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The two-component signaling systems 
(TCSs), which mediate the histi-

dine-aspartate signaling, control diverse 
biological processes of many organisms, 
including cell division, cell growth and 
proliferation and responses to environ-
mental stimuli and growth regulators. 
We have provided in planta evidence 
that the cytokinin (CK) responsive TCS 
mediates abscisic acid (ABA) and osmotic 
stress responses. By using loss-of-func-
tion approach we have demonstrated that 
the three cytokinin (CK) receptor histi-
dine kinases AHK2, AHK3 and AHK4/
CRE1 act as negative regulators in ABA, 
drought and high salinity stress signal-
ings. Genome-wide expression profiling 
of the stress-tolerant <ahk2,3> double 
mutant suggested that CK receptor 
kinases mediate osmotic stress response 
in both an ABA-dependent and ABA-
independent manner. Additionally, 
we showed evidence for the role of CK 
in mediating stress responses, judging 
from the fact that AHK4 requires the 
CK to function as a negative regulator 
in osmotic stress response. Our results 
suggested that cross-talk exists among 
CK, ABA and osmotic stress signaling 
pathways, and that CK signaling and CK 
metabolism may play crucial roles not 
only in plant growth and development 
but also in osmotic stress signaling.

Water deficit and high salinity stress limit 
crop productivity worldwide. In response 
to these stresses, plants activate a num-
ber of defense mechanisms that func-
tion to increase tolerance to the adverse 

conditions.1 Phosphorylation, which is 
mediated by two-component systems 
(TCSs) or histidine-to-aspartate (His-
Asp) phosphorelays, is a key mechanism 
for stress signal transduction in a cell.2  
A great number of TCSs have been identi-
fied and characterized not only in many 
prokaryotic organisms but also in key plant 
species including Arabidopsis thaliana, 
rice (Oryza sativa) and Lotus japonicus.3-7 
Increasing evidence has indicated that the 
Arabidopsis TCS pathways are involved in 
response to environmental stimuli, ethyl-
ene signaling, light perception, circadian 
rhythm and cytokinin (CK)-dependent 
processes which include shoot and root 
development, vascular defferentiation and 
leaf senescence.4,8-10 Genome-wide analy-
sis supports the existence of eight histidine 
kinases (HKs) in Arabidopsis. Among 
the HKs, ETR1 and ERS1 act as ethyl-
ene receptor HKs, while others including 
AHK1/ATHK1, AHK2, AHK3, AHK4/
CRE1, CKI1 and AHK5/CKI2 are non-
ethylene receptors.10 AHK1 has been 
shown to function as positive regulator 
in abscisic acid (ABA) and osmotic stress 
signalings in both ABA-dependent and 
ABA-independent pathways.11,12 CKI1 is 
implicated in megagametophyte devel-
opment, and together with AHK2 and 
AHK3 it is also required for vascular bun-
dle formation in Arabidopsis.13,14 AHK5 
has been shown to be involved in root 
elongation through an ETR1-dependent 
ABA and ethylene signaling pathway.15 
AHK5 may also have function in mediat-
ing H

2
O

2
-dependent processes in stomatal 

guard cells.16

Role of cytokinin responsive two-component system in ABA 
and osmotic stress signalings

Lam-Son Phan Tran,1,* Kazuo Shinozaki2 and Kazuko Yamaguchi-Shinozaki3

1Signaling Pathway Research Unit;  2Gene Discovery Research Group, RIKEN Plant Science Center; Tsurumi, Yokohama, Japan 3Graduate School  

of Agricultural and Life Science; University of Tokyo; Tokyo, Japan; and Japan International Center of Agricultural Sciences; Tsukuba, Ibaraki Japan



www.landesbioscience.com Plant Signaling & Behavior 149

articLe addendum articLe addendum

evidence to demonstrate the involvement 
of CK in stress signaling as a potential 
mediator.

These results collectively suggested that 
all of the AHK2, AHK3 and AHK4 HKs 
function in stress responses and that they 
act as negative regulators. Comparative 
genome-wide expression analysis of 
<ahk2,3> double mutant and WT plants 
identified many stress- and/or ABA-
responsive genes which are upregulated in 
<ahk2,3> mutant. These results together 
with ABA-sensitive phenotype of the ahk2, 
ahk3 and ahk4 single mutants suggested 
that AHK2, AHK3 and AHK4 act as neg-
ative regulators in both ABA-dependent 
and ABA-independent pathways.

The fact that the CK receptor AHK2, 
AHK3 and AHK4 are involved in ABA 
and osmotic stress signalings as negative 
regulators strongly indicates that there are 
cross-talks among CK, ABA and stress 
signaling pathways. Moreover, our results 
indicate that CK mediates stress response, 
demonstrating that CK signaling and CK 
metabolism may play crucial roles not only 
in plant growth and development but also 
in abiotic stress signaling. Recent reports 
suggested that CKs may be an important 
signal traveling from roots to shoots, and 
ABA:CK ratios in xylem sap are impor-
tant for stress signaling.27,28 How does the 
CK affect plant stress response and how 
do stresses affect CK metabolism, i.e., how 
do the CK contents are changed under 
different stress conditions, analysis of 
the relationship between CK metabolism 
and stress responses may provide answers 
to these questions. Functional analysis 
of genes involved in CK metabolisms, 
such as genes encoding adenosine phos-
phate-isopentenyltransferases, which are 
involved in CK biosynthesis,29 and genes 
encoding CK oxidases, which are involved 
in CK degradation,30 in stress response 
will unravel the regulatory role of CK in 
stress signaling.

By analogy to the CK responsive sig-
naling, we suggest that the stress signal-
ing is mediated by the multistep His-Asp 
phosphorelay (Fig. 1). However, the func-
tions of the AHPs and ARRs in stress 
response as well as their downstream 
genes of the phosphorelay remain still 
unknown. Investigation of various com-
binations of ahp and arr mutants may aid 

testing their possible function in comple-
mentation of SLN1 in high-osmolarity 
conditions.25,26 Yeast transformants con-
taining AHK2, AHK3 grew as well as 
those having AHK1 or SLN1 on minimal 
medium containing 0.3 M NaCl. When 
AHK4 was introduced into the yeast 
mutant, transformants could grow under 
high-salt concentration only in the pres-
ence of CK. Our results indicated that the 
CK receptor HKs were able to complement 
the function of SLN1 similar to AHK1, 
giving rise to high-osmolarity tolerance to 
the <sln1 sho1> mutant.

Next, to examine the potential func-
tions of the CK receptor HKs in abiotic 
stress signaling, we initially analyzed the 
expression patterns of genes encoding CK 
receptor HKs under various stresses and 
hormone treatments. The transcripts of all 
three AHK2, AHK3 and AHK4 were rap-
idly induced by dehydration. Expression of 
AHK2 also appeared to be influenced by 
NaCl and ABA treatments. Furthermore, 
induction of the AHK3 mRNA was 
observed during high salinity and perhaps 
cold stress. These results suggested that 
these CK receptor HKs play an important 
role not only in CK response but also in 
stress response.

To further confirm the stress respon-
sive role of CK receptor HKs in osmotic 
stress responses, we first compared the 
level of drought and salt stress tolerance of 
the ahk2, ahk3 and ahk4 single mutants, 
as well as the <ahk2,3> double mutant, 
to WT plants. The results showed a 
strong drought and salinity tolerance for 
both ahk2 and ahk3 single mutants. The 
<ahk2,3> mutant was even more toler-
ant to drought and salt stresses than the 
respective single ones, suggesting a com-
binatory function of AHK2 and AHK3 
in osmotic stress signaling. Both the 
ahk4 mutant and WT responded simi-
larly to drought and salt stresses without 
CK. However, in the presence of CK, the 
ahk4 mutant displayed a strong salt stress-
tolerant phenotype. In the absence of CK, 
AHK4 is locked in its phosphatase form, 
exhibiting phosphatase activity instead of 
phosphorylation activity.21 In the presence 
of CK, AHK4 changes to its HK form in 
a CK-dependent manner and can function 
as a negative regulator of stress signaling. 
To our knowledge, this is the first direct 

In Arabidopsis, CK signaling is medi-
ated by a multi-step phosphorelay, which 
is comprised of sensor HKs (AHKs), 
phosphotransfers (AHPs) and response 
regulators (ARRs).10,17 Analysis of ahk2, 
ahk3 and ahk4 single, double and triple 
mutants suggest that the AHK2, AHK3 
and AHK4 function as CK receptor HKs, 
and act as positive regulators in CK sig-
naling and plant growth.18-20 Interestingly, 
AHK4 exhibits a dual function depending 
on the presence or absence of CK. In the 
presence of CK, AHK4 phosphorylates 
the AHP. Conversely, it removes phos-
phate from AHP in the absence of CK.21 
The five authentic AHPs (AHP1-AHP5) 
and a pseudo AHP (AHP6) are involved 
in mediating the transfer of the phospho-
ryl group from the AHKs to the ARRs.17 
Analysis of ahp multiple mutants indicate 
that most of the AHPs act as redundant, 
positive regulators of CK signaling and 
affect many aspects of plant develop-
ment.22 In contrast, the pseudo AHP6 
plays an inhibitory role in CK signal-
ing.23 As for the ARRs, the typical ARRs 
are classified into either type-A (9 mem-
bers) or type-B (11 members) or type-C  
(2 members).10,17 The 11 type-B ARRs, 
which are not induced by CK, are tran-
scription factors that contain receiver 
domain and a large C-terminal region har-
boring a Myb-like DNA-binding domain 
and a glutamine-rich domain. Analysis 
of multiple type-B arr mutants demon-
strates that type-B ARRs act as positive 
regulators of CK signaling.24 By contrast, 
most of type-A ARRs, which have short 
C-terminal domains and are rapidly tran-
scriptionally upregulated by CK treat-
ment, are partially redundant negative 
regulators of CK signaling.10,17

Since AHK1 was first discovered to 
function in osmotic stress response by its 
ability to complement the function of the 
yeast SLN1 histidine kinase in the <sln1 
sho1> yeast double mutant, which is lethal 
under high-osmolarity conditions due to 
the disruption of both SLNI and SHO1,25 
we were interested in testing whether 
the cytokinin receptor AHK2, AHK3 
and AHK4 have catalytic activity simi-
lar to those of AHK1 and SLN1 under 
high-salinity conditions. Therefore, we 
introduced the AHK2, AHK3 and AHK4 
cDNAs into the <sln1 sho1> mutant for 
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in identifying those AHP and ARR genes 
involved in stress signaling. Discovery of 
mechanisms of activation and the targets 
of the downstream components of the CK 
responsive phosphorelay in stress signal-
ing is important and challenging goal for 
study of regulatory network of plant stress 
response and plant growth.

Acknowledgements

Funding supports from Grants-in-Aid 
(Start-up) for Scientific Research, Ministry 
of Education, Culture, Sports, Science 
and Technology of Japan (No. 21870046) 
and from Yokohama Institute Director 
Discretionary Funds (2009) are gratefully 
appreciated.

References
1. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional 

regulatory networks in cellular responses and toler-
ance to dehydration and cold stresses. Annu Rev 
Plant Biol 2006; 57:781-803.

2. Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Plant 
histidine kinases: an emerging picture of two-com-
ponent signal transduction in hormone and environ-
mental responses. Sci STKE 2001; 109:18.

3. Koretke KK, Lupas AN, Warren PV, Rosenberg M, 
Brown JR. Evolution of two-component signal trans-
duction. Mol Biol Evol 2000; 17:1956-70.

4. Hwang I, Chen HC, Sheen J. Two-component signal 
transduction pathways in Arabidopsis. Plant Physiol 
2002; 129:500-15.
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