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Replication factor C subunit 3 
(RFC3) is one of the small subunits 

of the RFC complex originally purified 
from the HeLa cells that is essential for 
the in vitro replication of Simian virus 
40 (SV40). Although RFC has been 
reported to be involved in DNA replica-
tion, DNA repair and check-point con-
trol of cell cycle progression in yeast, 
little is known about the precise function 
of each subunit of the RFC in plants. 
We recently reported the identification 
of rfc3-1, which carries a point mutation 
leading to plants with enhanced expres-
sion of Pathogenesis-Related (PR) genes 
and resistance against the virulent oomy-
cete Hyaloperonospora arabidopsidis  
(H.a.) Noco2. The mutant is hypersen-
sitive to SA and has enhanced pathogen 
resistance independent of Nonexpressor 
of PR genes 1 (NPR1). The rfc3-1 muta-
tion caused a substitution from a nonpolar 
aliphatic amino acid (Gly-84) to a nega-
tively charged amino acid (Asp) in func-
tional domain III, which is one of eight 
conserved domains in the RFC. This may 
interfere with the interaction between 
RFC3 and other subunits, compromis-
ing the function of the protein complex, 
and leading to cell proliferation defects 
in the leaves and roots of Arabidopsis. 
Furthermore, enhanced expression of PR 
genes and induction of systemic acquired 
resistance in rfc3-1 may be caused by a 
partial loss of RFC function through its 
involvement in replication-coupled chro-
matin assembling.

DNA replication is essential for all organ-
isms with DNA genomes. Replication 
factor C (RFC) is a protein complex origi-
nally purified from HeLa cells as a host 

factor essential for the in vitro replication 
of Simian virus 40 (SV40) DNA.1-3 RFC 
can bind to a DNA template-primer junc-
tion and load the proliferating-cell nuclear 
antigen (PCNA) clamp onto DNA with 
the assistance of ATP. PCNA loading 
recruits DNA polymerase to the site of 
DNA synthesis.4 The five subunits of 
RFC were identified as one large subunit 
(RFC140/RFC1) and four small subunits 
(RFC37/RFC2, RFC36/RFC3, RFC40/
RFC4 and RFC38/RFC5), and have been 
found in all eukaryotes.5-10 RFC plays an 
essential role in DNA replication, DNA 
damage repair and check-point control 
during cell cycle progression.11-15 In recent 
years, three RFC-like complexes (RLCs), 
Rad24-RLC, Ctf18-RLC and Elg1-RLC, 
have been identified in yeast. Each RLC 
is made up of the four small subunits of 
the archetypal RFC, but the large sub-
unit, RFC1, is replaced with an RFC-
related protein (Rad24 or Ctf18 or Elg1). 
Rad24-RLC or Ctf18-RLC have distinct 
functions in checkpoint signaling and the 
establishment of chromosome cohesion, 
whereas Elg1-RLC plays a role in sister 
chromatid cohesion and maintenance of 
genome stability. The unique C-terminus 
and N-terminus of Elg1 were found to be 
important for its function.16-19 However, 
the precise function of each subunit is 
largely unclear in plants.

Systemic acquired resistance (SAR) 
is a plant immune response that is acti-
vated in many plant species by necrotizing 
pathogens. In 1961, Ross described SAR 
after finding tobacco plants challenged 
with tobacco mosaic virus (TMV) sub-
sequently developed increased resistance 
to secondary infection in distal tissues.20 
SAR is long-lasting, sometimes for the 
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activating histone modifications such as 
AcH3 and MeH3K4 at the PR-1 promoter, 
which may induce chromatin at promoter 
to adopt a more accessible conformation 
and lead to elevated gene expression.24,25 
The rfc3-1 mutation probably causes 
defects in chromatin assembly and remod-
eling, leading to alterations of chromatin 
structure in the promoters of PR genes. 
In rfc3-1 mutant plants, promoters of PR 
genes may adopt more accessible confor-
mations, which result in elevated gene 
expression. Further characterization and 
identification of the other related mutants 
and careful investigations into chroma-
tin modifications in rfc3-1 might provide 
more detailed mechanistic insights in the 
future.
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plants. Inside the mutant root, the length 
of cortex cells in rfc3-1 is twice the size 
of that of wild type and thus the root cell 
production rate of rfc3-1 is only half of the 
wild type plants. In the leaf epidermis, the 
epidermal cell area of rfc3-1 both on the 
abaxial and adaxial surface of the third 
true leaf is significantly bigger than that 
of the corresponding cell area of the wild 
type plants (p < 0.01). Consequently, the 
epidermal cell number of rfc3-1 both on 
the abaxial and adaxial surface of the third 
true leaf is significantly smaller than that 
of the corresponding cell number of the 
wild type plants (p < 0.01). Similar signi-
fant differences of the interior cells of the 
leaf (palisade parenchyma or spongy mes-
ophyll) were found between rfc3-1 and the 
wild type plants (Xia and Zhang, unpub-
lished data). Taken together, partial loss-
of-function rfc3-1 plants are smaller in size 
due to the reduced number of cells, sug-
gesting defects in replication. We therefore 
concluded that RFC3 plays an essential 
role in the process of cell proliferation.

It is not clear how RFC3 regulates 
cell proliferation and pathogen resis-
tance. During cell division, epigeneti-
cally defined chromatin structure is often 
propagated with high fidelity through 
replication-coupled chromatin assembly. 
Failure to transmit epigenetic modifica-
tions such as histone modifications and 
DNA methylations would lead to changes 
of gene expression patterns in the daugh-
ter cells. On one hand, RFC3 may func-
tion with RFC in DNA replication, DNA 
damage repair and check-point signaling. 
When the function of these complexes 
were compromised by RFC3 mutation, 
DNA replication and check-point control 
signaling were affected, cell proliferation 
was slowed down, and thus fewer cells 
were produced in rfc3-1 plants relative to 
wild type. On the other hand, since the 
phenotypes of rfc3-1 are highly similar to 
those of sni1 (suppressor of npr1-1, induc-
ible 1), and we did not detect interactions 
between SNI1 and RFC3 in the yeast 
two-hybrid assays, RFC3 may negatively 
regulate PR genes and SAR by indirect 
protein-protein interaction with SNI1.22,23 
It has been suggested that SNI1 represses 
transcription through affecting chroma-
tin modifications.24 Loss of SNI1 func-
tion leads to an increased abundance of 

lifetime of the plant, and effective against 
a broad-spectrum of pathogens includ-
ing viruses, bacteria, fungi and oomy-
cetes. During the onset of SAR, salicylic 
acid (SA) levels increase in both local 
and systemic tissues, causing upregula-
tion of a set of Pathogenesis-Related (PR) 
genes.21 Recently, in a novel genetic screen 
to search for mutants that are hypersensi-
tive to SA induction, we identified rfc3-1, 
a dwarf mutant that exhibits enhanced 
induction of Pathogenesis-Related (PR) 
genes and resistance against the virulent 
oomycete Hyaloperonospora arabidop-
sidis (H.a.) Noco2. Enhanced pathogen 
resistance in rfc3-1 is independent of 
Nonexpressor of PR genes1 (NPR1). The 
phenotypic analysis of rfc3-1 revealed that 
RFC3 negatively regulates the expression 
of PR genes and SAR.22

The G-to-A partial loss-of-function 
mutation in rfc3-1 occurred within the 
second exon of At1g77470. This point 
mutation caused a nonpolar alphatic 
amino acid (Gly-85) substitution to a 
negatively charged amino acid (Asp) in 
one of the eight conserved RFC motifs 
(box III) (Fig. 1, see the arrow). The 
most conserved motif within RFC box III 
forms a phosphate-binding loop (P loop, 
also known as Walker A) with the consen-
sus sequence GxxxxGK(S/T). This loop 
usually contains additional glycines and 
prolines and has the consensus sequence 
phUUuyGPPGtGKT(S/T)t (where U 
stands for a bulky aliphatic residue such 
as I, L, V or M).8 Substituting the third 
Gly for Asp in rfc3-1 mutant may affect 
the interaction between RFC3 and other 
subunits. Alternatively, changing the 
P-loop may affect the spatial stucture of 
the whole RFC and its affinity for the 
binding of the target. As a consequence 
of these scenarios, partial function of the 
protein complex could be lost, potentially 
leading to rfc3-1 phenotype.

Supporting this idea, the Arabidopsis 
RFC3 was found to localize to the nucleus 
and is essential for plant survival, as a 
null mutant of RFC3 is lethal.22 Since 
RFC3 encodes a putative replication fac-
tor, we tested whether the partial loss-
of-function of RFC leads to replication 
related phenotypes. As expected, rfc3-1 
plants are dwarfed and have smaller and 
narrower leaves compared with wild-type 
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Figure 1. RFC boxes II to VII of RFC proteins from Arabidopsis thaliana and Saccharomyces cerevisiae. Alignment was carried out using ebi ClustalW 
(www.ebi.ac.uk/clustalw/). The amino acids enclosed in the red frame indicate RFC boxes II to VII, which are amino acid sequence motifs conserved in 
all RFC subunits. Box VIa is conserved in the large RFC subunits, and box VIb is conserved in the other proteins. The arrow points to the mutation site 
of AtRFC3 in rfc3-1 mutant.


