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The sugar alcohol mannitol and it’s 
catabolic enzyme mannitol dehy-

drogenase (MTD), in addition to well-
documented roles in metabolism and 
osmoprotection, may play roles in host-
pathogen interactions. Research sug-
gests that in response to the mannitol 
that pathogenic fungi secrete to suppress 
reactive oxygen-mediated host defenses, 
plants make MTD to catabolize fun-
gal mannitol. Yet previous work sug-
gested that pathogen-secreted mannitol 
is extracellular, while in healthy plants 
MTD is cytoplasmic. We have presented 
results showing that the normally cyto-
plasmic MTD is exported into the cell 
wall or extracellular space in response 
to the endogenous inducer of plant 
defense responses salicylic acid (SA). 
This SA-induced secretion is insensitive 
to brefeldin A, an inhibitor of Golgi-
mediated protein transport. Together 
with the absence of MTD in Golgi stacks 
and the lack of a documented extracellu-
lar targeting sequence in the MTD pro-
tein, this suggests MTD is secreted by a 
non-Golgi, pathogen-activated secretion 
mechanism in plants. Here we discuss 
the potential significance of non-Golgi 
secretion in response to stress.

Introduction

Because the cell wall is a major interface 
between plant cells and their environ-
ment, the rapid, regulated secretion of spe-
cific proteins into this extracellular space 
(the apoplast) is an important defense 
response.1 Secretion of defense proteins 
in both plants and animals was originally 
thought to be solely via an endoplasmic 
reticulum (ER)/Golgi-mediated path-
way, with an N-terminal signal peptide 

directing the protein to the ER for rout-
ing, modification and subsequent secre-
tion via the Golgi. However, the existence 
of alternate secretion mechanisms was 
suggested when Auron et al.2 reported that 
interleukin 1 (IL1β), a cytokine with no 
signal peptide, was secreted from human 
monocytes in response to Staphylococcus. 
Since then, numerous Golgi-independent 
or “leaderless” eukaryotic secretion 
mechanisms have been reported, and the 
importance of these pathways, particu-
larly in response to stress, is well estab-
lished.3 Although non-Golgi secretion has 
been described in many other eukaryotes, 
our report that the normally cytoplasmic 
enzyme, mannitol dehydrogenase (MTD) 
is secreted by tobacco in response to sali-
cylic acid (SA) is one of the few reports 
suggesting that non-classical secretion 
also occurs in plants.4

The regulated conversion of manni-
tol to mannose by MTD in the cytosol 
of plants such as celery (Apium graveol-
ens) allows mannitol to be used as both a 
metabolite and an osmoprotectant.5 There 
is now compelling evidence that mannitol 
and MTD also play roles in plant-patho-
gen interactions. Mannitol’s antioxidant 
activity6,7 together with its secretion by 
fungal pathogens8-10 allows these patho-
gens to use mannitol to quench reactive 
oxygen species (ROS) that signal plant 
defenses. In response, pathogen-induced 
plant MTD was hypothesized to catabo-
lize this mannitol, thus protecting the 
host’s ROS-mediated defenses.5,11,12 
However, while fungal mannitol secreted 
during infection is found in the extracel-
lular space,8,11 MTD is cytoplasmic in 
uninfected celery.13 If MTD catabolizes 
fungal mannitol, then mannitol and MTD 
must somehow become co-localized.  
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three-dimensional structure rather than a 
simple linear amino acid sequence.

Why Non-Golgi Secretion?

Proteins might be secreted by nonclassi-
cal mechanisms for a number of reasons. 
For instance, non-Golgi secretion would 
be necessary if the presence of a protein 
in the ER/Golgi would disrupt ER func-
tioning. For example, in animal cells the 
non-Golgi secretion of galectin 1 keeps 
this β-galactose-binding lectin from bind-
ing glycolipids and glycoproteins in the 
lumen of the Golgi/ER.22 Non-Golgi 
secretion could also be desirable if a pro-
tein has multiple functions, with each 
occurring in a different cellular compart-
ment. HMGB1 (High mobility group  
box 1), for example, is normally found 
in the nucleus, where it mediates DNA-
binding complex assembly. Upon bacte-
rial induction of monocytes, HMGB1 is 
secreted into the extracellular space where 
it acts as an endotoxin mediator or a cell 
differentiation signal.23 As previously 
documented,5 MTD has normal roles in 
central metabolism and osmoregulation 
in the cytoplasm. When mobilized dur-
ing pathogen attack, however, MTD has 

protein-conducting channels such as 
ATP-binding cassette (ABC) transporters. 
These endolysosomes then fuse with the 
cell membrane to release the proteins into 
the apoplast. (3) Exosome-mediated secre-
tion: first intracellular vesicles called endo-
somes are generated by inward budding 
from the plasma membrane. Cytosolic 
proteins, such as HSP90 are then pack-
aged into the endosomes by further inward 
budding to form multivesicular bodies. 
These next fuse with the plasma mem-
brane to release the included, formerly 
cytosolic components.18 (4) Membrane 
blebbing or microvesicle shedding: cytosolic 
secretory transglutaminase and galectins19 
are proposed to be packaged directly into 
membrane-derived blebs, or protrusions. 
The blebs detach and the formerly cytoso-
lic components are released when the blebs 
rupture.

Non-classically secreted proteins 
appear to be first modified in response 
a stress mediated signal, enabling them 
to interact with the relevant secretion 
machinery.20 These proteins are then 
apparently transported across the mem-
branes in a folded or native configuration 
like FGF2.21 As a result, the “targeting sig-
nal” is an integrated feature of the protein’s  

In Cheng et al.4 we demonstrated that 
MTD is exported to the apoplast in 
response to SA, an endogenous inducer of 
many plant defense responses. This is of 
special significance because MTD lacks a 
recognized ER/Golgi signal sequence, and 
its SA-induced secretion is not inhibited 
by an inhibitor of Golgi-mediated protein 
transport, brefeldin A. Thus, contrary 
to the model that PR-protein secretion 
occurs only via the ER/Golgi pathway, 
secretion of MTD appears to be by a non-
Golgi mechanism.

Types of Non-Golgi Secretion

The existence of leaderless secretion in 
animals is well accepted, and four gen-
eral mechanisms have been proposed 
(Fig. 1): (1) Translocation directly across 
the plasma membrane: proteins such as 
fibroblast growth factor 1 (FGF-1)14 and 
IL1α15 are translocated directly across the 
plasma membrane via the chaperonin-like 
action of hydrophobic “release complexes” 
or through transmembrane channels. 
(2) Endolysosomal pathways: normally 
cytoplasmic proteins such as IL-1β16 and 
HMBG1,17 are transported into intracel-
lular vesicles called endolysosomes via 

Figure 1. Proposed mechanisms for non-Golgi secretion of normally cytoplasmic proteins in animals. (1) Translocation directly across the plasma 
membrane. (2) Endolysozomal or secretory lysosomal pathway. (3) Intra-endosomal vesicle or multi-vesicular body pathway. (4) Membrane blebbing or 
micro-vesicle shedding. Adapted from Nickel and Rabouille.3
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a very different role in the extracellular 
space. As MTD’s normal role in central 
metabolism requires cytoplasmic localiza-
tion, a nonclassical mechanism is needed 
to mediate its subsequent secretion in 
response to pathogen attack.

There are a growing number of indi-
cations that non-Golgi mechanisms 
are involved in the secretion of proteins 
other than MTD in plants. For instance, 
although extracellular SODs (ecSOD’s) 
containing a classical signal peptide are well 
known in animals, plant SODs lack such 
a signal sequence, and were long thought 
to be absent from the apoplast. This raised 
questions about how superoxide was con-
verted to H

2
O

2
 in the apoplast during the 

early stages of defense responses. In fact, 
many researchers are now reporting that 
SOD activity is present in the apoplast of 
stress or pathogen-induced plants.24-28

Subsequent mass spectrophotometric 
analyses of SA-induced protein secretion 
have not only confirmed the presence of 
SOD in the secretome,29-31 but suggest 
that a large number of proteins whose 
regulated secretion occurs soon after SA 
treatment lack a classical signal peptide.31 
Finally, this is consistent with the report 
that pathogen-induced apoplastic H

2
O

2
 

production in Arabidopsis is insensitive 
to BFA.32 Taken together, the preponder-
ance of data suggests the existence of a 
novel, pathogen-activated, protein secre-
tion mechanism that mediates pathogen-
induced secretion of normally cytoplasmic 
enzymes in plants.
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