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As the quincentennial of the 1513 launch of Ponce de 
Leon’s famously futile quest for the fountain of youth 

draws near, efforts of gerontologists over the past several 
decades have identified few therapies that consistently 
extend the life span of multiple species. Calorie restriction 
(CR), the reduction in macronutrient intake while maintain-
ing sufficient micronutrient intake, is one notable exception. 
Early studies by McCay and colleagues (1–3) established 
the effectiveness of CR for extending the life span of rats in 
the 1930s, and subsequent studies have demonstrated that 
sustained reductions in calorie intake can increase maxi-
mum life span in a wide range of species (4).

To date, CR remains the most robust dietary intervention in 
aging research, and because CR is so successful at promoting 
health and longevity in laboratory animals, there is increasing 
interest in the therapeutic potential for CR to extend life span 
in humans (5). Furthermore, as emerging cellular mecha-
nisms responsible for aging continue to demonstrate consid-
erable overlap across species, there is increasing evidence 
that intervention strategies can be effectively evaluated in 
short-lived animals as a screen for potential human therapies 
(6). Although there is debate as to whether CR will function 
in humans as effectively as it does in shorter lived research 
models (7,8), nonhuman primate data suggest that CR can 
improve at least the quality of life in our close relatives (9). 
Regardless, the prospect of CR in humans is already a reality 
with societies, books, and Internet sites devoted to CR in 

humans (see http://www.calorierestriction.org/). Despite will-
ful adherence by CR devotees, gerontologists believe that 
most humans will prefer not to restrict their diet in the pres-
ence of an abundant food supply if alternatives, or calorie 
restriction mimetics (CRM), can be identified.

The ideal CRM would be an agent consumed in food or 
water that would delay death and age-associated diseases 
without requiring a change in calorie intake (5). Candidate 
CRM are already under investigation in rodent models (5,10), 
with the ultimate goal being to translate the research findings 
to a therapy applicable to humans. A human aging interven-
tion would be particularly timely as the baby boomer genera-
tion approaches retirement age. Fortunately, CR has been 
shown to increase life span even when applied late in life (11), 
so a true CRM would also function for older humans and offer 
tangible benefits to consumers of middle age and beyond.

This review will explore the most current data on dietary 
aging interventions actively being tested for their ability to 
extend life span and health span. Because the specific mecha-
nisms underlying aging are not known, and neither are the 
mechanisms by which CR forestalls aging known, there are 
presently many compounds being tested that have varying 
physiological targets. It should be noted that although the 
following treatments show promise in certain animal models, 
evidence for these interventions from randomized trials with 
humans is extremely weak to nonexistent. The compounds 
are discussed within their general purported mechanism of 
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action against the aging process. Protein restriction (PR) and 
intermittent fasting (IF) feeding, two dietary restriction tech-
niques that are similar to CR but do not require a reduction in 
overall caloric intake every day, are also reviewed.

Antioxidants
One of the original theories of aging—the free-radical 

theory of aging—proposes that reactive oxygen species (ROs), 
the highly reactive by-products of daily cellular metabolism 
that can damage other molecules and cell structures, might 
drive the aging process (12). Toward this theory, much 
research has focused on the potential for antioxidant 
compounds to forestall aging and age-related disease.

Although the ROs theory of aging continues to appeal to 
both the researchers and the general public, clinical trials 
have failed to demonstrate that food-based antioxidants pro-
long life or prevent age-related diseases. In fact, a meta-
analysis of randomized trials involving more than 230,000 
participants consuming beta-carotene, vitamin A, vitamin C 
(ascorbic acid), vitamin E, or selenium found no benefit to 
longevity with the supplements (13). Furthermore, the 
researchers concluded that supplementing one’s diet with 
beta-carotene, vitamin A, and vitamin E may increase 
mortality. Focusing on age-related disease, another meta-
analysis examined the use of dietary antioxidants for the 
prevention of age-related macular degeneration (14). The 
study considered nine prospective cohort studies including 
nearly 150,000 people and concluded that vitamin A, vita-
min C, vitamin E, zinc, lutein, zeaxanthin, alpha-carotene, 
beta-carotene, beta-cryptoxanthin, and lycopene have little 
or no effect in the primary prevention of the disorder. 
Although avoiding deficiencies of these vitamins is essen-
tial for normal physiological functioning, increased intake 
shows no increased health benefits and in some cases may 
have toxic effects. Taken together, the current data do not 
support long-term antioxidant supplementation in humans.

Glucose and insulin homeostasis
Among the plethora of physiological changes associated 

with aging are a decline in glucose tolerance and an increase 
in insulin resistance. Hyperinsulinemia, hyperglycemia, and 
insulin resistance are thought to contribute to several chronic 
disorders associated with aging, including diabetes, hyper-
tension, cancer, and cardiovascular disease. CR has been 
shown to beneficially affect glucose and insulin levels, 
preventing and even reversing conditions associated with 
hyperglycemia and insulin resistance. Given these obser-
vations, there is hope that targeted CRM may be identified 
or developed to favorably affect health span and life span 
through their actions on glucose and insulin homeostasis.

2-Deoxy-d-glucose.—The glucose analog 2-deoxy-d-
glucose (2DG), a compound that inhibits glycolysis, has 
been investigated as a potential CRM because its effects on 

energy metabolism may recapitulate some of the metabolic 
effects of CR (5). In fact, a number of studies have demon-
strated that 2DG treatment in rodents produces a number of 
effects that parallel those of CR, such as reductions in body 
temperature, heart rate, and circulating glucose and insu-
lin (5,15–17) and increases in circulating glucocorticoids 
and heat-shock proteins (16–18). Beyond these effects, 
2DG has also been shown to confer functional benefits as-
sociated with CR, including inhibition of tumor growth 
(19,20) and increased stress resistance to neurotoxins and 
cold shock (17,21–23).

Regarding life-span extension, one study using Caenorhab-
ditis elegans found that restriction of glucose metabolism 
by 2DG led to extensions in both mean and maximum life 
span (24). Despite these promising preliminary findings, the 
case of 2DG emphasizes the need for progressive screening 
of interventions through several species because our labora-
tory has recently reported that 2DG feeding in rats produces 
negative cardiotoxic effects and increased mortality associated 
with a deregulation of protein degradation and clearance 
(25). Although 2DG may still have therapeutic value over 
the short term in targeted applications such as chemotherapy 
and brain imaging, its prospects as an aging intervention are 
seriously diminished in light of its chronic effects in rats.

Biguanides.—Also of interest as aging interventions that 
improve glucose homeostasis are derivatives of biguanide 
compounds, first isolated from the French lilac, such as bu-
formin, metformin, and phenformin. Although all three 
were effective treatments for diabetes mellitus and showed 
promising results in rodents in tumor inhibition (26), bu-
formin and phenformin have been largely withdrawn from 
clinical practice due to association with lactic acidosis. 
Metformin, however, is still popularly prescribed as a 
treatment for type 2 diabetes. Metformin decreases hepatic 
gluconeogenesis (27,28) and increases insulin sensitivity 
(29). It is a potent activator of adenosine monophosphate– 
activated protein kinase (30) and thereby inhibits the mam-
malian target of rapamycin (mTOR) (31), a protein kinase 
that is involved in the control of cellular proliferation and is 
implicated in tumor growth (32,33). In mice, metformin ex-
tended mean and maximum life span in different female 
strains predisposed to high incidence of mammary tumors 
(34,35).

Like CR, metformin facilitates the entry of glucose into 
cells by increasing insulin sensitivity (36,37), and microar-
ray studies have further revealed that metformin is capable 
of inducing gene expression patterns that closely resemble 
those of CR (38,39). In humans, metformin supplementa-
tion has been shown to reduce adiposity (40) and mortality 
rates in diabetic individuals, most effectively in obese and 
insulin-resistant individuals (41–43). Although the data so 
far are promising, further study is needed to show whether 
metformin is able to extend life span in healthy rodents, 
primates, and humans.
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Advanced glycation end products
In the 1970s, researchers discovered that in diabetic 

individuals, excess glucose could combine with proteins 
(as happens to meat and bread products during cooking) 
yielding a sticky brown substance (44). These compounds 
were found to attract other proteins and congregate in a 
web-like network that could stiffen joints, block arteries, 
and cloud clear tissues like the lens of the eye, leading to 
cataracts (45). Given the considerable overlap between the 
complications of diabetes and general ailments associated 
with aging, it was unsurprising that glycosylated proteins 
were found to accumulate in normal aging tissues (46). 
since then, considerable interest has been shown in the po-
tential to identify or develop compounds that could inhibit 
or reverse the accumulation of these advanced glycation 
end products (AGEs) as a treatment for complications as-
sociated with both diabetes and aging.

The effects of AGE inhibitors on life span remain to be 
demonstrated; however, there have been promising in vitro 
reports of reduced senescence and increased replicative life 
span in cell cultures (47,48). Furthermore, one study found 
that reducing dietary exposure to preformed AGEs (achieved 
by reducing the exposure of the diet to heat during process-
ing) extended both mean and maximum life span of mice 
(49). Even more intriguingly, a study of CR in rats reported 
reduced AGE accumulation in the animals with restricted 
food intake (50), and more recently, a study looking at the 
relationship between CR, AGE accumulation, and life span 
found that feeding mice a diet high in AGEs blocked CR’s 
ability to extend mean or maximum life span (51).

Aminoguanidine.—The most well-studied AGE inhibitor, 
aminoguanidine (also known as pimagedine), has additional 
functions as a general antioxidant and inhibitor of the en-
zymes diamine oxidase and nitric oxide synthase (52–54). 
In rats, supplementation with aminoguanidine in the wa-
ter supply prevented arterial stiffening and cardiac hyper-
trophy that correlated with a decrease in AGE-induced 
cross-linking of the extracellular matrix (55). Amin-
oguanidine treatment in mice was also able to block neg-
ative AGE-associated effects on the immune system (56). 
These positive effects may not translate to enhanced longevity, 
however, as one study found life span was unaffected by amin-
oguanidine supplementation in male mice (39).

Another issue with aminoguanidine regarding side  
effects was raised in a clinical trial investigating the effec-
tiveness of aminoguanidine in the treatment of diabetic 
nephropathy that involved more than 450 patients (57). 
Although the researchers did find that compared with 
placebo-treated controls those taking aminoguanidine 
showed reduced progression of retinopathy and improved 
serum lipid profiles, the high dose was associated with 
adverse effects: ~9% of participants reported negative 
gastrointestinal effects and ~1% of patients developed 
autoimmune complications.

Pyridoxamine.—Another AGE inhibitor, pyridoxamine, 
is also able to bind intermediates of lipid peroxidation and 
thus prevent advanced lipoxidation reactions (58). Pyridox-
amine is a member of the vitamin B6 family, a water-soluble 
nutrient found in reduced levels in aged individuals (59,60). 
Although pyridoxamine has been shown to reduce cross-link-
ing associated with cataract formation in mice (61), further 
studies are required to assess the extent to which pyridox-
amine can protect against the harmful effects of glyca-
tion and free radicals in aging.

mTOR Signaling Pathway
Given the starkly opposing effects of excessive calorie 

intake versus restricted calorie intake on the aging process 
and life span, there has been considerable interest in under-
standing the role of molecular energy–sensing pathways in 
aging and how they may be manipulated to alter health span 
and life span. One key sensor of nutrient availability in 
higher organisms is mTOR. Inhibition of related pathways 
in worms, flies, and yeast has been shown to extend life 
span (62–64), and in mammals, mTOR has become increas-
ingly understood as a central regulator of energy homeostasis 
and cellular metabolism (65). Given that CR has been shown 
to inhibit target of rapamycin signaling in multiple species 
including mice (62,66), mTOR has become a candidate 
mediator of at least some of CR’s beneficial effects and 
agents that inhibit mTOR signaling are candidate CRM.

Rapamycin.—Rapamycin, also called sirolimus, selective-
ly and effectively inhibits mTOR and also possesses an array 
of notable clinical effects, including antibiotic, antitumor, and 
immunosuppressant actions. Discovered in the 1960s in soil 
bacteria on Easter Island, dietary supplementation with ra-
pamycin was recently found to extend life span in aged 
mice (67). Rapamycin is also being increasingly investi-
gated for its potential to benefit age-related diseases like Al-
zheimer’s, Huntington’s, and Parkinson’s diseases. These 
diseases, characterized by aggregate formation, may gain 
from mTOR’s effects on protein turnover (68). A pharmaco-
logical derivative of rapamycin has also shown promising re-
sults in clinical cancer trials studying advanced renal cell 
carcinomas, glioblastomas, breast cancers, endometrial can-
cers, non-Hodgkin lymphomas, and multiple myelomas (69). 
Whether rapamycin or its derivatives will be safe and effec-
tive as human aging interventions is an unanswered question, 
and it may be that other effectors of the mTOR pathway yet to 
be identified will be more suited to long-term use in humans.

Sirtuin activators
It has been suggested that CR functions to extend life 

span at least in part through increasing the activity of  
sirtuins, a conserved family of proteins that includes human 
sirt1 (70,71). The involvement of sirt1 in life span exten-
sion by CR may relate to its responsiveness to nicotinamide 
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levels and the NAD+:NADH ratio, both indicators of cellular 
energy status (72,73). Activation of sirt1, the mammalian 
homolog of an NAD+-dependent deacetylase known to 
modulate life span in lower organisms (74,75), is thought to 
hold promise as a strategy for delaying aging in mammals 
(76). screening compounds for their ability to activate sir-
tuins first led to the discovery of resveratrol as a potential 
CRM (74). Although emerging evidence suggests that res-
veratrol and other compounds may not directly activate 
sirt1, many beneficial health effects have been attributed to 
sirt1, and its activation, whether direct or indirect, may be 
sufficient to promote health span and life span (77).

Resveratrol.—Resveratrol, a pluripotent polyphenol, is 
one of the more intuitively appealing CRM due to its relative 
abundance in red wine. Indeed, the so-called French Paradox 
describes the phenomenon that, despite a culture of high-fat 
diet and cigarette smoking, the French have been reported to 
enjoy relatively low mortality rates related to coronary heart 
disease, possibly due to high consumption of red wine (78). 
Resveratrol has been shown to enhance longevity in a number 
of short-lived organisms, including yeast, worms, flies, and 
the vertebrate fish Nothobranchius furzeri (74,79,80). Data 
from mice have also shown that resveratrol is able to mimic 
key aspects of CR, including gene transcription profiles, glu-
cose sensitivity, and physical endurance (81–85). Regarding 
effects on life span, so far, resveratrol has not been shown to 
extend maximum life span of mice on a standard diet but only 
mice on a high-fat high-calorie diet (82).

However, promising research indicates that resveratrol, 
especially in combination with other compounds, could 
serve as a treatment or preventative measure against a wide 
variety of age-related ailments. In mice, resveratrol delays 
classic signs of age-related deterioration (82) and, in combi-
nation with quercetin and catechin, inhibits mammary 
tumor growth and metastasis to the liver and bone (86). 
Consumption of a similar cocktail of grape polyphenols 
improves endothelial function over the short term in patients 
with coronary heart disease (87). In one case study, resvera-
trol significantly improved visual and mental function in 
a male with age-associated eye degeneration (88). Further 
evidence demonstrates resveratrol’s neurological benefits. 
In rats, resveratrol and 4-amino-1,8-naphthalimide (4-ANI, 
an inhibitor of an enzyme known to be hyperactive in dia-
betic neuropathy) together have been shown to partially 
reverse the effects of diabetic neuropathy, a major cause 
of death in diabetic patients (89). Resveratrol reduces 
infection-related neuroinflammation and attenuates working 
memory deficits in aged mice, suggesting that resveratrol 
may be useful for mitigating acute cognitive disorders in 
elderly individuals with an infection (90). Furthermore, 
although moderate red wine intake has been associated with 
reduced incidence of Alzheimer’s disease and other forms 
of dementia (91–93), clear evidence regarding resveratrol’s 
role is still lacking (94,95). Thus, although resveratrol may 

not be able to extend overall life span in healthy individuals, 
it will be important to assess the degree to which it might be 
able to increase quality of life among the overweight and 
the elderly individuals by mitigating some of the negative 
effects of an unhealthy lifestyle.

Synthetic sirtuin activators.—More recently, synthetic 
compounds structurally distinct from resveratrol have been 
described with potent sirt1-activating power in vitro (96). 
One of the compounds, sRT1720, has been shown to mit-
igate various negative effects of obesity and high-fat diets 
in both rats and mice (96–98). sRT1720 has also been 
shown to induce a transcriptional profile in mice reminis-
cent of CR, eliciting parallel changes in genes associated 
with mitochondrial biogenesis, metabolic signaling, and in-
flammatory pathways (99). At this time, the long-term ef-
fects of these relatively novel compounds on health span 
and life span remain to be demonstrated.

Dietary restriction alternatives to cr
The current research paradigm of CR usually entails food 

intake restriction ranging from 20% to 40% on a daily basis. 
Because such extreme dieting over the long term is likely to 
be unrealistic in humans, there is interest in adapting the 
principles of CR to a regimen that is more palatable to 
humans and better suited to practical application.

Protein restriction.—Historically, the increase in life span 
seen with CR has been attributed to the overall reduction in 
calories and not to a reduction in an individual nutrient 
class (100). More recently, studies are emerging that sug-
gest variations in the proportions or quality of the individual 
dietary components (especially the macronutrients) can also 
modulate health and consequently longevity independently 
of overall caloric intake. In particular, PR, where a per-
centage of calories derived from protein is replaced by fat 
or carbohydrate, has been investigated in controlled stud-
ies with varied results (101).

While several rodent studies have shown increases in life 
span with colonies maintained on low-protein diets (102–
106), another found that PR was able to mimic CR in slow-
ing growth and improving renal function, but the effects 
did not translate to increased life span (107). Furthermore, 
a study of spontaneous tumor formation in rats concluded 
that a low-protein regimen actually increased mortality 
(108). Another issue with some PR studies is that they also 
report a natural decrease in food consumption by animals 
on PR, obscuring the distinction between PR and CR and 
preventing the clear delineation of each regimen’s effects.

Beyond total PR, there is also evidence that restriction of 
specific amino acids can affect health and longevity. For 
example, rats fed tryptophan-deficient diets exhibit delayed 
sexual maturation, delayed tumor onset, improved hair 
growth and coat condition, and increased maximum life 



 DIETARY INTERVENTIONS TO EXTEND LIFE SPAN AND HEALTH SPAN 699

span (109–111). It should be noted, however, that one rat 
study found increased mortality during the juvenile period 
and consequently an overall decrease in mean life span 
(112). This negative effect on early mortality was not ob-
served in mice on a tryptophan-depleted diet, and the mice 
showed an increase in mean and maximum life span and no 
differences in food intake (113). Thus, tryptophan’s effects 
on juvenile survival need further study. Beyond this, the 
side effects of tryptophan depletion in humans also need to 
be assessed as this essential amino acid is the precursor for 
the neurotransmitter serotonin. In humans, depleted sero-
tonin levels can lead to psychological disturbances and 
increased risk of suicide (114), which could negate any 
life extension effect of tryptophan restriction.

Methionine restriction has also been reported to benefit 
health and longevity in animal studies. Decreased mitochon-
drial ROs, serum glucose, insulin, and insulin-like growth 
factor-1 levels and increased mean and maximum life span 
have been reported in rats and mice maintained on diets 
restricted in methionine (115–120). However, as with CR, 
rodents consuming low-methionine diets are smaller and 
eat less (10%–24% less, depending on age) than controls 
(117,121,122). As this continues to be a recurring issue with 
protein- and amino acid–restrictive diets, a few studies have 
attempted to show that the benefits of methionine restriction 
are independent of any concomitant CR. One study showed 
that methionine restriction results in decreased visceral fat 
deposition and preservation of insulin sensitivity, and these 
effects were not seen in pair-fed controls (117). Another 
study achieved consistent caloric intake among control and 
experimental animals through use of a methionine-depleted 
energy-dense diet and found that methionine restriction 
reduced body size regardless of equivalent caloric intake 
(123). These results suggest that growth impairment can be 
related to methionine intake and not solely calorie intake, 
but it still remains to be shown that methionine restriction 
independently of any CR effect results in life-span exten-
sion in rodents.

The impact of PR, tryptophan restriction, or methionine 
restriction on human health and longevity remains to be eval-
uated. Beyond the general hurdle of the Western predilection 
for high-protein intake, the feasibility of designing long-term 
human diets that are restricted in specific amino acids may be 
low at least in the near future. More research into the effects 
of protein and amino acid restriction in humans is warranted, 
given that vegetarian populations enjoy reduced risk for 
chronic diseases of aging (124), and this may be attributable 
at least in part to reduced protein intake.

Intermittent fasting.—Another approach to adapting CR 
to humans may involve adjusting the term of CR or IF. In 
mice, IF administered as 30%–50% CR over periods of 2–3 
weeks followed by ad libitum feeding for an equal amount 
of time has been shown to be protective against tumor for-
mation in models for both prostate cancer and breast cancer 

(125,126). In humans, IF has been shown to be both attain-
able and beneficial to health (127,128). For example, over-
weight participants participating in an 8-week study using 
IF (participants alternated daily between ad libitum intake 
and 80% CR) lost weight and increased in measures of pul-
monary function, perceived energy, and mood (127). Impor-
tantly, several recent short-term interventions have examined 
IF in nonobese humans (129–131) and have found signifi-
cant health benefits that parallel CR, including increased 
insulin sensitivity (127), upregulation of sirt1 (128), and 
decreased fat mass (131). Although the potential for IF to 
confer short-term health benefits to humans seems signifi-
cant, IF’s effects on the aging process are not known. 
Moreover, the long-term implications of IF warrant careful 
consideration as some human observational studies have 
drawn an association between so-called yo-yo dieting and 
increased morbidity and mortality (132).

Conclusions
Currently, there are no known interventions proven to 

substantially slow the aging process in humans. Indeed, it 
has been argued that such drugs can never be developed 
because aging is caused by a random accumulation of 
damage, some of which is inevitable and irreversible (133). 
Even further, although much of the research over the past 
several decades has focused on CR, currently, there are no 
conclusive data showing long-term health span or life-span 
benefits from CR in humans. Nevertheless, ongoing re-
search continues to draw a more complete picture of CR at 
the molecular level, which may ultimately allow for the 
development of therapeutics that might be able to confer at 
least some of the health benefits of this dietary regimen. 
such developments would be particularly appealing to 
aging populations in developed countries as continuous 
warnings from health care institutions and governments are 
ignored in favor of increased calorie consumption and 
decreased physical activity. Furthermore, compounds that 
slow the aging process by forestalling age-related disease 
would not only lengthen life but improve the quality of life 
as well.

As researchers continue to elucidate the mechanisms 
of aging and their underlying molecular pathways, the 
range of targets for aging interventions should continue 
to increase. Indeed, ongoing research in the field continues 
to highlight promising compounds that warrant further study 
(10,134,135). A significant portion of this wealth of data is 
emerging from a program initiated in 2003 by the National 
Institute on Aging (NIA) to rigorously test pharmacological 
and dietary agents that may extend the longevity of mice 
(10,136) (http://www.nia.nih.gov/ResearchInformation/scient
ificResources/CompoundsInTesting.htm). The studies com-
ing out of the collaborative efforts spearheaded by the NIA 
along with results from independent laboratories should con-
tinue to bring credit to the field of genuine aging research.
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That said, it is important to emphasize that all the com-
pounds currently under study have not been definitively 
shown to effectively reduce aging or age-related disease in 
humans. Despite this fact, a vast array of products are 
currently being sold to consumers with claims that it is now 
possible to slow, stop, or reverse human aging. Although the 
business of antiaging medicine is a lucrative multimillion-
dollar industry, the products being sold have no demon-
strated efficacy. It becomes the responsibility of researchers 
in the field of aging to educate the public on the distinction 
between the pseudoscientific antiaging industry and the 
genuine science of investigating aging interventions. Fortu-
nately, the aging field has progressed rapidly in recent years 
and continues to hold promise for improving the quality and 
quantity of human life in the foreseeable future.
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