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SUMMARY
We address the asymptotic and approximate distributions of a large class of test statistics with
quadratic forms used in association studies. The statistics of interest take the general form D = XT

AX, where A is a general similarity matrix which may or may not be positive semi-definite, and X
follows the multivariate normal distribution with mean μ and variance matrix Σ, where Σ may or
may not be singular. We show that D can be written as a linear combination of independent chi-
square random variables with a shift. Furthermore, its distribution can be approximated by a chi-
square or the difference of two chi-square distributions. In the setting of association testing, our
methods are especially useful in two situations. First, when the required significance level is much
smaller than 0.05 such as in a genome scan the estimation of p-values using permutation
procedures can be challenging. Second, when an EM algorithm is required to infer haplotype
frequencies from un-phased genotype data the computation can be intensive for a permutation
procedure. In either situation, an efficient and accurate estimation procedure would be useful. Our
method can be applied to any quadratic form statistic and therefore should be of general interest.
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INTRODUCTION
The multilocus association test is an important tool for use in the genetic dissection of
complex disease. Emerging evidence demonstrates that multiple mutations within a single
gene often interact to create a ‘super allele’ which is the basis of the multilocus association
between the trait and the genetic locus [Schaid et al. 2002]. For the case-control design, a
variety of test statistics have been applied, such as the likelihood ratio test, the logistic
regression model, the χ2 goodness-of-fit test, the score test, and the similarity- or distance-
based test, etc. Many of these statistics have the quadratic form XT AX or are functions of
quadratic forms, where X is a vector of functions of the phenotype and A is a matrix
accounting for the inner relatedness of haplotype or genotype categories. Some of these test
statistics follow the chi-square distribution under the null hypothesis. For those that do not
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follow the chi-square distribution, the permutation procedure is often performed to estimate
the p-value and power [Sha et al., 2007, Lin et al. 2009].

Previous attempts to find the asymptotic or approximate distribution of this class of statistics
have been limited or case-specific. Tzeng et al. [2003] advanced our understanding of this
area when they proposed a similarity-based statistic T and demonstrated that it
approximately followed a normal distribution. The normal approximation works well under
the null hypothesis provided that the sample sizes in the case and control populations are
similar. However, the normal approximation can be inaccurate when the sample sizes differ,
when there are rare haplotypes or when the alternative hypothesis is true instead, as we
describe later. Schaid [2002] proposed the score test statistic to access the association
between haplotypes and a wide variety of traits. Assuming normality of the response
variables, this score test statistic can be written as a quadratic form of normal random
variables and follows a non-central chi-square distribution under the alternative hypothesis.
To calculate power, Schaid [2005] discussed systematically how to find the non-central
parameters. However, their result cannot be applied to the general case when a quadratic
form statistic does not follow a non-central chi-square distribution, such as the test statistic T
[Tzeng et al. 2003] or S [Sha et al. 2007].

In the power comparisons made by Lin and Schaid [2009], power and p-values were all
estimated using permutation procedures. However, a permutation procedure is usually not
appropriate when the goal is to estimate a probability close to 0 or 1. For example, if the true
probability p is about 0.01, 1,600 permutations are needed to derive an estimate that is
between p/2 and 3p/2 with 95% confidence. The number of permutations increases to 1.6
million if p is only 10–5. Consequently, permutation tests are not suitable when a high level
of significance is being sought.

Additional complications arise with permutations since most of the data in the current
generation of association studies are un-phased genotypes. To explore the haplotype-trait
association, the haplotype frequencies are estimated respectively in cases and controls using
methods such as the EM-algorithm [Excoffier and Slatkin, 1995; Hawley and Kidd, 1995] or
Bayesian procedures [Stephens and Donnelly, 2003]. This process is again computationally
intensive because in each permutation, the label of case or control to each individual is
randomly assigned and therefore the haplotype frequencies need to be re-estimated every
time. Sha et al. [2007] proposed a strategy to reduce the number of rare haplotypes, which
leaded to a computationally efficient algorithm for the permutation procedure. This method
is considerably faster than the standard EM algorithm. However, since the testing method is
still based on permutations it is not a satisfactory solution to the computational problem.

The permutation procedure can also be very computationally intensive when estimating
power. In a typical power analysis, for example, the significance level is 0.05 and power is
0.8. Under these assumptions the p-value could be based on 1,000 permutations.
Subsequently if the power of the test is estimated with 1,000 simulations, the statistic must
be calculated 1 million times. Though one can argue that the time required using a
permutation procedure can be reduced dramatically by using a two stage method: on the first
stage, one use a small number of permutations to assess whether the p-value is likely to be
small, if not, one could establish that and save time, a large number of permutations is still
needed for the replicates that have small p-values. In practice, to apply the multilocus
association test method to genome-wide studies, the required significance level would be
many orders of magnitude below 0.05 to account for multiple comparisons and even 1,000
minimal permutations will often be completely inadequate.
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Based on these considerations, it is apparent that a fast and accurate way to estimate the
corresponding p-value and associated power would be an important methodological step
forward and make it possible to generalize the applications of the current quadratic form
statistics. In this paper, we explore the asymptotic and approximate distribution of those
statistics. Based on the results of these analyses, p-values and power can be estimated
directly, eliminating the need for permutations. We assess the robustness of our methods
using extensive simulation studies.

To simplify the notation, we use the statistic S proposed by Sha et al. [2007] as an
illustrative way to display our methods. We first assume that the similarity matrix A is
positive definite. We then extend this analysis to the case when A is positive semi-definite
and the more general case assuming symmetry of A only. This is important because A is
often not positive definite in practice. In the simulation studies, we use qq-plots and
distances between distributions to explore the performance of our approximate distributions.
In addition, we examine the accuracy of our approximations at the tails. As an additional
example, we apply our method to the statistic T proposed by Tzeng et al. [2003] and
compare the result with their normal approximation. Finally, we use our method to find the
sample size needed for a candidate gene association study when linkage phase is unknown.

METHODS
Notations

Assume that there are k distinct haplotypes (h1, · · · , hk) with frequencies p = (p1, · · · , pk)T

in population 1 and q = (q1, · · · , qk)T in population 2. In addition, we assume Hardy-
Weinberg Equilibrium and observed haplotype phases. We also assume that sample 1 and
sample 2 are collected randomly and independently from population 1 and population 2
respectively. Let nj and mj, j = 1, · · · , k, represent the observed count of haplotype hj in

sample 1 and sample 2 respectively. Let  ni = size of sample 1,  mi = size of
sample 2, p̂ = (p̂1, · · · , p̂k)T =(n1, · · · , nk)T/n, q̂ = (q̂1, · · · , q̂k)T = (m1, · · · , mk)T/m, aij =
S(hi, hj) = the similarity score of haplotypes hi and hj, and A = (aij) = the k × k similarity

matrix. Let s = p − q and ŝ = p̂ − q̂. Then Sha et al.'s statistic is defined as ,
where  is an estimate of the variance of ŝT Aŝ under the null hypothesis. In this paper, we
focus on the distribution of Ds = ŝT Aŝ since asymptotically,  can be treated as a constant.

The Asymptotic Distribution
In short, Ds asymptotically can be written as a linear combination of chi-square distributions
with a constant shift for a general nonsingular similarity matrix A. To state this conclusion in
detail, we define the necessary notation below (see Appendix I for proofs).

It is easy to see that E(ŝ) = s and Var(ŝ) = Σs = Σp + Σq, where Σp = Var(p̂) = (P – ppT)/n
with P = diag(p1, · · · , pk) being a k × k diagonal matrix. Likewise, Σq = (Q – qqT)/m is the
variance matrix of q̂. Let rσ denote the rank of Σs. Then rσ ≤ k – 1 since ŝ = (ŝ1, · · · ,ŝk)T only

has k - 1 free components due to the restriction . If we assume pi + qi > 0 for all i =
1, · · · , k, then rσ = k – 1. Since Σs is symmetric and positive semi-definite, there exists a k ×
k orthogonal matrix U = (u1, · · · , uk), and a diagonal matrix Λ = diag(λ1, · · · , λrσ, 0), such
that Σs = UΛUT and λ1 ≥ · · · ≥ λrσ > 0. Define matrices Uσ = (u1, · · · , urσ) which is k × rσ,
Λσ = diag(λ1, ··· , λrσ) which is rσ × rσ, and  which is k × rσ of rank rσ.
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Let . Define V to be a rσ × rσ orthogonal matrix such as W =
VΩVT, where Ω = diag(ω1, ··· , ωrσ) is a diagonal matrix. Then W is nonsingular when A is
Nonsingular. Therefore, Ω–1 = diag(1/ω1, ···, 1/ωrσ) is well-defined. Let

 As and c = sT As – bT Ωb. Then Ds can be written as

(1)

where Y = (Y1, · · · , Yrσ) follows the multivariate standard normal distribution.

Provided that the similarity matrix A is positive definite, then W will also be positive
definite. We may assume that ω1 ≥ · · · ≥ ωrσ > 0. In this case, a non-central shifted chi-
square distribution can be used for approximation, which is discussed in detail in the next
two subsections. Note that equation (1) is true for any general variance matrix Σs. In the
special case when Σs is non-singular, it is easy to verify that the shift c = sT As – bTΩb is
always 0.

The Approximate Distribution
The probability calculation for quadratic form D = XT AX is usually not straightforward
except in some special cases. The approximations based on numerical inversion of the
characteristic function can be very accurate [Imhof, 1961; Davies, 1980], however, they are
not easy to implement and require a lot of computation. The alternative majority of
approximation approaches are based on the moments of D [Solomon and Stephens 1977,
1978]. Those approaches compare the cumulants of D and a chi-square random variable.
Since the chi-square distribution function is available in nearly all statistical packages, it is
much easier to implement. Liu et al. [2009] proposed a non-central shifted chi-square
approximation by fitting the first four cumulants of D which is better than the current
widely-used Pearson's three-moment central chi-square approximation approach [Imhof,
1961]. Unfortunately, Liu et al. [2009] assume X has a nonsingular variance matrix while in
our case the rank of Σs is at most k − 1. In addition, they assume A is positive semi-definite
which is not necessarily true in our situation. We extend Liu's approximation for a general
similarity matrix A, which might be positive definite or not, singular or not; and for a
general variance matrix Σs, which might be singular or not.

Following the idea of Liu et al. [2009], we first derive the corresponding formula for
singular variance matrix Σs with positive definite A (see Appendix II for details). Define κν =

2ν–1(ν – 1)!(tr((AΣs)ν) + νsT (AΣs)ν–1As), ν = 1, 2, 3, 4. Let  and . If

s1 ≤ s2, let δ = 0 and dfa = 1/s1. Otherwise, define , and let

 and . Now let , and β2 = dfa + δ –
β1κ1. Then we have the following 4-cum approximation:

(2)

Note that if s = 0, we have b = c = 0 and . According to Satorra and Bentler
[1994], the distribution of the adjusted statistic βDs can be approximated by a central chi-
square with degrees of freedom df0, where β is the scaling parameter based on the idea of
Satterthwaite et al. [1941]. Denote the trace of a matrix as tr(·). Then β = tr(W)/tr(W2) and

TONG et al. Page 4

Ann Hum Genet. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



df0 = (tr(W))2/tr(W2), where tr(W) = tr(AΣs) and tr(W2) = tr(AΣsAΣs). This method is referred
to in this paper as the 2-cum approximation.

Calculation of P-value, Critical Value and Power
The p-value is calculated under the null hypothesis H0 : p = q. In this case, the true
haplotype frequencies p and q are usually unknown, although the difference s = p − q is
assumed to be zero. Therefore, both the 4-cum and 2-cum approximations can be used to
find the p-value. We show only the results for the 4-cum approximation; the 2-cum
approximation under the null hypothesis can be applied likewise. To find the corresponding
β1 and β2 in the 4-cum approximation, we can use 0 to replace s and  to replace Σs. Here

 is a consistent estimate of Σs with ,
, and  for i = 1, . . . , k. Note that the center parameter δ

is always 0 under the null hypothesis. To prove this, it is sufficient to show s1 ≤ s2, which is
equivalent to [tr((AΣs)3)]2 ≤ [tr((AΣs)2)][tr((AΣs)4)], itself a direct conclusion from Yang et
al. [2001]. Then the p-value is estimated as

(3)

Equivalently, let  be the quantile such that . Then the critical value  for
rejection at significance level α is

(4)

Power is usually calculated when p and q are known but not equal. In this case, the values of
s = p – q and Σs = Σp + Σq = (P – ppT)/n + (Q – qqT)/m are both known. Let  be the critical
value as defined in equation (4). The power to reject H0 at significance level α is

(5)

Extension for General Similarity Matrix
We assume that the similarity matrix A is positive definite in formulas (1) to (5). However,
in practice, A can be singular or have negative eigenvalues.

If A is singular, that is, rank(A) = ra < k, there exists an orthogonal matrix G = (g1, · · · , gk)
and a diagonal matrix Γ = diag(γ1, · · · , γra, 0, · · · , 0), where γ1 ≠ 0, · · · , γra ≠ 0, such that A
= GΓGT . Let Ga = (g1, · · · , gra) and Γa = diag(γ1, · · · , γra). Then A can be written as

. Now define . We have , where Γa is nonsingular and
ŝa asymptotically follows a normal distribution with mean  and variance

. Therefore, even if A is singular, we can perform the above calculation to
reduce its dimensionality and convert it into a non-singular matrix Γa. Then by replacing s
with μa, Σs with Σa, and A with Γa, all the above formulas can be applied as long as A does
not have negative eigenvalues. We apply this method in the example of HapMap 3 data,
where the similarity matrices are often singular or nearly singular.

If A is nonsingular but has negative eigenvalues, equation (1) is still true although formulas
(2) to (5) are not. In this case, we need to find the actual matrix W according to its definition.
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Next, we separate the eigenvalues of W into positive and negative groups. Assume that W
has rp positive and rn negative eigenvalues, where rp + rn = rσ. Without loss of generality,
let ω1 > 0, · · · , ωrp > 0 and ωrp+1 < 0, · · · , ωrp+rn < 0. Now define ŝ1 = (Y1 + b1, · · · , Yrp +
brp)T and A1 = diag(ω1, · · · , ωrp). We get quadratic form , where A1 is positive
definite. Therefore, its distribution can be approximated using formula (2). Similarly, define
ŝ2 = (Yrp+1 + brp+1, · · · , Yrp+rn + brp+rn) and A2 = diag(–ωrp+1, · · · , –ωrp+rn). Then

. Likewise, we can get the approximate distribution of D2. Since Ds = D1 –D2 +
c, the corresponding probability of Ds can be calculated by the technique described in
Appendix IV. We apply this method in the simulation study when using length measure for
Gene I, where the similarity matrix has both positive and negative eigenvalues. This method
is also applied to find the approximate distribution of Dt [Tzeng et al. 2003].

Software Availability
We have integrated our approaches in an R source file named quadrtic.approx.R. Given the
mean μx and variance Σx of X, this R file contains subroutines to estimate: (i) the probability
p = P{XT AX ≤ d} for a specific d, which is useful in approximating p-values or power; (ii)
the quantile d* such that α = P{XT AX ≤ d*} for a specific α; and (iii) the required sample
size for a specific level of significance α and power 1 – β. This R file, as well as the readme
and example files, can be downloaded from http://webpages.math.luc.edu/ltong/software/.

Simulation Study
In the simulation studies, we use the same four data sets as in Sha et. al. [2007]: Gene I,
Gene II, Data I and Data II. Genes I and II represent two typical haplotype structures [Knapp
and Becker, 2004]. There are 5 typed SNPs and 15 distinct haplotypes in Gene I and 10
typed SNPs and 21 distinct haplotypes in Gene II. Data I come from the study of association
between DRD2 locus and alcoholism [Zhao et. al., 2000]. There are 3 typed SNPs and 8
distinct haplotypes in Data I. Data II come from the Finland-United States Investigation of
Non-Insulin-Dependent Diabetes Mellitus Genetic Study [Epstein and Satten, 2003]. There
are 5 typed SNPs and 17 distinct haplotypes in Data II (some of the haplotypes show up in
normal group only and some in disease group only). We also consider three similarity
measures: (i) matching measure - 1 for complete match and 0 otherwise; (ii) length measure
- length spanned by the longest continuous interval of matching alleles; and (iii) counting
measure - the proportion of alleles in common. We explore the performance of our
approximations to the statistics Ds = (p̂ – q̂)T A(p̂ – q̂) [Sha et al. 2007] and Dt = p̂T Ap̂ –
q̂T Ap̂ [Tzeng et al. 2003] using sample sizes: n = m = 20, 50, 100, 500, 1000, 5000, and
10000.

Application to HapMap 3 data
For given values of significance level and power, we calculate sample size required to claim
a significant difference in haplotype distributions around the LCT gene (23 SNPs) between
two distinct populations: HapMap3 CHB (n = 160) and HapMap3 JPT (m = 164) using the
statistic Ds. Since the linkage phase information is unknown, an EM algorithm was used to
estimate the frequency of each distinct haplotype category.

RESULTS
Simulation Study

Figure 1 shows the qq-plot of the 2-cum and 4-cum approximations versus the empirical
distributions of Ds for Data II under the null and alternative hypotheses with sample size n =
m = 100. The x-axes are the quantiles of Ds, which are estimated based on 1.6 million
independent simulations according to the true parameter values. The y-axes are the
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theoretical quantiles of our approximations based on the true parameter values. The range of
the quantiles is from 0.00001 to 0.99999. From Figure 1, we observe that most of the points
are around the straight line y = x, which leads to the conclusion that our approximations are
good in general even when there are rare haplotypes such as in this example. At the right
tails of the plots under the null hypothesis, the 2-cum approximations are all below the
straight line, which indicates that the 2-cum approximation tends to underestimate the p-
values. This is further verified in Table 2 below. The 4-cum approximation appears to
perform better than the 2-cum one under the null hypothesis. We also examined the qq-plots
as the sample size increased. As expected, our approximations are more accurate with larger
sample sizes (results not shown here). The plots on the second row indicate that the 4-cum
approximation is fairly accurate under the alternative hypothesis. The patterns for the other
data sets are similar.

Table 1 compares the Kolmogorov distance (K-dist) and the Craimer-von Mises distance
(CM-dist) [Kohl and Ruckdeschel, 2009] between the 4-cum approximation and the
empirical distribution of Ds and those distances between the permutation procedures and the
empirical one for different sample sizes. The Kolmogorov distance measures the maximum
differences between two distribution functions, while the Craimer-von Mises distance
measures the average differences throughout the support of x (See Appendix III for more
details). The empirical distribution is based on 10K simulations under the null hypothesis.
To get Table 1, we first use the true parameter values p(= q) in the approximations (Table 1,
rows ‘true’). Then we simulate 20 independent samples and replace p(= q) and Σs with 
and  respectively. The distribution based on 1000 permutations is also calculated for each
of the 20 samples. We did not perform permutations when n = m ≥ 1000 because those
procedures are very slow when n and m are large. For each method, the mean and standard
deviation of distances based on these 20 samples are displayed in Table 1, rows ‘mean’ and
‘s.d.’. To simplify the output, we show only the results for Gene I using the matching
measure.

From Table 1, we observe that for the 4-cum approximation, the mean distances using
estimated parameter values converge to the distance using the true parameter values when
sample sizes n and m increase. This is because both the asymptotic and the approximate
components contribute to the distance. When sample sizes increase, the discrepancy due to
the asymptotic component decreases eventually to zero, however, the discrepancy due to the
approximate component does not. For example, the K-dist for the 4-cum method based on
true parameter values decreases from 6.30% to 4.82% when the sample size increases from
20 to 50. But when the sample size increases from 50 to 10,000, this distance stays constant
around 4.6%. Compared with the permutation procedure, the 4-cum approximations show
better performance for n as small as 20, and comparable performance when n is reasonably
large. As for computational intensity, the permutation procedure in this case costs about 6
hours using a standard computer with Intel(R) Core(TM) CPU @ 2.66 GHz and 3.00 GB of
RAM, while only two seconds are needed using our approximations. Moreover, when the
sample size increases, the computational time increases rapidly for a permutation procedure,
while it stays the same for our approximations.

Table 2 compares the distances from the 2-cum and 4-cum approximations using true
parameter values for all the data sets and similarity measures when n = m = 100. When
sample sizes are as large as 100, the distances are mainly due to the approximation, not the
asymptotic part (conclusion from Table 1). Since the Cramer-von Mises distances from the
4-cum approximations are smaller in general, we conclude that the 4-cum approximation
performs better than the 2-cum approximation on average. However, there are some
situations when the 2-cum approximation is preferred, such as those in the column
‘Counting’ under ‘K-dist’ in Table 2. To determine how much of the distance is due to the
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discrete empirical distribution of Ds, we also examined the distance between the
approximate distributions with their own empirical distributions based on 10K independent
observations. The average Kolmogorov distance is around 0.87% and the average Cramer-
von Mises distance is around 0.38%, which are about 20% of the average distances in Table
2. Therefore, for the 2-cum and 4-cum approximation, the average Kolmogorov distances
due to approximation are around (3.46%, 5.20%) and (4.43%, 6.17%) respectively; the
average Cramer-von Mises distances are around (1.75%, 2.51%) and (1.28%, 2.04%)
respectively.

Table 3 explores the performance of the 4-cum approximation and the permutation
procedure to estimate probabilities at the right tails for Data II using a matching measure.
Notice that the 4-cum approximation is accurate in estimation of a p-value of 0.1%. For
probabilities around 0.01%, the 4-cum approximation tends to slightly underestimate the
true value. For probabilities around 0.001%, we list results in the last column of Table 3.
However, since the number of simulations is limited, we can have only modest confidence
in these approximations, although it is evident that those approximations will provide
underestimated probabilities. Note that this also indicates that the type I error rates could be
slightly higher than expected when using a small significant level, such as 0.01% or 0.001%.
The permutation procedure gives good estimates for a p-value as small as 0.01% if the
number of permutations is large enough (160K here). However, in the last column of Table
3, we note that the standard deviation of estimated p-values is 0.001%, which is about the
same as the mean (0.0012%) of these estimates. This is because 160K permutations are far
too few to give accurate estimate of a p-value of 0.001%. The conclusions based on the
other data sets are similar (results not shown).

Table 4 summarizes the results for approximate distributions of Ds under the alternative
hypothesis when n = m = 20, 100, or 1000, which is useful in a power analysis. In this
situation, we assume that the parameter values are known. The quantiles at (0.50, 0.60, 0.70,
0.80, 0.90, 0.95) are estimated through 160K simulations. Table 4 shows the corresponding
probabilities that are greater than or equal to these quantiles under the alternative hypothesis
using the 4-cum approximation. Since most of the estimated powers are close to the
empirical value, we conclude that the power estimation is fairly accurate with moderate
sample size (n = m = 100) and moderate true power (less than 95%).

Figure 2 shows the qq-plot of the 4-cum approximation and the normal approximation
versus the empirical distributions of Dt [Tzeng et al. 2003]. From this figure, we can see that
our 4-cum approximation can approximate the distribution of Dt very well even when the
smaller sample size is as small as 50. If the smaller sample size increases to 1000, the
normal approximation also becomes acceptable.

Application to HapMap 3 Data
Table 5 lists the required sample size for given values of significance level and power using
a counting measure. Using the approximations described in our METHODS section, we can
easily calculate the required sample size. The quantities needed here are haplotype lists,
frequencies and variance estimates for each population separately and jointly, which can be
estimated using the EM algorithm. We first use the package haplo.stat [Sinnwell and Schaid,
2008] in R to find the starting value. Then we use a stochastic EM to refine the estimated
haplotype frequency and its variance. Note that all these calculations take only minutes on a
standard computer with Intell(R) Core(TM) CPU @ 2.66 GHz and 3.00 GB of RAM.
However, it requires at least several days to finish a single calculation using a permutation
procedure.
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DISCUSSION
In summary, the major contribution of the analytic approach presented in this paper is the
description of the asymptotic and approximate distributions of a large class of quadratic
form statistics used in multilocus association tests, as well as efficient ways to calculate the
p-value and power of a test. Specifically, we have shown that the asymptotic distribution of
the quadratic form ŝT Aŝ is a linear combination of chi-square distributions with a shift. In
this situation, ŝ asymptotically follows a multivariate normal distribution which may be
degenerate.

To efficiently calculate the p-value under the null hypothesis s = E(ŝ) = 0, we propose the 2-
cum and 4-cum chi-square approximations to the distribution of ŝT Aŝ. We extended the 4-
cum approximation in Liu et al. [2009] to allow singular variance matrix of ŝ and general
symmetric matrix A which may not be positive semi-definite. Generally speaking, the 4-cum
is better than the 2-cum approximation when dealing with probabilities less than 0.01.
Nevertheless, the latter may perform better for moderate probabilities, say 0.05. On the other
hand, the 2-cum method only involves the products of up to two k × k matrices, while the 4-
cum approach relies on a product of four k × k matrices. When the number of haplotypes k is
large, the 2-cum approach is computationally much less intensive. To estimate the power of
a test, however, only the 4-cum approximation is valid.

The similarity matrix A can be singular or nearly singular due to missing values. In this case,
we decompose A and perform dimension reduction to get a smaller but nonsingular
similarity matrix. The most attractive feature of our method is that we do not need to
decompose matrices Σs or W when A is positive semi-definite because the decompositions
do not appear in the final formula. This not only simplifies the formula, but also results in
better computational properties since it is often hard to estimate Σs accurately.

In this paper we do not consider the effect of latent population structure. It has been widely
recognized that the presence of undetected population structure can lead to a higher false
positive error rate or to decreased power of association testing [Marchini et al. 2004].
Several statistical methods have been developed to adjust for population structure [Devlin
and Roeder 1999, Prichard and Rosenberg 1999, Pritchard et al. 2000, Reich and Goldstein
2001, Bacanu et al. 2002, Price et al. 2006]. These methods mainly focus on the effect of
population stratification on the Cochran-Armitage chi-square test statistic. It would be
interesting to know how these methods can be applied to the similarity or distance-based
statistic to conduct association studies in the presence of population structure.

Our methods can potentially be applied to the genome-wide association studies because the
computations are fast and small probabilities can be estimated with acceptable variation. To
perform a genome screen one must define the regions of interest manually, which will be
exceedingly tedious. However, due to limitation in length, we do not discuss the problem of
how to define haplotype regions automatically. Clearly before this approach can be applied
in practice, such methods and software will have to be developed. We also propose to
explore this issue in the future.
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Appendix

I: Proof that Ds can be written as a linear combination of independent chi-
square random variables under the alternative hypothesis

According to multivariate central limit theorem, ŝ is asymptotically normally distributed
with the mean vector s = p − q and variance matrix Σs. Note that  while  =
who knows what. Then  and there exist rσ independent standard normal
random variables Z = (Z1, · · · , Zrσ) such that ŝ ≈ BZ + s for sufficiently large n and m. Then
we have

Since W = BT AB = VΩVT, then ZT BT ABZ = ZTWZ = ZTV · Ω · VTZ = YTΩY, and sT ABZ =
sT ABVΩ–1 · Ω · VTZ = bTΩY, where Y = VTZ ~ N(0, Irσ). Let c = sT As – bTΩb. We have

II: Four-cumulant non-central chi-square approximation
Rewrite the original statistic D = ŝT Aŝ into its asymptotic form (Y + b)TΩ(Y + b) + c (see
Appendix I). We only need to consider the shifted quadratic form

where Yb = Y + b ~ N(b, Irσ), and Ω = diag(ω1, . . . , ωrσ) with ω1 ≥ ω2 ≥ · · · ωrσ > 0.

According to Liu et al. [2009], the th cumulant of Q(Yb) is

In our case, for ν = 1, 2, 3, 4,

And for ν = 1,

For ν = 2, 3, 4,
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Therefore,

which actually takes the same form as in Liu et al. [2009]. So the discussion here extends
Liu et Al. [2009]'s formulas to more general quadratic form which allows degenerate
multivariate normal distribution.

III: Distance between a continuous distribution and an empirical
distribution

To compare one continuous cumulative distribution function F1 and one empirical
distribution F2 (or discrete distribution), two natural distances are the Kolmogorov distance

and the Cramer-von Mises distance with measure μ = F1

Note that F2 is piecewise constant. Let x1, x2, . . . , xn be all distinct discontinuous points of
F2. We keep them in an increasing order. If F2 is an empirical distribution, x1, x2, . . . , xn are
distinct values of the random sample which generates F2. Write x0 = –∞.

For Kolmogorov distance, the maximum can be obtained by checking all the discontinuous
points of F2. Therefore,

For Cramer-von Mises distance,
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Note that the formulas above work better than the corresponding R functions in the package
‘distrEx’ (downloadable via http://cran.r-project.org/). Those R functions have difficulties
with large sample sizes (say n ≥ 2000), because their calculation replies on the grids on the
real line.

IV: Calculating the difference between two non-central chi-squares
Let Y1 and Y2 be two independent non-central chi-square random variables with probability
density function f1(y) and f2(y) respectively. Write Z = Y1 –Y2. Then the probability density
function f(z) of Z can be calculated through

The cumulative distribution function F (z) of Z can be calculated through

Note that we perform the transformation y = log (x/(1 – x)) in both formulas to convert the
integrating interval from (–∞, ∞) into (0, 1) for numerical integration purpose.
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Figure 1.
The qq-plots of the 2-cum (red line) and 4-cum (blue line) approximations to the distribution
of Ds under the null (first row) and alternative (second row) hypotheses using Data II. The
black dashed line is y = x. We use the true values of p and q here. The left, middle, and right
columns are for matching, length, and counting measures respectively. The sample sizes are
m = n = 100.
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Figure 2.
The qq-plots of the 4-cum chi-square approximation (blue “4”) and the normal
approximation (red “n”) to the distribution of Dt under the null hypothesis using Gene II and
the matching measure. We use the true values of p and q here. The left plot has a smaller
sample size n = 50 and m = 150. The right plot has a larger sample size n = 1000 and m =
3000.
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