MRF).

In the new results (Fig. 3) the activation sites for TF1 and TF2

have disappeared, but instead we find auto-activation. In the

absence of TF1 and TF2, tf3 is highly expressed, aided by auto-

activation. As the concentrations of TF1 and TF2 are increased,

the repression module starts to compete with the auto-activation

module. Quite suddenly, the repression module wins this

competition and displaces RNAP from the promoter. The strong,

cooperative repression module now leads to a rather complete

inhibition. The new design can lead to fold-changes of &30 and a

deviation measure of MRF~1:2|105nM2.

To study the mechanism responsible for the steepness of the

response function we again analyzed a minimal model. In Fig. 3C

and D two scenarios for an IN gate are compared. In the first

scenario, a transcription factor TF1 cooperatively binds to a pair

of repressor sites to inhibit the gene tf3. In the second scenario we

use the same configuration, but add an activator site for TF3.

Thus, auto-activation competes with cooperative repression. The

fitness of each design is optimized using the fitness function for the

IN gate. As can clearly be seen in Fig. 3D the second scenario,

using conditional auto-activation, results in a steeper and more

complete repression. Figure 1 in Text S1 shows plots of the

sensitivity S(c1) as a function of c1 for the response plots in Fig. 3D

and clearly demonstrates that auto-activation enhances the

sensitivity.

Does the sensitivity of the response function 9 have an upper

bound, as is the case for Hill functions? To answer this question we

again study the minimal model mathematically.

The response function c�3(c1) of the minimal model is given by

c�3(c1)

k�
~

{B(c1)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B(c1)2z4A(c1)C(c1)

q
2A(c1)

, ð9Þ

with

A(c1):1zvqpz2c1=kzv(c1=k)2, ð10Þ

B(c1):1{qp(vr{1)z2c1=kzv(c1=k)2, ð11Þ

C(c1):qpr: ð12Þ

We first describe the limit in which qp,v&1 and r&1. The form of

this equation is obviously similar to equation 5 for conditional auto-

activation. However, here B(c1) is large and negative (&{qpv) when
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c1 k. In this regime, B(c1)2&(qpv)2&4A(c1)C(c1), so that the

numerator is approximated by 2DB(c1)D. As c1 increases, DB(c1)D
decreases while the denominator increases; therefore the expression is

rapidly repressed. This regime ends suddenly as B(c1) reaches zero,

at c1~c1
b; at this point the expression is almost fully repressed.

The sensitivity function S(c1) can be derived from equation 9.

The exact expression is again too cumbersome to derive the

maximal sensitivity analytically. However, the most sensitive

region of the response plot is again expected around B(c1)&0 so

that we estimate the maximal sensitivity as

S(c1
b)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1zr)v{r)

p
zr

� �
qprv2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qprv2{(qpz1)vz1

p
{(qpz1)vz1

� �
qprv(v(rz1){1)

: ð13Þ

For large qp this converges to

lim
qp??

S(c1
b
)~

(rv{1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r((rz1)v{1)

p
zr

� �
r((rz1)v{1)

, ð14Þ

which for large v approaches 1z
ffiffiffiffi
v
p

. Numerical tests demonstrate

that this conservative approximation becomes excellent for v&1
(data not shown). In the absence of auto-regulation, the sensitivity

cannot exceed 2, the number of repressor sites. Equation 14

demonstrates that in the presence of auto-regulation the sensitivity

can easily exceed 2 but is nevertheless limited given v.

We note that the sensitivity is optimal for qp&1. Hence, unlike

the case of conditional auto-activation the requirements of a high

Figure 3. Sharp and complete repression using auto-activation. In the simulations, auto-activation evolved in every gate that requires strong
repression. This figure shows two examples in which auto-activation indeed aids sharp and thorough repression. Fig. A and B depict NAND gates
resulting from the simulations. When auto-regulation is not allowed by the method, the input TFs have both activating and repressing binding sites,
as reported earlier [15] (in Fig. A and C, red boxes represent repressor sites and green boxes activator sites). When auto-regulation is included (i.e., the
regulated gene tf3 codes for a transcription factor TF3 that can bind to its own cis-regulatory region) auto-activation emerges. Gene tf3 is still
repressed by a hetero-cooperative module consisting of binding sites for TF1 and TF2. At low concentrations of TF1 and TF2 the auto-activation
counteracts the repression module; as a consequence, the response to the concentrations of TF1 and TF2 is very sharp and the fold-change f high, as
can be seen in Fig. B. In Fig. C and D we study the mechanism in a simpler model system. Fig. C shows the cis-regulatory regions of two slightly
different repression systems. In both cases, a transcription factor TF1 represses a gene tf3, coding for a second transcription factor TF3, by binding
cooperatively to a pair of repressor sites. In the second scenario, an auto-activation site for TF3 is present as well. Fig. D presents the steady-state
expression level of tf3 as a function of the repressor concentration. In both alternatives we optimized the binding sites using the fitness function
described in the main text. Clearly, the second scenario leads to a more sensitive repression curve than the first. The presence of auto-activation
allows for stronger repressor sites; consequently, as the concentration of TF1 increases the displacement of RNAP from the promoter by the repressor
is more effective (i.e., the remaining expression level at c�3w0:2 is much lower than in the cooperative repression case).
doi:10.1371/journal.pcbi.1000813.g003

ð13Þ

Combinatorial Regulation Using Auto-Regulation

PLoS Computational Biology | www.ploscompbiol.org 8 June 2010 | Volume 6 | Issue 6 | e1000813



maximal expression and a high sensitivity do not contradict. In

the simulations as well as in reality, however, the promoter

strength is bounded by other factors. Clearly the binding affinity

of RNAP for the promoter is bounded by the physics of RNAP–

DNA binding. A less obvious constraint follows from the fact

that the expression switches from high to low around

c1
b
~k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vzvqp(vr{1)

p
=v; if the repression is to occur at

reasonable TF1 concentrations (the simulations impose the

interval ½333nM,667nM�) high values of qp require low values of

the dissociation constant k (i.e., strong repression). Finally, a high

sensitivity in one point does not guarantee that the response

function switches from high to low in a narrow interval as is

required by the fitness function; this explains why in the plots

in Fig. 3 the maximal sensitivity is not optimal

(Smax~3:7v1z
ffiffiffiffi
w
p

~6:5).

Linear repression benefits from auto-activation
In both previous cases, auto-regulation was used to obtain the

steep or switch-like behavior required to approximate the binary

responses of logic gates. Indeed, sharp responses are observed and

probably required in many real examples; nevertheless many

genes respond in a more gradual manner to their input signals

(Ref. [17] provides examples of both sharp and gradual responses).

Is auto-regulation also useful in cases where a gradual response is

required? To test this, we now turn to the results of simulations

with linear goal functions.

Indeed, simulation results for linear repression (i.e., the LIN and

NMEAN gates) always use auto-regulation, with MAR in the range

1:2|104{1:6|105nM2. As can be seen in Fig. 4, approximately

linear repression can be obtained when repression is combined

with auto-activation; the deviation measure for the simulation

result shown is MRF~3:7|103. The same figure shows results of

simulations in which auto-regulation is excluded. In that case a

large cooperative repression module results, which leads to a less

linear result (MRF~2:1|104).

Again, we analyzed the mechanism through a slightly simplified

model presented in the same figure. The promoter design of the

simplified model is identical to the one presented in Fig. 3C, where

it was used to demonstrate how auto-activation can provide sharp

responses. In essence, the difference between the two cases is that

in the IN gate the two repressor sites have the same affinity,

whereas in the LIN case they do not: one of them is many times

weaker than the other (kD~38nM vs. kD~7:17mM). As a result,

the repression is introduced gradually as the repressor concentra-

tion increases.

Linear repression requires that dc�3=dc1~{1 in the domain

½0,1000nM�. Since c�3 is defined as the solution of

apon(c1,c�3(c1))~bc�3(c1), we can take the total derivative of this

relation to arrive at

dc�3
dc1

~
a

b

Lpon(c1,c�3)

Lc1

= 1{
a

b

Lpon(c1,c3)

Lc3

����
c�
3

0
@

1
A: ð15Þ

In the absence of auto-regulation the denominator equals 1. In this

case pon is a Hill-type function of c1 and therefore its derivative is

not constant. In the presence of auto-regulation the denominator

can be used to correct some of the variation in the numerator. (See

Text S1.)

In contrast, in the simulation results for linear activation (both the

LACT and the MEAN gates) auto-regulation is never used. To test

if these results are an artifact of the algorithm, we studied a series

of models (see Text S1). Each model is a possible layout of

transcription factor binding sites and includes auto-regulatory

sites. For each of the models, we optimized the affinities of all

binding sites with respect to the fitness score, using a standard

Nelder–Mead optimization routine. Consistent with our simula-

tions, in the solutions for all models the affinities of the auto-

regulatory sites vanished. Even though the list of models tested is

not exhaustive, this suggests that auto-regulation is not helpful in

constructing LACT or MEAN gates.

To illustrate an important difference between linear activation

and linear repression we provide the following general argument.

Suppose that an accurate LACT gate can be constructed

using auto-regulation. By definition the response function should

then be c�3~c1 in the interval ½0,1000nM�. Consequently,

c�3(c1)~(a=b)pon(c1,c�3)~(a=b)pon(c1,c1) in this interval. Interest-

ingly, this shows that if all TF3 binding sites in the cis-regulatory

 
 

Figure 4. Linear repression using auto-regulation. If in the simulations we selected for a linearly decreasing response function (a LIN gate),
auto-activation emerged. The resulting cis-regulatory region is schematically depicted in Fig. A. Red boxes and green boxes represent repressor and
activator sites, respectively. The corresponding response function is plotted in Fig. B, alongside the results of a simulation in which auto-regulation is
excluded. The auto-activation indeed manages to straighten the repression curve. The seven red dots in Fig. B show the goal function that is used in
the fitness function: gates are considered better if their response function fits these points better (see Methods). We again studied a simplified model
in more detail; the cis-regulatory region and response function of this minimal model are also shown. Indeed, the simple model system with
appropriate binding site affinities fits the goal points better than the design without auto-regulation.
doi:10.1371/journal.pcbi.1000813.g004
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region are replaced by binding sites for TF1—resulting in a gate

without auto-regulation—the exact same response function should be

obtained. Even though this argument does not prove that auto-

regulation cannot be used to construct LACT gates, it does show

that if a high-quality LACT can be constructed with auto-regulation

a similar response can always be obtained without it as well. This is

in stark contrast with the linear repression case, where c�3=c1.

Selection for quick responses or against noise leads to
auto-repression

Surprisingly, auto-repression does not show up in any of the

simulations described so far, whereas auto-activation features

regularly. As we mentioned in the introduction, previous studies

have shown that negative auto-regulation can be used to diminish

intrinsic noise and to speed up response times. In the simulations

presented so far, such qualities were not rewarded. Therefore we

asked if auto-repression would emerge if we did select for such

dynamic properties on top of our usual selection criteria.

First, we used a heuristic measure MRT (where RT stands for

Response Time) to select for a quick response to changes in the input

parameters; it was computed as follows. For 16 combinations of input

concentrations (c1,c2) (corresponding to the red dots in Fig. 2) we

numerically solved the differential equation 4 with two different initial

conditions: c3~0mM and c3~1mM. The solutions were used to

measure the time it took for the system to approach the steady-state

value up to a small distance e~10{4mM. The measure MRT was

defined as the sum of all 32 response times. The total fitness function,

combining selection on the response function with selection on the

response time, was Ftot:C{cRFMRF{cRTMRT, where the factor

cRT was used to tune the relative strength of the selection on the

response time. Again, C is an irrelevant constant ensuring that

Ftotw0.

Figure 5. NAND gates at increasing selection pressure on response speed. On the one hand, the sensitivity of the response function of a
NAND gate is improved by auto-activation. On the other hand, the response speed of the gate is enhanced by auto-repression. Consequently, if
selection acts both on the response function and the response time, the simulation results are a compromise and depend critically on the relative
magnitudes of the two selection pressures. The figure shows representative response functions and promoter designs of NAND gates resulting from
four values of the parameter cmax

RT , which controls the weight of the response speed in the total fitness function Ftot~C{cRFMRF{cRT(t)MRT. (The
irrelevant constant C merely serves to ensure that Ftotw0.) The average values of the measures MRT (measuring the response time in arbitrary units
t) and MRF (the deviation of the response function from the goal function in units mM2) for each condition are also plotted. By definition, low values
of MRT and MRF correspond to good performance. For the lowest value cmax

RT ~10{3=t the response function is optimized and shows an excellent
NAND gate. Due to strong, cooperative auto-regulation, the response is very sharp and almost bistable in the transition region, but the response
speed is low. At cmax

RT ~10{2=t the result is a compromise: the quality of the response function is clearly reduced but the response speed is higher.
Still auto-activation evolves, but it is weaker and non-cooperative and combined with weak auto-repressing binding sites. At cmax

RT ~10{1=t auto-
repression fully takes over; the response function is crippled but the response speed is high. If the selection pressure on response time is increased
even further (cmax

RT ~100=t) the response speed is fully optimized by disabling the response altogether.
doi:10.1371/journal.pcbi.1000813.g005
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In fact, the initial condition of the simulations, in which the gate

is completely dysfunctional, is a local optimum of this fitness score.

This is because initially the steady-state expression level is

negligible so that the response time for initial condition

c3~0mM is practically zero. Even though mutations that increase

the constitutive promoter activity improve both the response

function and the response time for initial condition c3~1mM, the

concomitant increase in the response time for initial condition

c3~0mM dominates. To ensure that the simulation was not

trapped in this local optimum cRT was increased slowly from 0 to

cmax
RF in the course of the simulations, according to:

cRT(t)~cmax
RT

t3

t3
inzt3

, ð16Þ

where t is the simulation time (i.e., the cycle number of the

evolutionary algorithm), and tin~50.

Second, we selected against intrinsic noise, i.e., fluctuations in

the concentration of c3 due to the stochasticity of the processes

involved in the production and degradation of TF3. This type of

noise should be contrasted with extrinsic noise, which here is

understood to be the noise due to fluctuations in the input

concentrations c1 and c2 or due to changes in RNAP

concentrations [12,27]. Even though extrinsic noise is generally

important too [28], the treatment of extrinsic fluctuations involves

subtleties that are beyond the scope of this work, such as the

question which changes in c1 and c2 should be considered changes

in the input signal and which should be considered noise. We

therefore only consider intrinsic noise.

In order to treat intrinsic fluctuations in a tractable manner we

now replaced the ordinary differential equation 4 by the following

stochastic differential equation:

dc3(t)

dt
~apon(c1,c2,c3(t)){bc3(t)zj(t): ð17Þ

The term j(t) represents Gaussian white noise and is characterized

by (see Text S1):

Sj(t’)j(t)T~(apon(c1,c2,c3(t))=Vzbc3(t)=V )d(t’{t): ð18Þ

The first term on the right-hand side describes the noise in the

production of TF3 while the second term describes the stochasticity in

the degradation of TF3. Both terms depend explicitly on the volume

V because, at constant concentration, the copy number of TF3 scales

with V which affects the variance in c3.

In Text S1 we show that the standard deviation s of the

concentration c3 can be approximated as:

s(c�3)2&
1

b(c�3)
, ð19Þ

with

b(c�3):V
1{(a=b)p’on(c1,c2,c�3)

c�3
{

(a=b)p’on(c1,c2,c�3)z1

2c�3

� �2

z
(a=b)p’’on(c1,c2,c�3)

2c�3
,

ð20Þ

where p’on and p’’on are the first and second partial derivatives of

pon with respect to c3, and c�3 is the steady-state solution of the

deterministic equation 4. We computed the right-hand side of

equation 19 numerically for 16 input values (c1,c2) (again,

corresponding to the red dots in Fig. 2) and treated the sum of

the results as an additional fitness measure MN (where N

stands for Noise). The strength of selection against noise was

again increased gradually during the simulations (analogous to

equation 16). The total fitness function thus became

Ftot:C{cRFMRF{cN(t)MN.

We performed simulations with several values for cmax
RT and cmax

N :

tcmax
RT [ 10{3,10{2,10{1,100

� 	
(where t is the arbitrary unit of time,

see Methods), and cmax
N [ 10mM{1,20mM{1,40mM{1,80mM{1

� 	
.

Indeed, in these simulations auto-repression emerged.

In activating gates (ACT, AND, OR) auto-repression resulted in

all simulation runs with cmax
N ~10mM{1 or tcmax

RT ~0:01. The

auto-repression was invariably strong, with MARw5:6|104, and

mediated by multiple cooperative binding sites. If cmax
N or cmax

RT

were further increased eventually the resulting cis-regulatory

regions became completely dysfunctional; this can be understood

from the fact that both the response time and the noise reduction

can be optimized by abolishing expression altogether. Figure 7 in

Text S1 demonstrates how the properties of resulting OR gates

changed as a function of cmax
N . As cmax

N is increased the deviation of

the response from the ideal OR gate, measured by MRF, increases,

while the noise, measured by MN, decreases.

As we explained, the response functions of the NAND, NOR and

IN gates benefit from auto-activation; in those gates auto-activation

occurred unless the selection pressure on the dynamical properties

dominated (i.e., if cmax
N or cmax

RT were large), in which case the quality of

the response functions was negatively affected. Fig. 4 shows results

from simulations selecting for NAND gates at various values of cmax
RT .

As the selection pressure on response time was increased the response

functions became more and more compromised. Auto-activation

resulted for tcmax
RT ~10{3 and tcmax

RT ~10{2; in the former case the

promoter designs were of the type shown in Fig. 3A, while in the latter

case only one auto-activation site remained. Interestingly, in most of

the simulation runs (18 out of 20) at tcmax
RT ~10{2 a weak auto-

repression site shows up in conjunction with the auto-activation site.

These weak auto-repression sites are incorporated in the hetero-

cooperative repression module and have a high occupancy only at

high concentrations of TF1 and TF2; analogous to conditional auto-

activation, this effect could be called conditional auto-repression. At

tcmax
RT ~10{1 the auto-activation was replaced by strong auto-

repression mediated by a single or multiple binding sites and the sites

for the input TFs were very weak. Finally, at tcmax
RT ~1 the resulting

gates became completely dysfunctional and no significant binding

sites remained.

Auto-activating TFs have more inputs
The results above suggest that auto-activation and auto-repression

have very different functions. We therefore wondered whether in the

known transcription regulatory network of E. coli the auto-activators

and auto-repressors have different statistical properties.

Surprisingly, we found that auto-activators are more often

regulated by other TFs than auto-repressors. According to the data

in RegulonDB [2], 18 of the 25 auto-activating TFs in E. coli are

regulated by at least one additional TF (72%) versus 30 out of 62

auto-repressing TFs (48%); this indeed suggests that auto-

activators are more likely to have additional inputs (p~0:037).

The difference becomes more convincing if we look at the total

number of inputs for the two sets. The 25 auto-activators have, in

total, 52 inputs (i.e., an in-degree of 2.08 on average; the auto-

regulation is not counted as an input) while the 62 auto-repressors

have 50 inputs in total (0.81 on average). Evidently, auto-activators

have significantly more inputs than auto-repressors (p~0:0013).
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Since auto-regulation can potentially have many functions and

most of the auto-regulators are poorly characterized, we can only

speculate about the origin of this difference. One possible explanation

would be the following. If a common function of auto-activation is to

shape response functions, as suggested by our analysis, then auto-

activation should evolve preferentially for TFs that are regulated by

one or more input TFs. In that case one would expect the average in-

degree for auto-activators to be high. The same argument does not

hold for auto-repression: our results suggest that auto-repression

typically evolves for different reasons. Some of the functions of auto-

repression suggested in the literature, such as its tendency to decrease

intrinsic noise and to mitigate the effect of changes in the bacterial

growth rates on gene expression, do not require additional input TFs.

It is therefore not too surprising that for many auto-repressors (32 out

of the 62) no input TF is known.

Discussion

Our results shed new light on the use of auto-regulation. We

described three situations in which auto-activation can be used to

improve the response function of promoters. First, if auto-activation is

conditional on the presence of other TFs, it can give rise to sensitive

responses that otherwise require multiple cooperative binding sites of

the input TF. Presumably, not all input TFs can bind cooperatively to

multiple binding sites; in those cases conditional auto-activation can

serve as an alternative. Secondly, auto-activation can strongly

contribute to the sensitivity of the response of repression systems.

Whenever sharp repression is required, auto-activation can have a

selective advantage. Thirdly, we showed that auto-activation is also

useful if a linearly decreasing response function is desired. Together,

such mechanisms may help explain the large number of auto-

activators present in E. coli.

Auto-repression never appeared in the simulation results if

selection was based on the response function of the gates only.

Most likely, the limited use of auto-repression in shaping response

functions is due to its general tendency to decrease the fold-change

and sensitivity of the response. A low fold-change or sensitivity can

typically also be achieved without auto-repression by tuning both

the promoter strength and the affinities of the TF binding sites.

Nevertheless, we cannot exclude the possibility that auto-

repression would show up in simulations selecting for response

functions different from the ones presented here.

If the fitness function was altered to favor a fast response or

suppression of intrinsic transcriptional noise, auto-repression did

emerge. It has been suggested before that the function of negative

auto-regulation is to regulate such dynamic properties [5,9,10]; our

results support this view.

In retrospect, the emergence of auto-regulation is hardly

surprising. The evolution of cis-regulatory regions can be perceived

as adaptive curve fitting. Allowing for auto-regulation gives gene-

regulatory systems additional degrees of freedom to optimize their

performance, and it would perhaps be more surprising if this

freedom were not exploited. We therefore expect that the

conclusions based on the idealized gates studied in this work are

also relevant for real biological systems requiring more complex

response functions.

We have seen that in some cases the advantage of using auto-

regulation is large (e.g. when sensitive repression is required) whereas

in other cases there is only a small difference between the quality of

the response function for designs with or without auto-regulation.

This leads one to wonder whether in the latter case natural selection

on the shape of the response would be large enough to evolve and

maintain auto-regulation, in particular in the presence of noise. This

is largely an open question; yet, the fact that some E. coli promoters

contain a large number of TF binding sites many of which contribute

only marginally to the expression (see for instance [29]) suggests that,

at least in some cis-regulatory regions, natural selection is strong

enough to fine-tune the response function in great detail.

The results presented are quite insensitive to the parameter

values chosen. The value of v influences important properties

such as the maximum fold change in activation systems, but as

long as it is chosen within the biological range 10–100 the designs

of the gates do not seem to depend qualitatively on the value

chosen. To verify this, we performed simulations with v~100 for

AND, NAND, NOR and OR gates (without selection against

noise or response speed) and found the results to be qualitatively

the same as those presented. The value of d influences the spacing

of binding sites within a module, but not the basic designs

properties, as long as d M=2 so that overlapping modules can be

constructed that bind independently. The results are also

insensitive to the length of the binding sites M (we tested this

with simulations for AND, NAND, NOR and OR gates with

M~15) and the matrix elements of the binding energy matrix;

essential is only that the evolutionary algorithm can tune the

dissociation constants of the binding sites to a wide range of values

(1–10000nM), as in reality. The length of the cis-regulatory region,

N, determines the maximum number of tandem binding sites that

fit on the regulatory region; larger values of N therefore ultimately

lead to larger tandem arrays. However, since tandem arrays of five

or more binding sites can form in the simulations, we believe that

N~100 is large enough to accommodate typical E. coli promoters.

Even though in eukaryotes the mechanisms of gene regulation are

generally different and various additional layers of regulation exist,

recent work has shown that many basic principles of prokaryotic gene

regulation—in particular the interplay between cooperative binding

and competitive inhibition—are equally important in eukaryotes (see

for instance [30] about repression and inhibition in yeast and [31]

about enhancers in Drosophila). Auto-regulation is also widespread in

eukaryotes [32]; therefore, our findings could also be relevant for gene

regulation in eukaryotes.

As we mentioned, auto-activation is known to reduce the response

speed in some situations and to increase the amplitude of fluctuations.

Clearly, those issues may be problematic in some real-life situations.

On the other hand, a slow response can be a positive feature as well if

it is applied as a filter of high-frequency noise (a low-pass filter).

Fluctuations may in some cases be beneficial or even necessary. For

instance, when cells respond to a fluctuating environment via the

strategy of stochastic switching, fluctuations are essential [33]. But

even when cells cope with a fluctuating environment via the strategy

of deterministic switching, fluctuations may be beneficial, since they

can increase the population’s growth rate when the response function

is suboptimal [34]. Indeed, the fact that auto-activation is found so

often in E. coli demonstrates that the associated reduction of the

response speed and the amplification of fluctuations can apparently

be circumvented, tolerated or put to use.
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Text S1 Supplementary information. All supplementary infor-
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Found at: doi:10.1371/journal.pcbi.1000813.s001 (0.81 MB PDF)

Author Contributions

Conceived and designed the experiments: RH BU PRtW. Performed the

experiments: RH BU. Analyzed the data: RH BU PRtW. Wrote the paper:

RH.

Combinatorial Regulation Using Auto-Regulation

PLoS Computational Biology | www.ploscompbiol.org 12 June 2010 | Volume 6 | Issue 6 | e1000813



References

1. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, et al. (2005)

Ecocyc: a comprehensive database resource for Escherichia coli. Nucl Acids Res
33: D334–337.

2. Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-
Peredo E, et al. (2001) RegulonDB (version 3.2): transcriptional regulation

and operon organization in Escherichia coli k-12. Nucl Acids Res 29: 72–74.
3. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific

gene regulation to genomic networks: a global analysis of transcriptional

regulation in Escherichia coli. Bioessays 20: 433–440.
4. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the

transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68.
5. Becskei A, Serrano L (2000) Engineering stability in gene networks by

autoregulation. Nature 405: 590–593.

6. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory
networks. Proc Natl Acad Sci U S A 98: 8614–9.

7. Stekel DJ, Jenkins DJ (2008) Strong negative self regulation of prokaryotic
transcription factors increases the intrinsic noise of protein expression. BMC Syst

Biol 2: 6.

8. Klumpp S, Zhang Z, Hwa T (2009) Growth rate dependent global effects on
gene expression in bacteria (in press). Cell.

9. Savageau MA (1974) Comparison of classical and autogenous systems of
regulation in inducible operons. Nature 252: 546–549.

10. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the
response times of transcription networks. J Mol Biol 323: 785–793.

11. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional

regulators. Nature 403: 335–338.
12. Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in

biological networks: A role for positive feedback. PLoS Computational Biology
4: e8.

13. Nevozhay D, Adams RM, Murphy KF, Josic K, Balázsi G (2009) Negative

autoregulation linearizes the dose-response and suppresses the heterogeneity of
gene expression. Proc Natl Acad Sci U S A 106: 5123–8.
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