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Summary
Functional imaging with MRI contrast agents is an emerging experimental approach that can combine
the specificity of cellular neural recording techniques with noninvasive whole-brain coverage. A
variety of contrast agents sensitive to aspects of brain activity have recently been introduced. These
include new probes for calcium and other metal ions that offer high sensitivity and membrane
permeability, as well as imaging agents for high resolution pH and metabolic mapping in living
animals. Genetically-encoded MRI contrast agents have also been described. Several of the new
probes have been validated in the brain; in vivo use of other agents remains a challenge. This review
outlines advantages and disadvantages of specific molecular imaging approaches and discusses
current or potential applications in neurobiology.
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Introduction
As neuroscientists become increasingly brave in their efforts to study the functioning of neural
systems in vivo, there is a growing need for measurement methods that can record
comprehensive information about the functioning of living brains. Magnetic resonance
imaging (MRI) is a special tool in this regard, because of its relatively high spatial resolution
(∼ 10 μm in high magnetic field scanners) and capacity to scan entire organisms noninvasively.
Functional MRI (fMRI) with contrast dependent on cerebral hemo-dynamics provides an
indirect readout of neural activity [1-3]. Although hemodynamic fMRI has had transformative
impact in cognitive science, the techniques lack the specificity and temporal precision of
electrophysiology and optical imaging, and have not been widely used in basic neurobiology
experiments.

Another way to exploit the unique advantages of MRI for neuroscience is to perform the
imaging in conjunction with molecular probes (contrast agents) sensitive to aspects of neuronal
physiology [4]. This approach is roughly analogous to performing optical neuroimaging with
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fluorescent dyes, but is currently far less well-developed. Most MRI contrast agents are
paramagnetic chemicals that increase parameters called the T1 and T2 relaxation rates of water,
as observed in tissue and solution; T1 or T2 relaxation enhancements produce image brightening
or darkening, respectively. Additional classes of contrast agents work by a chemical exchange-
based mechanism called CEST [5], or involve imaging nonstandard nuclei like 19F and 13C.
The characteristics and physical mechanisms of different types of contrast agent are discussed
at length in a number of book chapters and reviews [6-11], and are summarized in Figure 1. In
general, for any agent to be used in functional imaging, either its ability to influence MRI
contrast or its spatial distribution must be sensitized to neural activity in some way.

The past few years have seen significant advances in the design of new MRI contrast-based
sensors and the introduction of protein contrast agents for brain imaging. These are nascent
technologies—few of the efforts have progressed beyond an in vitro or proof-of-concept stage,
but in several cases experiments using the new agents in animals can now be performed. The
remainder of this review describes contrast agents suitable for functional imaging based on
metal ions, pH, metabolic activity, and gene and protein expression. Prospects for future
development and application of molecular fMRI methods are discussed.

Indicators for Ca2+ and other metal ions
Calcium ions are an important target for neuroimaging agents because neuronal calcium fluxes
are dramatic and directly related to synaptic activity. Recent two-photon fluorescence imaging
studies have demonstrated the power of calcium measurements to characterize neuronal
population behavior in exposed regions of the brain [12,13]. MRI indicators for calcium can
facilitate calcium imaging of deep tissue structures. Several relaxation-based contrast agents
for calcium-dependent MRI have been introduced. An increasingly widespread approach was
introduced by Koretsky and colleagues, who showed that Mn2+ functions as a paramagnetic
Ca2+ mimetic and accumulates activity-dependently in neurons [14,15]. Because of its slow
uptake and release kinetics (on the order of hours and days, respectively [16]), Mn2+ has proved
useful as an “activity label” analogous to 2-deoxyglucose or c-Fos. The technique was recently
used for 100 μm isotropic resolution T1-weighted mapping of auditory cortex in mice [17], and
for a functional study of the antennal lobes of developing moths [18].

A contrast agent sensor designed for real-time calcium imaging was developed by Li et al.
[19]. The agent was formed by attaching the calcium chelator 1,2-bis-(O-aminophenoxy)
ethane-N,N,N',N'-tetraacetic acid (BAPTA) to two copies of the highly paramagnetic
gadolinium complex Gd3+-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-
DOTA); the agent undergoes a change in T1 relaxivity (a measure of efficacy) near 1 μM
Ca2+. Delivery of the sensor to neurons in sufficient quantity for functional imaging in vivo
has not yet been reported. Partly in response to this situation, Atanasijevic et al. [20] have now
described a new family of calcium sensors derived from extremely potent superparamagnetic
iron oxide (SPIO) nanoparticle contrast agents. SPIOs were conjugated to “tunable”
recombinant proteins that drove reversible particle aggregation around a midpoint of 0.8 μM
Ca2+ and produced over 100% T2-weighted MRI signal changes in vitro. A key advantage of
the these agents is that because of their high relaxivity, they may be used at concentrations
(∼ 1 nM) that are both easier to deliver and less disruptive to cellular calcium dynamics than
Gd3+-based sensors (effective at 10−100 μM). A disadvantage of the SPIO calcium sensors is
that they respond relatively slowly to calcium changes [21]. As with the Gd3+-based calcium
sensors, fMRI with SPIO sensors could be possible once effective intracellular delivery
strategies are harnessed; SPIO uptake by brain cells in vivo has been demonstrated [22,23].

Ions of transition metals such as zinc and copper are also influenced by neural activity, and
alterations of transition metal homeostasis have been associated with a number of
neuropathologies. Gadolinium-based sensors for zinc [24] and copper [25], similar to the Li
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et al. [19] calcium sensor, have been synthesized and shown to produce T1 relaxation changes
in vitro. Zhang et al. [26] recently introduced an MRI zinc sensor derived from the Mn3+

complex with 5,10,15,20-tetraphenylporphinetetrasulfonic acid (Mn-TPPS). Because their
porphyrin framework and zinc-binding moieties are amphiphilic, these contrast agents are cell
permeable. The authors demonstrated zinc-dependent MRI signal changes in cells incubated
with the agent. Future studies will indicate to what extent this approach can be applied in intact
animals.

pH indicators
The extracellular medium becomes slightly acidified during neural activity [27]. Although
these changes (in the range from pH 7.2−7.4) are not restricted to individual neurons, they
could be monitored by pH-sensitive probes and used for functional fMRI. Both relaxation and
CEST-based MRI contrast agents work by mechanisms that involve water or proton exchange
(Figure 1A-C), which are inherently pH dependent and therefore easily compatible with pH
sensing. In fact, a diverse set of pH indicators for MRI has been described (reviewed in [28]),
though none of the indicators has yet been demonstrated to detect changes in neuronal activity.
In one of relatively few in vivo studies, Garcia-Martin et al. [29] used a phosphonated Gd3+-
based contrast agent to measure intravascular acidification in rat gliomas. Differences of the
order of one pH unit could be distinguished, and absolute pH values were obtained using a
calibration procedure [30]. The contrast agent used in this study experiences changes in T1
relaxivity over the broad range from pH 6−8 [31]; the sensor could in principle be applied for
functional brain imaging, following intracranial injection or blood-brain barrier disruption, but
MRI signal changes would be expected to be less than one percent under realistic pH
fluctuations (< 0.2 units) and agent concentrations (∼ 100 μM). Synthesis of novel sensors
optimized for sensitivity in the pH 7.2−7.4 range may therefore be critical to developing this
approach for fMRI. An alternative is the use of intrinsic protein amide proton contrast for
CEST-related pH imaging in the brain [32]. Initial studies applied this method to detect focal
ischemia in rats, involving pH changes on the order of 0.5 units.

Probes for metabolic activity
Changes in metabolic activity are closely coupled to neural signaling, and MRI contrast agents
sensitive to cellular respiration may be used for functional imaging. Given evidence that
metabolic processes including the consumption of oxygen are locally regulated on a much
faster timescale than changes in hemodynamics [33], direct monitoring of these variables could
provide more precise information about brain function than hemodynamic fMRI techniques
can. The best known oxygen sensitive contrast agent is the endogenous iron containing protein
hemoglobin, which underlies blood oxygen level dependent (BOLD) contrast [34].
Hemoglobin can also be used as an exogenous sensor in tissue [35], but it does not seem to
provide enough sensitivity to detect rapid deoxygenation events (“initial dips”) associated with
changes in neural activity. Cerebral metabolite uptake has traditionally been measured using
radioactive glucose analogs, in conjunction with positron emission tomography (PET) or
postmortem autoradiography. Golman et al. [36] have now introduced a sophisticated
technique for performing similar experiments by MRI. The technique involves following the
kinetics of a 13C-labeled metabolite, pyruvate, by 13C MRI (Figure 1D). Normally, 13C MRI
is too insensitive to detect pyruvate at physiologically relevant concentrations, but here the
authors used a method called dynamic nuclear polarization to boost the MRI signal
from 13C1-pyruvate using a specialized device [37]. Kinetics of pyruvate uptake and turnover
to lactate and alanine were followed in the muscles and abdominal organs of rats and pigs.
Whether this or related approaches can be useful for functional brain imaging is unclear at
present. Principal difficulties involve the relatively rapid decay of MRI signal from the tracer
(time constant 15−20 s in vivo), the fact that other metabolites (e.g. glucose) have much shorter
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decay times, and the need in fMRI applications for periodic or continuous supply [38] of
polarized agents to the brain.

Genetically-controlled contrast agents
The discovery of green fluorescent protein (GFP) and the development of genetically-encoded
fluorescent indicators like cameleons [39] and synaptophluorins [40] are continuing to
revolutionize the modern practice of neuroscience. Unlike fluorescent proteins, genetically
encodable contrast agents (most of them paramagnetic metalloproteins) are plentiful in nature,
but it is only in the past few years that any of these have been exploited as ectopically expressed
markers for imaging. The iron storage protein ferritin (Ft) encloses a core of ferrihydrite with
partially superparmagnetic properties, making Ft a close natural analog of SPIO contrast agents
[41]. In a 2005 paper, Genove et al. [42] demonstrated that viral-mediated overexpression of
Ft in mouse brain led to clear changes in T2-weighted images (Figure 2A). Iron loading and
relaxivity changes induced by Ft can be boosted by co-expressing transferrin receptor, another
participant in endogenous iron metabolism [43]. A recent report has now shown that Ft subunits
expressed in transgenic mice can be detected in multiple tissue types and in utero without
pathological side-effects [44], suggesting that Ft may find broad utility as a marker protein in
MRI. This study showed that Ft expression even in relatively sparse endothelial cells led to
detectable contrast changes (Figure 2B). Another protein contrast agent was cleverly designed
by Gilad et al. [45], who boosted the concentration of exchangeable amine protons in
transfected cells using an artificial lysine rich protein (LRP). Using the CEST MRI method
(see Figure 1C), cells expressing the LRP could be distinguished from controls both in test
tubes and in xenografted tumors (Figure 2C). Unlike Ft, which requires iron loading to induce
contrast, LRP is a contrast agent as soon as it is translated; this may permit LRP expression
changes to be detected on a shorter timescale than changes in Ft levels. On the other hand, MRI
signal changes reported by Gilad et al. [45] were relatively subtle and required long imaging
times to resolve (> 30 min.), and it is not yet known whether LRP expression-mediated contrast
may be generalized easily to other contexts.

How could genetically encoded contrast agents be used for functional brain imaging? Although
this has not been reported, a technically straightforward approach would be to express a protein
contrast agent under control of a promoter known to be regulated by neural activity, like those
of immediate early genes (IEGs) fos and arc. Because IEG protein induction generally persists
for hours [46], a method like this would not be useful for functional imaging on the timescale
of conventional fMRI or neurophysiology techniques, but it could be used in fairly simple (and
potentially longitudinal) mapping studies in animals, somewhat like Mn2+ labeling technique
discussed above. A more exciting direction from the perspective of systems neuroscience
would be the engineering of MRI sensors for neural activity using protein contrast agents as
building blocks. Key advantages of genetically encoded sensors over synthetic sensors include
the possibility that they might be genetically targeted to specific cell types, the relative ease of
delivering genes vs. imaging agents, and the fact that protein contrast agents may be cheaper
to use and easier to modify than many synthetic contrast agents.

Genetic mechanisms can be used to direct MRI contrast due to exogenous agents; “semi-
genetic” approaches to functional imaging might offer better sensitivity than protein contrast
agent expression, particularly if high relaxivity agents or enzymatic amplification strategies
are incorporated. Initial examples included detection of lacZ marker expression in developing
frog embryos using a gadolinium-chelating β-galactosidase substrate [47], and monitoring of
a transferrin receptor reporter gene in mice using transferrin-conjugated SPIOs [48]. Semi-
genetic contrast mechanisms based on a variety of marker proteins and receptors have now
been reported (reviewed in [49-51]), and design of contrast agents targeting RNA transcripts

Jasanoff Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2010 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



has also been described [52,53]. Measurement of biological processes in the nervous system
has not yet been convincingly demonstrated, however.

Conclusions
A number MRI contrast agents with potential utility for functional imaging have been
discussed. Table 1 summarizes advantages and disadvantages of many of the approaches.
Although some of the contrast agents have been applied in animals, only Mn2+ dependent
labeling has so far been used for functional imaging of neural activity. For basic neuroscience
studies, none of the new techniques is currently a surrogate for hemodynamic fMRI or invasive
neural recording methods. Major progress has been achieved recently, however, with the
development of new MRI probes for sensitive detection of brain-related physiological variables
and the introduction of protein and genetically-controlled contrast agents. Several of these
agents have been used to make measurements in vivo; applications to functional neuroimaging
appear feasible in some cases, perhaps within the next five years. In addition to the persistent
challenges of obtaining sensitivity and specificity for neural events, a hurdle in developing
molecular fMRI techniques further will be the need to distinguish molecular signatures of
activity from hemodynamic responses. Validation experiments in reduced preparations and in
animals with suppressed BOLD responses may be valuable. Future work in this area will
certainly focus on extending applications of the existing contrast agents in live animals, the
development of more genetically-controlled probes, and the creation of MRI sensors for
previously unexplored aspects of neural signaling, such as membrane potential and
neurotransmitter release.
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Abbreviations

BOLD Blood Oxygenation Level Dependent

BAPTA 1,2-bis-(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid

CaM Calmodulin

CEST Chemical Exchange Saturation Transfer

DNP Dynamic Nuclear Polarization

DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

fMRI Functional Magnetic Resonance Imaging

IEG immediate early gene

SPIO Superparamagnetic Iron Oxide

TPPS 5,10,15,20-tetraphenylporphinetetrasulfonic acid
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Figure 1. Contrast mechanisms in molecular MRI
Signal in MRI is proportional to the concentration of directly detected nuclei in the specimen
(usually protons in water molecules), the degree to which these nuclei are polarized by the
scanner's magnetic field, manipulations due to MRI acquisition schemes called pulse
sequences, and the relaxation rates (T1 and T2) that determine how quickly nuclei in the
specimen return to equilibrium after being manipulated by the pulse sequence. (A)
Paramagnetic atoms promote T1 relaxation-based contrast in conventional MRI by interacting
with water molecules (left). Gadolinium atoms (green) are effective at this because of their
high electron spin (S = 7/2); Mn2+ (S = 5/2) and a variety of other metal ions may also be used.
These atoms are often incorporated into chelates (Gd3+-dielthylenetriaminepentaacetic acid
shown) to improve solubility and reduce toxicity. Relaxation occurs when water molecules
(cyan) sample magnetic field perturbations (yellow) created by the paramagnetic atom, either
through direct coordination (dotted gray line), or through space. Sensors may be constructed
by making aspects of this interaction dependent on an environmental variable or molecular
target. T1-weighted imaging (right) may be performed using a variety of pulse sequences.
Following one or more pulses (vertical gray bars), image data are acquired in the Fourier
domain (black trace). Repetition of the pulse sequence causes progressive attenuation due to
saturation of the signal, toward a steady state value that determines image intensity (top right).
Addition of a T1 contrast agent relieves this effect (bottom right) and leads to image brightening
in areas where the contrast agent is concentrated. (B) Although most paramagnetic contrast
agents induce both T1 and T2 relaxation, superparamagnetic nanoparticles including SPIOs
have the highest T2 relaxivity, and relatively low T1 relaxivity. SPIOs typically contain a core
of iron oxide 3−10 nm diameter (green), surrounded by a biocompatible organic coating with
a total diameter of 10−100 nm (gray). Particles induce magnetic perturbations (yellow) that
induce relaxation of water molecules diffusing in proximity (blue arrows). The particle size
and shape of its field perturbation influence its relaxivity [54]—this relationship is the basis
of sensors formed by making SPIO aggregation dependent on presence of a target molecule
[55]. T2 relaxation occurs during the time between each application of the pulse sequence and
acquisition of the signal (black traces, right). Addition of a T2 contrast agent causes reduction
of the MRI signal (bottom right) and leads to image darkening in areas where the contrast agent
is concentrated. (C) Chemical exchange saturation transfer (CEST) contrast can be produced
using agents with exchangeable protons that have MRI resonance frequencies (chemical shifts)
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well resolved from the frequency of water molecules [5]. The example shown is the indole
nitrogen proton (indigo) of 5-hydroxytryptophan. The spectrum of chemical shifts in a solution
of this agent is schematized by the gray trace at the bottom left, where resonances of the CEST
agent protons and water protons are indicated by indigo and cyan arrowheads, respectively.
CEST contrast is produced by modifying a typical imaging pulse sequence to include a
continuous saturation pulse or pulse train (red box, bottom right) matched to the frequency of
the CEST protons. The saturation pulse directly decreases MRI signal due to the CEST protons
(which are usually too dilute to image), but indirectly reduces signal from water protons (cyan
arrowhead) because they are in exchange with the CEST proton pool. This effect leads to local
darkening of MRI signal in areas where CEST agents are concentrated; contrast may be turned
on and off by changing the power or frequency associated with the saturation pulse. Sensors
may be based on modulation of the exchange rate or resonance frequency of labile protons on
a CEST agent. (D) Contrast agents incorporating 13C, 19F, or a variety of other nuclei may be
imaged directly using modified MRI hardware. Images of 13C agent distribution may be
formed, analogous to standard proton images, but typically with much lower resolution and
signal-to-noise ratio. Spectroscopic imaging techniques measure the distribution of species
with different chemical shifts at each position in space (red trace). In experiments of Golman
et al. [36], carbon resonances of 13C1-labeled pyruvate (green) and its reduction
product 13C1-lactate (gray) could be distinguished using this approach (right). Relative
amounts of the two species were indicative of local metabolic rate. Images like the one shown
(left) were obtained only with the use of 13C-labeled agents that had been hyperpolarized to
boost MRI signal, prior to imaging [37].
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Figure 2. Genetically-encoded MRI contrast agents
(A) T2-weighted MRI contrast observed 11 days after adenoviral transfection of ferritin heavy
and light chain (H-Ft and L-Ft) genes into mouse striatum (coronal section shown). Signal
darkening (cyan arrowhead) was associated with Ft expression, confirmed by
immunohistochemistry. Injection with control virus harboring the lacZ gene (red arrowhead)
did not produce MRI signal changes. Images were obtained in a 11.7 T scanner with a resolution
of 0.1 × 0.1 × 0.75 mm. Adapted from ref. [42] with permission. (B) Comparison of R2 maps
(R2 = 1/T2) obtained from mice expressing H-Ft in vascular endothelial cells (bottom) with
non-expressing control animals (top). Color maps show R2 values ranging from 10−20 s−1,
superimposed on gray anatomical scans from the same animals at 4.7 T (234 μm in-plane
resolution). Significant differences in R2 were observed in hippocampus (white arrowhead),
despite the relatively low fraction of cells expressing Ft. Adapted from ref. [44] with
permission. (C) A map of CEST contrast (difference in signal between on-resonance and off-
resonance saturation conditions, see Figure 1C) in mouse brains containing xenografted 9L rat
glioma cells expressing LRP (left, cyan arrowhead) or GFP (right, red arrowhead). CEST signal
(0.56 mm in-plane resolution at 11.7 T) is expressed as percent intensity difference with respect
to baseline in the brain (color scale), overlaid on a corresponding anatomical image (gray).
LRP expressing tumors showed 8.2 ± 3.2% intensity difference, vs. 3.5 ± 3.3% for controls.
Apparent CEST contrast outside the brain is due to magnetic field inhomogeneities, which
dramatically influence results from this technique. Scale bar = 2 mm. Adapted from ref. [45]
with permission.
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Table 1

Selected MRI contrast agents with possible utility for functional brain imaging.

Contrast Agent Application Advantages Limitations

Indicators for Ca2+ and other metal ions

Mn2+ as Ca2+ mimetic [14,15,56] > 100 μm resolution T1-weighted
activity mapping and tract
tracing.

Mn2+ labeling is
performed prior to
imaging; signal persists
for hours.

Long labeling times
required. Real time
imaging not feasible.

BAPTA-based Gd3+ complex (Gd-DOPTA) [19] T1 relaxivity change (3.3−5.8
mM−1s−1) demonstrated in vitro
(11.7 T).

Strong relaxivity change
for a Gd3+ agent. Likely
fast Ca2+ responses.

Not yet applied in vivo.
High concentrations (10
−100 μM) required.

SPIOs conjugated to calmodulin (CaM) and CaM
targets [20]

T2 relaxivity change [200 to 40
(mM Fe)−1s−1] observed in vitro
(4.7 T).

Low concentrations may
be used. Easy synthesis
with "tunable" affinity.

Not yet applied in vivo.
Slow response kinetics
and large size (50 nm).

Mn3+-porphyrin zinc sensor [(DPA-C2)2-Mn-
TPPS3] [26]

2 to 5-fold T1 and T2 changes
seen with 100 μM agent in cells
(4.7 T).

Agent is membrane
permeable. Metal-free
analog is fluorescent.

Reversibility and
relaxivity mechanism
not yet established.

pH indicators

Endogenous amide protons [32] 0.5 pH unit changes observed by
CEST imaging in rats (4.7 T).

Endogenous contrast
source suitable for human
imaging.

0.2 unit pH changes
relevant to brain
function probably
undetectable.

Phosphonated Gd3+ complex (GdDOTA-4AmP5−)
[31]

T1 relaxivity change 3.5−6.8 with
vascular pH drop from 8 to 6 (4.7
T).

Compatible with high
resolution imaging.
Calibration possible.

0.2 unit pH changes may
be undetectable.
Delivery route required.

Probes for metabolic activity

Exogenous hemoglobin [35] Signal changes of 50% observed
in fly brains with O2 0−21%.

Large T2-relaxivity
change (0−7 mM−1s−1 at
14.1 T).

Sensitivity not ideally
matched to PO2 in brain.
fMRI not demonstrated.

Hyperpolarized 13C1-pyruvate [36] Millimeter-resolution 13C image
series acquired over 40 s at 1.5 T.

Multiple species tracked
at once. Agents almost
identical to metabolites.

Only low resolution
possible. Constant
supply of agent required.

Genetically-controlled contrast agents

Ferritin (Ft) [42,44] T2-weighted contrast detected in
transfected and transgenic mice.

Contrast detectable in
sparse cell populations.
No apparent toxicity.

Relaxivity of Ft
relatively low. Contrast
changes slow to develop.

Artificial lysine-rich protein (LRP) [45] 5% signal change observed in
LRP-expressing xenografts (11.7
T).

Contrast independent of
prosthetic groups; may be
"switched" on and off.

Long image acquisition
times usually required
with CEST mechanism.

Gd3+-binding substrate (EGadMe) for β-
galactosidase [47]

Injected frog embryos
expressing β-gal showed ∼ 50%
signal changes.

Low levels of β-gal
detected. Widespread use
of β-gal as a marker.

Exogenous agent must
be delivered. Relaxivity
change is irreversible.

Transferrin (Tf)-conjugated SPIOs [48] Tumors expressing transferrin
receptor distinguished from
controls.

SPIO agent detectable at
low levels. Receptor
catalyzes agent uptake.

Exogenous agent
required. Contrast slow
to build up and reverse.
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