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Abstract

We present a new image reconstruction algorithm for helical cone-beam computed tomography (CT).
This algorithm is designed for data collected at or near maximum pitch, and provides a theoretically
exact and stable reconstruction while beneficially using all measured data. The main operations
involved are a differentiated backprojection and a finite-support Hilbert transform inversion. These
operations are applied onto M-lines, and the beneficial use of all measured data is gained from
averaging three volumes reconstructed each with a different choice of M-lines. The technique is
overall similar to that presented by one of the authors in a previous publication, but operates volume-
wise, instead of voxel-wise, which yields a significantly more efficient reconstruction procedure.
The algorithm is presented in detail. Also, preliminary results from computer-simulated data are
provided to demonstrate the numerical stability of the algorithm, the beneficial use of redundant data
and the ability to process data collected with an angular flying focal spot.

1. Introduction

The ongoing increase in the number of detector rows has created a need for more and more
sophisticated helical cone-beam (CB) reconstruction algorithms in x-ray computed
tomography (CT). So far, for computational complexity reasons, preference has been given to
analytical reconstruction algorithms. These can be divided into two classes: the approximate
and the theoretically exact and stable (TES) algorithms. The approximate algorithms are
currently the method of choice for commercial CT scanners; see, e.g., Feldkamp et al (1984),
Stierstorfer et al (2002), Flohr et al (2003), Stierstorfer et al (2004), Heuscher et al (2004),
Kudo et al (2004), Shechter et al (2004), Koéhler et al (2006), Tang and Hsieh (2007), Zamyatin
etal (2006), Katsevich etal (2007). They are attractive because they are able to use all measured
data. But they result in reconstructions that are distorted by CB artifacts that can be severe for
imaging with 64 detector rows or more.

In this paper, we focus on the class of TES algorithms, which due to their mathematically exact
nature do not suffer from CB artifacts. We are particularly interested in the difficult problem
of performing a TES reconstruction while beneficially using all measurements. Several TES

algorithms have been published; we categorize them into 1-z and n-r methods.

The 1-n methods, such as Katsevich’s algorithm (Katsevich 2002) and the z-line two-step
Hilbert algorithm (Zou and Pan 2004, Pack et al 2005, Ye et al 2005, Schondube et al
2007a), essentially use a data angular coverage of 180° for each voxel, as viewed from the
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location of the voxel. That is, they perform reconstruction by backprojecting only filtered data
defined inside the Tam—Danielsson (TD) window (Tam et al 1998, Danielsson et al 1997). For
a standard helical CB data acquisition geometry, this means that even in the best case scenario
only 73% of the measured data are effectively used in terms of noise. The best case scenario
is data acquisition at maximum pitch, which is the pitch value such that the TD window just
fits within the detector area. Therefore, the 1-n methods significantly waste dose when applied
to standard helical CB data. This issue could be solved by adapting the x-ray beam to the TD
window to prevent the patient from being exposed to unnecessary dose, but such an adaptation
is mechanically challenging to build and could potentially remove flexibility in pitch selection.
A preferable solution is to find a way to efficaciously include the data measured outside the
TD window into a TES algorithm such that no dose is wasted. Including these data then serves
as a way for reducing image noise while maintaining resolution.

The n-m methods, and in particular the 3-& methods, rely on the theoretical observations made
in Proksa et al (2000). They extend the data set on which the reconstruction is based to the
general case of a n-r detector window (Bontus et al 2003, Katsevich 2004, Bontus et al
2005, Katsevich 2006), where nis an odd integer. Thus, they essentially perform reconstruction
atany given location using a relative data angular coverage of n times 180°. This allows a good
increase in noise-effective data usage, namely to 86% for n = 3 and 89% for n = 5 (Proksa et
al 2000), but does not allow full data utilization. Also, it requires fixing the pitch to relatively
small values, e.g., for n = 3, the pitch needs to be fixed at about one third of the maximum pitch
that was defined above for the 1-n methods. This results in a significant increase of the data
acquisition time for a given axial coverage and thus induces a higher risk of motion artifacts,
especially for imaging applications where a high pitch is typically required.

Up to now, it has not been clear if efficient TES reconstruction can be achieved while using
all data acquired at or near maximum pitch with a standard rectangular (flat or curved) detector.
Itis also unclear if a TES algorithm can be built such that it uses most or all data on the detector
for arbitrary pitch values. This paper focuses on the first of these questions. We start our
investigation from an observation that was made in Pack et al (2005), namely that in some
circumstances, the x-ray linear attenuation coefficient at a given location can be reconstructed
in three different ways that involve each a different amount of data and yield together full data
utilization. Moreover, a reduction of image noise can be achieved by averaging the three
different reconstructions. Unfortunately, this observation was based on a computationally
demanding procedure, as reconstruction at any location x required a differentiated
backprojection (DBP) and a subsequent inverse Hilbert transform (HT) on three lines that
contain x.

We present here an efficient algorithm that allows TES reconstruction using all the data
acquired at or near maximum pitch with a standard cylindrical detector. This algorithm is a
volume-based implementation of the observation made in Pack et al (2005), which was found
by extending our efficient n-line-based DBP-HT method (Schéndube et al 2007a, 2007b) to
the general case of M-lines (i.e., lines that connect a source position with a point on the detector;
see section 2.2) (‘M-line’ is an acronym for ‘measured line”). The extension provides a means
to efficiently reconstruct the attenuation function on any desired stack of nutating slices that
are made of M-lines and cover the volume of interest (VOI). We apply it to reconstruct the
VOl three times, using stacks of nutating slices that require different amounts of data and that
involve, altogether, all measurements. Averaging of the multiple VOI reconstructions then
yields a result that effectively utilizes all measured data. Reconstruction on the different stacks
of nutating slices can be performed in a sequential manner, or as a whole, within a single loop
on the projections, which offers some advantages in terms of computational effort and data
management, and is our preferred approach.
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The paper is organized as follows. First, a mathematical description of the data acquisition
geometry and of the DBP on M-lines is given in section 2. Then, in section 3, we explain how
data outside the TD window can effectively be involved using the DBP, and describe our new
algorithm in detail. Last, preliminary reconstruction results are shown in section 4,
demonstrating high accuracy, the ability to make significant use of redundant data and the
ability to reduce noise through this use. A discussion-and-conclusion section is given after
these results.

2. Mathematical background

2.1. Data acquisition geometry

To describe the data acquisition geometry we use a system of Cartesian coordinates, X, y and
Z, that is attached to the object under examination. This system is laid out such that the z-axis
corresponds to the direction in which the object is translated. A vector in this coordinate system
is denoted as x = [x, y, z], with []7 denoting the transpose of a matrix or vector. The 3D
distribution of x-ray attenuation coefficients to be reconstructed is f (x).

The motion of the vertex point (i.e., the radiation source) relative to the object is described as

a()=[ Ry cos(A+g), Ry sin(A+1p), zo+h]”, 1)

where Ry is the helix radius, and 2zh is the helix pitch. The position of the vertex point is
therefore defined by a single parameter, A € [Astart, Aendl, Where Agiart denotes the first and
Xend denotes the last position where measurements are taken. The vertex path is adjusted by
Ao and zg such that at A = 0 the source is located in the plane z = zg at a polar angle Ag.

The algorithm is designed for a third generation CT scanner, where the x-ray data are measured
using a curved-area detector; see figure 1. The curvature of the detector is such that the detector
sits on the cylindrical surface of radius D that is centered on the line parallel to the z-axis
through the vertex point. Any point P on the area detector can be specified using two
coordinates, w and y, which are defined relative to a midplane and a midline within this plane,
as explained below. The area detector is pixelated into Nygs rows of Negjs pixels that are
equidistantly spaced in w and vy; the sampling steps are denoted as Aw and Ay, so that each
pixel is of size (DAy) x Aw, with Ay expressed in radians.

We call the plane that contains the vertex point and is orthogonal to the z-axis the midplane,
and we call the line within the midplane that diverges from the vertex point and intersects the
z-axis the midline. Coordinate w specifies the signed distance between P and the midplane; it
is measured in the direction of z. Coordinate v is the angle between the midline and the line
that connects the vertex point with the orthogonal projection of P onto the midplane. This angle
is measured positively in the clockwise direction, relative to the z-axis. By construction, (y,
w) = (0, 0) defines the point where the midline intersects the area detector.

The detector is centered on the origin, (y, w) = (0, 0), except for a quarter-detector-pixel offset
iny, as in current CT scanners. The maximum fan angle is denoted as ymax, and implicitly
defines the radius of the field of view (FOV) within which the object is contained. The first
detector row is at position w = wp,i, and the last detector row is at position w = Wy, With
Wmin = ~Wmax and Wmax = (Nrows — 1)Aw/2. Note that these definitions will be extensively used
later.

To mathematically describe the data measured at a given (y, w) location, we introduce three
orthogonal unit vectors:
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€, (D=[—sin(1+41), cos(4+A1p), 0], @
e, (D=[—cos(A+4p), —sin(A+4p), 0], 3)
e,=[0,0,1]. (4)

These vectors are such that e, (1) is parallel to the midline, and g, (A) = ey(X) % e. Thus, g,(A),
ev(A) and e, form a 3D orthonormal basis rotating with the vertex point.

The line that connects the vertex point a(A) to the (y, w) location on the area detector is of
direction

(D sinye, (A)+D cos ye, (D)+we, )

VD2 w2 ' 5)

a(d,y,w)=

and the data measured along this line are

8y, w)= [ f@)+ia(d, y, w)dr. ©

The TD window plays a significant role in our algorithm. It is defined as the region of the
detector inside which the data are measured that are necessary (Tuy 1983,Danielsson et al
1997) and sufficient (Zou and Pan 2004) for TES reconstruction. When using only data inside
this window, each voxel is reconstructed from a 180° range of data, as viewed from the voxel
perspective. The upper and lower boundaries of the TD window are the CB projections of the
helix turns above and below the current source position onto the detector; in our notation, they
are given by (Noo et al 2003)

Dhr/2 -y Dhn/2+y

Wiop=—7— s Whottom= — 55— .
Ry cosy Ry cosy (7

We call the pitch value such that the TD window just fits within the detector area maximum
pitch. This value, denoted by 2r hyax, corresponds to a pitch factor,

D
Pmax=27max - NowAWRo! that depends on ymax and the number of detector rows, Nygws,

according to the formula

Niows — 1 €OS Ymax
Nrows ”/2+Vmax. (8)

Pmax=

For a maximum fan angle of 26°, we have ppax =~ 1.4.

Our algorithm is not applicable for arbitrary values of ymax and of the pitch factor, p. The
following conditions must be met:
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Ymax < Verit,
Pun < P < Ppyx 9)

where yit is the smallest positive root of the equation (/2 + 8) tan & = 1, namely it =~ 26.24°,
and

ws .
S Ymax-

Nio
Pmin=7T
rows (10)

The condition on ymax is only introduced to guarantee pmin < Pmax, Whereas the constraint on
p is derived from the algorithm, as will be discussed later.

2.2. Differentiated backprojection on M-lines

The backprojection part of the algorithm presented in this paper is essentially a generalization
of the DBP-0 variant of our DBP-HT algorithm (Schéndube et al 2007a) from =-lines to ‘M-
lines’. A w-line is a line that connects two source positions separated by less than one helix
turn. In contrast, an M-line is any line that connects a source position with a point on the
detector. By construction, any point within the helix cylinder belongs to a multitude of M-lines,
and any =-line is an M-line, whereas the converse is not true.

In the same way as for the DBP on z-lines, the outcome of the DBP on M-lines is not the
function f (x). It is the HT of f (x) along an M-line. To achieve the reconstruction of f (x), an
inverse HT has to be applied after the DBP is performed. For this task, we use an
implementation of the formula first presented by S6hngen (1937) (Noo et al 2004), as it requires
the HT of f (x) only to be known over the support of f (x). A detailed description of how we
implement Séhngen’s formula can be found in Schéndube et al (2007a equations (12) and

(13)).

The link between the DBP and the HT along M-lines can be described as follows. Let (#f)
(x, ®) be the HT of f at x along the unit vector o, i.e.,

) _ [ /‘(i B ’Q)
(AN W=~ | o=, (1

where the integral has to be understood in the sense of a Cauchy principal value. Let o(}, X)
denote the unit vector pointing from a() toward x:

T x-acll’ (12)

Furthermore, let Z82{)\4, My, X} be an operator that denotes the DBP of g(A, vy, w) over the
interval [A,, Ap] at x. Using this notation we can formulate the relation that allows the
reconstruction of f (x) along M-lines using the DBP, as introduced in Pack et al (2005), as

('%f)(ﬁv Q(/in é))__-@%‘@{/lM’ /12(5)’ §} - 9,@9}{/{1(&), /iM s é} (13)

In this relation, A1(x) and A,(x) correspond to the source positions where the projection of x
just enters (respectively, leaves) the TD window on the detector, and Ay specifies the direction
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of the HT, which is along the M-line that connects a(Ap) to X, i.e., along @(hy, X). Relation
(13) is defined for any point x inside the helix cylinder, and can be implemented whenever x
is illuminated with no interruptions over the intervals3 [Av, 22(X)] and [Aq1(X), Aml. A point x
is said to be illuminated over the interval [a, b] if the line connecting a(\) to x is covered by
the measurements for all A € [a, b].

The value at a given point x on the left-hand side of equation (13) depends on Ay, as, for
different choices of Ay, the value of o(A\y, X) indicating the direction of the HT through x will
be different. It is only after performing the inverse HT that the reconstruction result at x is
mathematically independent from the choice of Ay. It is also important to note that Ay, is not
required to be within the interval [A1(X), 22(X)]. Let Aj(X) and Ao(x) be the first (respectively,
last) source position at which the projection of x just enters (respectively, leaves) the area
detector. If there is no interrupted illumination over [Ai(x), Ao(X)], then Ay can be selected
anywhere between 1j(x) and A,(X) (Pack et al 2005). Conditions (9) guarantee that there is no
such interrupted illumination for all points x within the FOV, as will be explained later. The
possibility of choosing Ay, freely from a large number of values provides us with a degree of
freedom in selecting the set of M-lines used for reconstruction. In the following section, we
will discuss how this degree of freedom can be used to take redundant data measured outside
the TD window into account.

The DBP can be implemented in various ways; see, e.g., Pack et al (2005), Zou and Pan
(2004), Schéndube et al (2007a, 2007b), Yu et al (2007). In Schéndube et al (2007a, 2007b),
Yu et al (2007), it was shown that using a rebinning step for the DBP significantly improves
efficiency and noise properties. Using a rebinning step also provides an easy way of processing
flying focal spot (FFS) data, since this feature affects then only the rebinning step, not the
actual backprojection. In our implementation, we thus carry out the backprojection in a
rebinned pseudo-parallel ‘wedge’ geometry (Flohr et al 2005, Heuscher et al 2004).

The rebinning is performed according to the equation

gl(ﬂ(/lv 7)’ Sl‘(/ls 7)3 W):g(/L % W)’ (14)

with

Vg .
WA, y)=A+ 3 v, s:(A4,7)=Rp siny, (1)

and w remaining untouched. In this rebinned geometry, the boundaries of the TD window are
given by

Dh /2 — arcsin(s:/Ry) Dh rt/2+arcsin(s;/Rp)

Wiop=7— s Whottom= —
Ry [{ — 2/p2 Ry 2 P2
1 - s7/R; 1-s;/R; (16)

and the DBP is expressed with an operator, Z82{%,, ¥y, X}, which designates the DBP of
9r(9, s,w) over the interval [$,, 9] at x.

The link between the wedge definition of the DBP and the expression used in equation (13) is

3In this context, [a, b] means [b, a] when b < a.
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DBPNAgs Ay, XY=D B LD (A 0,9 (A, X), X}, (17)
where
B} T ,
97(4, §)=/i+§ -y (4,%),

(18)

with y*(A, X) being the value of y that corresponds to the line through a(}) and x, i.e.,

(4, x)=arctan ycos(A+4g) — x sin(A+Ap) )

Ry — x cos(A+1p) — y sin(A+A1p) (19)

Therefore, equation (13) can be rewritten in the form

(fyf/‘)(éa Q(AM’ E)):9%<W1{0¥(/1Ms 5)’ 192(5), i} - '@%‘Ofr{ﬂl (&)a ﬂx(ﬂw s 5)9 5}’ (20)
where ¢1(x) = 9*(11(X), X) and ¥2(X) = 3*(X2(x), X) denote the values of & where the projection
of x just enters (respectively leaves) the TD window in the rebinned geometry.

The precise expression for 282 {95, 9y, X} is

) 1 9, N N
DB PO 00, X)= = 5- [ 8a(@, 57, %), w* (@, ))dd, on

with
D 0
84(, st W)= ——=—=7—8:(1, 5, W),
T D ds (22)
s1(9, x)=x cos(I+p)+y sin(I+19), (23)

D(z — zo — h(¥ — m/2+arcsin(s; /Ry)))

y cos(+1%y) — x sin(F+9p)+ 4 /R% - sﬁz 4

where 9g =g + n/2.

w* (9, x)=

Inserting equation (21) into the right-hand side of equation (20) and combining the resulting
terms together into a single weighted backprojection integral offers a more practical expression
for implementing equation (20). This expression given below is used in our algorithm as
described later:
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1 D max ¥ *
()% 04y X)= -~ 5 o, X)ga (0, 55 (9, ). ' (9, X))dD, 5

where O min and 9 may are the minimum and maximum values among the three angles, 91(x),
¥5(x) and 9" (A, X), and where

‘ 1 1
a(d, x)=sign( - J°(1,,,%)) — Esign(ﬂ - (x)) - Esign(ﬁ — P2(x)). (26)

Note that a(, X) is zero for & & [ min, ¥maxl, SO the integration bounds in equation (25) can
be extended to the nearest view samples outside [ min, $max] to simplify the implementation.

3. DBP-HT with redundant data

3.1. Principle

As discussed in the previous section, Ay can be chosen freely over a wide range of values when
implementing equation (20) for a given point x. By construction, the selection of Ay plays a
significant role in the range of projections involved in the DBP. In order to illustrate this, figure
2 shows three different choices of Ay with the corresponding M-lines. The part of the vertex
path marked in bold indicates the source positions that contribute to the backprojection terms
on the right-hand side of equation (13). The backprojection range spans over the interval
[A1(X), Ap(X)] for A1(X) < Am < Ap(x), whereas it is extended to [Aw, A2(X)] if Ay < A1(x) and to
[M(X), Aml if Ay > 2o(X). The backprojection interval in the case Ay € [M(X), Ap(X)] is precisely
the same as in the 1-r methods for TES reconstruction (Katsevich 2002, Noo et al 2003, Zou
and Pan 2004, Schéndube et al 2007a). This interval is exactly covered by the TD window and
thus does not allow using the redundant data. On the other hand, the backprojection range
extends beyond the boundaries of the TD window when Ay € [A1(X), 22(x)]. Thus, in this case,
redundant data are actually used for reconstruction at x. This interesting result was first noted
in Pack et al (2005).

Unfortunately, when evaluating their method, Pack et al (2005) found that the amount of noise
in the reconstruction at x increases for a choice of Ay & [A(X), A2(X)], compared to Ay €
[A1(x), A2(x)]. This somewhat surprising result can be understood by considering the simplified
2D case of h = 0 and w = 0. In this case, the relation gq(¥, Sy, 0) = —gq(¥ + =, —S;, 0) holds,
which shows that, in contrast to the standard filtered backprojection (FBP) case, there is a
minus sign between opposite filtered projections. If the differentiated backprojection is
extended over more than a w-interval, the contributions from data that are 180° apart begin to
cancel out each other, whereas they are averaged in the standard FBP. Because there is no noise
correlation between measurements that are 180° apart, noise contributions add up regardless
of whether we perform a DBP or an FBP reconstruction. Therefore, in the case of the DBP,
extending the backprojection range yields an increase in the noise level. Pack et al (2005)
concluded that a similar behavior can be assumed for the 3D case. In summary, when using
the DBP-HT reconstruction method on M-lines it is not possible to reduce the noise level in
reconstructed images just by naively extending the backprojection range over more than the
n-interval.

Nonetheless, Pack et al (2005) found that noise can be reduced by averaging the three different
reconstructions of f (x) that correspond to the following choices for Ap: Ay = Ai(X), Am €
[21(x), X2(X)] and Ay = Ao(X). Unfortunately, this procedure requires that a backprojection on
all points along the intersections of three specific M-lines with the support of f must be
performed to obtain the final outcome at any given point x; it is thus inefficient and not suitable

Phys Med Biol. Author manuscript; available in PMC 2010 August 7.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Schondube et al.

Page 9

for practical use. Specifically, the required number of operations is of order O(N°), which can
be seen as follows. Let Ny = Ny = N, = N be the number of voxels that is desired in x, y and z.
Let Ny = N be the number of samples on one M-line. Let N >~ N be the number of source
positions per half-turn of the helix. To reconstruct one voxel value, we need to backproject
onto all Ny, samples of one M-line through the center of the voxel, so that the inverse HT can
subsequently be applied. Moreover, to perform this backprojection, we need about one half
helix turn of projections. Thus, the required number of operations is of order O(Ny; - Np) for
one voxel value and one M-line. Since the procedure proposed in Pack et al (2005) requires
three M-lines per voxel, and we wish for N - Ny - N = N3 voxels, we end up with a number
of operations being O(Ny - Np - 3 - N3), which is essentially O(N).

In the remainder of this paper, the ideas from Pack et al (2005), Schondube et al (2007a,
2007b) are combined to obtain a new TES reconstruction algorithm that effectively uses the
redundant data while requiring a number of operations of order O (N4), instead of O (N®).

3.2. Our method

In contrast to the inefficient voxel-based method outlined in section 3.1, our approach performs
a volume-based reconstruction similar to our n-line method presented in Schdndube et al
(2007a). More precisely, we perform three volumetric reconstructions of the desired volume
V, and then compute their average to obtain a result that beneficially involves the redundant
data.

Each volumetric reconstruction is obtained by partitioning V into a stack of nutating surfaces
of M-lines, performing reconstruction on those surfaces and then interpolating to a Cartesian
grid. The partitioning of V is based on a single parameter, denoted by wg,+. This parameter
specifies a w-coordinate on the detector toward which all M-lines of all surfaces are required
to point to. The three partitionings of V that we consider correspond to the following choices
for weyrf: Wsyrf = 0, Wsyrf = Wiin and Wsyrf = Wmax, With Wiin and wpay being the w-coordinate
for the first and the last detector row, respectively, as described in section 2.1. The
reconstructions of V using these three values of wg, are denoted as V*(0), V*(Wnin) and V*

(Wmax), and their average as V==(V*(0)+V*(Wmin)+V* (Wmax))/3- These four volumes differ
from V only due to data noise and discretization errors.

In addition to pointing toward w = wg+, the M-lines forming each surface in any given
partitioning of V are chosen to be equidistant and parallel to each other when projected onto
the (X, y)-plane. There is thus one and only one M-line on each surface that intersects the z-
axis. We use the angle that specifies the source position of this M-line to index the surfaces;
this angle is called Ag, . Figure 3 depicts the surface of index Agf for partitioning of V based
on a given value of wg,s. We denote this surface as 8 (Agur;Wsyrf) With a semicolon between
the two parameters, Ag,f and Wgyrf, to emphasize that the first parameter is a variable, whereas
the second is a constant for a given partitioning of V.

To specify locations onto M (Asyrf; Wsurf), We use two Cartesian coordinates, s and t, that are
defined within the (x, y)-plane, as shown in figure 3. These coordinates are measured along the
following orthonormal axes, which rotate with the direction of the M-lines:

e, (Asurf)=I[ =sin(Asuf+Ap), €08 (Asure+4o), 01, 27)

ET(/lsurl'):[ _COS(/!SLU‘["'/IO)’ _Sin(/isurl"i'/l()), 0. (28)
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Vector e;(Agyrf) is along the projection of each M-line onto the (X, y)-plane and es(Agyrf) iS
defined such that e5(Agyrf) X € (hsurf) = €; for any Agys. Coordinate s identifies the M-lines on
the surface, whereas t is the positioning parameter on the M-line at the location s. The meaning
of s is that of the signed distance from the origin to the projection of any M-line onto the (X,
y)-plane. Location (s, t) = (0, 0) corresponds to the intersection of M(Agyrf; Weyrf) With the z-
axis.

For any given wg,f, the variables s, t and Aq s parameterize together the three-dimensional
space within the helix cylinder. The Cartesian coordinates of the point, X(S, t, Asurf; Wsurf),
specified by these three variables are

x=— s sin(Aguet+Ao) — 7 c0S(Aguef+Ap), (29)
y=5 €o8(Asurt+4o) — T sin(Asurr+4o), (30)
Wsurf

_ * - 2 o
z=20+hA, (dsurts )T+ R = 87) - ==, a1

where A}, (Aq. ) is the value of Ay that corresponds to the M-line at coordinate s on the surface
mo\'surf; Wsurf), that is

/l; (Asurt> $)=Asuce+arcsin (s/Rp). (32)

Note that, by construction, the quantity " (ﬂ;(ﬂsurr, ), X(s, T, /lsurf;wsurf)) based on equation
(18) is the same for all (s, t)-locations on M (Asyrf; Weyrf)- It is equal to

Dourr=Asuct+7/2. (33)

Note also that the z-coordinate of X(s, T, Asurf; Wsurf), given by equation (31), is a continuous
function of A, that tends toward +oo(respectively, —oo)when Agyf tends to +oo(respectively,
—o0). Hence, any point Q inside the FOV can be associated with at least one value of Agf such
that Q belongs to M (Asurf; Wsurf)-

To accommaodate the geometry of nutating slices, all reconstructions of V are performed with
equal, equidistant sampling in x and y; s and t are sampled using the same grid as that used for
x and y. The number of samples in x, y, s and t is denoted as N4 and the sampling step as
Ajat, Where “lat” stands for lateral. The main steps to compute V*(wg,£) on a Cartesian grid of
Niat X Njat X N, voxels of size (Ajat, Ajat, AZ) are as follows for any relevant value of wg,
namely Wsyrf € {0,Wmin, Wmax}

1. Calculate the range of Aq,s Needed to fully cover V by the M-line surfaces
corresponding to the fixed value of wgyt.

2. Create a stack of M-line surfaces, M (Asurf; Wsurf), Spaced by Akgyf = Az/h over the
calculated range of Agyt.

3. Rebin the data to the wedge geometry using the method described in Flohr et al
(2005), which is applicable to data collected both without and with FFS.
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4. Differentiate the rebinned data in s, using a simple two-point scheme, i.e., for ageneric
function k(sy):

k,(sr+ASr/2) =~ (k(s,+As,) — k(s,))/(As)). (34)

Weight the data in w according to equation (22).
Compute the DBP onto the stack of M-line surfaces according to equation (25).

Apply a finite HT inversion on each M-line.

© N o O

Linearly interpolate from the M-line surfaces to Cartesian coordinates. We first
interpolate from (s, T, Agyrf) to an intermediate (X, Y, Asyrf) grid using equations (29)
and (30) and then from these intermediate coordinates to (x, y, z) using equation (31).

Step 6 is most demanding in terms of managing computational effort and discretization errors.
We provide further details on our implementation of this step in section 3.3. Before going into
these details, two observations are, however, in order.

First, the steps outlined above are only applicable when there is no interrupted illumination for
all points within the FOV. We show in the appendix that this condition is satisfied as long as
the pitch factor, p, and the maximum fan angle, ymnax, are selected as in conditions (9).
Interestingly, the condition of no interrupted illumination is closely linked to the requirement
that the M-line surfaces have no intersection with each other within the FOV when |wg | =
Wmax- In fact, under conditions (9), relation (31) with s and t defined from equations (29) and
(30) establishes a one-to-one relationship between z and Agf for any (x, y) in the FOV and any
|Wsurfl < Wmax. This property facilitates the implementation of step 8 and is discussed in the
appendix along with the issue of interrupted illumination.

Second, the three targeted reconstructions of V involve different data as they are based on
different values of wg,+. On one hand, reconstruction V*(0) involves no data outside the TD
window. On the other hand, reconstructions V*(Wpnin) and V*(wmayx) involve together all
measured data, with V*(w,) using the data below and within the TD window, and V*
(Wmax) Using the data within and above the TD window. This is illustrated in figure 4. Following
our discussion in section 3.1, the noise level in V*(Wpin) and in V*(Wnax) may be expected to
be higher than in V*(0), whereas the average 7+ may be expected to be significantly less noisy
than any of these three reconstructions of V, as is demonstrated in the following section.

3.3. Details on the backprojection step

aq(¥, x)=sign, (I — 9"(1,,, %)) - %Sign(ﬁ‘ - 91() - %Sign(l? - $2(%),

Given that the backprojection step involves many arithmetic operations that do not depend on
the value of wg,, it is more efficient to perform the backprojection for the three volumes, V*
(0), V*(Wmin) and V*(Wmax), altogether. We describe the steps for such a joint backprojection
below. These steps compute a numerically stable version of equation (25) using the simple
rectangular rule for numerical integration. The numerical stabilization amounts to replacing o
(9, x) in (25) by

(35)

where sign,(-) is a smooth approximation of the signum function, namely,
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-1 if ¥<-AY
¢ 9 \2
gor 25+(Z)  if —Ad<#<0
SIgna( )_ J ) 2.
2% (&) if 0<o<Ad
1 lf 19 > Aﬂ (36)

Note that only the first appearance of the signum function is smoothed; the other two signum
functions are left untouched. These two functions are sufficiently randomly sampled over ¢,
X, y and z that no smoothing is needed, whereas the first signum function is used on a fairly
deterministic basis that requires numerical stabilization.

Before starting the backprojection, we compute a range of A, that allows covering V for all
three values of wgt. This range is defined as [Asyrt min, Asurf,max], Where Agyef min is the
minimum value of Ag s for which M (Asyrf, Wmax) just intersects V, and Agyrf max is the maximum
value of Agyf for which @ (Asyrf; Winin) just intersects V. Since the M-line surfaces are sampled
with a step A)gyrf = Az/h, the number of surfaces for each partition of V is then selected as

/lsurf.max Asurt, min

L}

Ngurr=ceil (
o Adgurt 37)

where ceil (-) is the operation that rounds any number to the nearest larger integer. By
construction, Ny differs from N, only by some overhead resulting from the obliqueness of
the surfaces of M-line relative to the z-axis.

The backprojection is performed over the range & € [Asyrf min *+ /2, Asyrf max + /2] and fills
the entries of three arrays of size Njg X Njat X Nsurf, Where each array corresponds to one of
the desired values of wg,+. The steps for any filtered projection of angle 9 that is within the
backprojection range are as follows:

1. Forevery Asurf € [Asurf,mins Asurfmax]

e Testif the current projection contributes to samples that are within the FOV
on M(Asurf; Weyrf) for any wWyef € {0,Wnin, Winax}- If not, increment the value
of Agyrf; Otherwise, proceed with the steps below. The test is always
(conservatively) positive when & = & — 9, satisfies the following
condition, with Gqyrf = Agyrf + w/2:

RO(I +sin ymax)

1< max+(Neows A
[P <Y max +(Nrows Aw) Dh (38)

This condition can be used to speed up this first step.
e For every s on the grid perform the following:

—  Determine the range of t which is inside the FOV for the
current value of s.

—  For every t within that interval:

¢ Compute the value of s for the current value
of (s, t) according to equation (23).
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¢ For this value of s, compute Wy, and
Whottom the upper and lower boundaries of
the TD window, using linear interpolation
through tabulated values of equation (16).

¢ For each Wgyrf € £0,Wmin, Wmax}:

»  Compute the value of
w” for the current (s,
T, Wgyrf) triple
according to
equations (24) and
(31), using again
interpolation through
tabulated values, this
time of the functions

arcsin(-) and V.
»  Compute ay(8, X) of

equation (35) using
the formula

(sign, () = 1) if w*<Wootom
@q(9,x)= (Signa (11)) it Wporom<w* <Wiop
(sign,(NH+1) if w>wp.

(39)
* Compute
(9, %) - ga(9, 55, w")
, with bilinear

interpolation as the
backprojection
contribution to the
location x associated
with the current
values of wgyf, T, S
and Agyrf.

The required number of operations of this algorithm is of order O(N%). Let N be the number of
voxels that is desired in X, y and z. Thus, Njot = N -and N, = N. Let N, = N be the number of
source positions per half-turn of the helix. To reconstruct one M-line surface, we need to
backproject about one half helix turn of projections onto Ny - Njo: = N2 locations. This means
that the required number of operations is of order O(N2 - Np)- The procedure outlined above
requires Ngyrf M-line surfaces per volume, and we need three volumes for the combined
reconstruction, thus we end up with a number of operations being O (3 - Ngyrf - N2 - Np), which
is essentially O(N%), since Ngrf =N, = N.
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4. Algorithm validation

We present here preliminary results on the performance of our algorithm. These results were
obtained from computer-simulated data defined using parameters that are representative of
state-of-the-art commercial CT scanners; see table 1. Two configurations were considered for
the data simulation, namely, without and with a lateral FFS. Moreover, the effect of the finite
size of the focal spot and of the detector elements was consistently included, using 3 x 3
detector-lets and 2 x 2 source-lets at each source position, with exponential averaging of all
line integrals connecting a source-let to a detector-let.

Three experiments were performed. In the first experiment, we used the FORBILD head
phantom to visually assess robustness in terms of CB artifacts, discretization errors and
effective handling of the lateral FFS feature. Figure 5 displays the outcome of this experiment
for the slice z =0 cm, as obtained on a grid of 401 x 401 square pixels of side 0.75 mm. The
top row of this figure shows the results of our algorithm without (left) and with (right) lateral
FFS, whereas the bottom row shows the ground truth and the difference image between the
two images of the first row. These results are complemented by figure 6, where the profile
through the ear at y = 0 cm is given for the reconstructions without and with FFS, and for the
ground truth. It can be observed that the new algorithm yields accurate results, and that the
FFS feature is effectively accounted for by the algorithm; in that it yields a clear improvement
in resolution.

The second experiment aimed at demonstrating the effective use of the data outside the TD
window, and at assessing the magnitude of the contribution of these data to the reconstruction.
To achieve this goal, we performed two reconstructions using the FORBILD head phantom
data of the first experiment. One reconstruction was obtained with a binary weight applied to
the data that set all values inside the TD window to zero and left the other values unchanged.
The other reconstruction was obtained with all detector values outside the TD window being
set to zero. Naturally, none of these two reconstructions is theoretically exact, but their sum is
due to the linearity of all operations in our algorithm. This data splitting technique allows
singling out the impact of the data outside the TD window. The two reconstructions and their
sum are displayed in figure 7. It can be observed that the data outside the TD window
significantly impact the whole reconstruction process.

The third and last experiment aimed at verifying that noise performance behaves as expected.
For this experiment, we used the FORBILD thorax phantom with addition of Poisson noise
corresponding to an emission of 150 000 photons per ray. Figure 8 displays the reconstructions
of slice z = 2.18 cm through each of the three sub-volumes, V*(0), V*(Wmin) and V*(Wmax),
and also through the combined volume v7=. These reconstructions were performed on a grid of
512 x 512 square pixels of side 0.9mm. We also included the difference image between the
reconstructions of V*(0) and 7= from noise-free data. This image shows that the difference in
resolution between V*(0) and 7= is very small, as the edges in the phantom are hardly visible,
whereas the noise level is significantly lower in 7=, Quantitative measurements of the standard
deviation within seven regions of interest, labeled as A through G, are given in table 2 and
support the visual assessment.

5. Discussion and conclusion

We have presented a new algorithm for helical CB CT that allows TES reconstruction while
beneficially using all measured data. This algorithm was designed as an extension of the n-line
DBP-HT algorithm presented in Schéndube et al (2007a) to the more general case of M-lines.
The noise improvement that this algorithm offers is achieved using a principle that was first
described in Pack et al (2005). Specifically, three different reconstructions of the VOI based
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on data sets that are only partially overlapping are averaged together to obtain a noise-improved
image. Each individual reconstruction is obtained using a differentiated backprojection onto a
specific type of M-lines. To ensure the usage of all redundant data on the detector, our proposed
method uses one set of M-lines directed to the upper end of the detector, one set directed to
the lower end of the detector and one set directed to the central detector row. Unlike the
technique presented in Pack et al (2005) our algorithm performs the reconstruction volume-
wise, instead of voxel-wise; this allows a significant decrease in computational effort, which
we have shown to be of the order of the cubic root of the number of voxels.

Our algorithm only applies when there is no interrupted illumination for all points within the
FOV, and we have proven that conditions (9) guarantee this to be the case. We did not discuss
so far the optimality of these conditions. Regarding this issue, we have observed that the M-

line surfaces defined with |wgyfl = Wmax intersect each other non-tangentially within the FOV
when p is decreased below pnin. Such intersections appear first near the edge of the FOV, and
can be shown to imply the appearance of interrupted illumination. For this reason, we believe
that conditions (9) are optimal.

Conditions (9) are not very restrictive for a small FOV, such as that corresponding to a head
scan. But they are very stringent for thorax imaging, especially with wide patients. We are
actively investigating new methodologies allowing the handling of interrupted illumination,
so that lower pitch values may be considered for an arbitrary FOV size.

Preliminary results from computer-simulated data were provided to show effective use of
redundant data and also of the angular FFS. Further quantification of gains in image quality,
especially for real data, is important. Noise comparison with other approximate and TES
algorithms is also of high interest. However, these two topics are beyond the scope of this
paper, particularly because a careful resolution analysis needs to be performed at the same
time. We will report on such evaluations in the near future.

An important issue when evaluating noise is whether uniform weighting of independent M-
line results is optimal or not. Also, reconstruction using more than three sets of M-lines may
be preferred to mitigate patient-motion artifacts along with noise. An early investigation of
these issues was reported inKohler et al (2008) at the 2008 IEEE Medical Imaging Conference,
and yielded very encouraging results regarding patient-motion handling. No algorithm details
were provided in Kohler et al (2008), but it is likely that a methodology that is very similar to
ours was used. A first description of our algorithm was also given at the 2008 IEEE Medical
Imaging Conference (Schondube et al 2008).
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In this appendix, we discuss how conditions (9) guarantee that there is no interrupted
illumination for the points within the FOV. Our proof involves a close examination of
intersections between the surfaces of M-lines defined with |Wgyrfl = Wmax. More precisely, we
demonstrate that: (i) under conditions (9) and the assumption that |Wgyrf| < Wmax, the surfaces
M (surf; Wsurf) do not intersect each other within the FOV when varying Agys, (ii) there is no
interrupted illumination when the surfaces #(Asurf; Wsurf) do not intersect each other within the
FOV for |wgyrfl = Wnax. Taken together, these two statements prove that there is no interrupted
illumination under conditions (9).
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To best understand our argument, recall that the condition p < ppax is required for any TES
reconstruction, and is thus independent from our algorithm. Recall also that the object is always
within the FOV, so the CB projection of a point that is within the FOV can only leave the
detector through its top and bottom rows. Last, note that the rebinning step of equation (14)
does not change the data properties with respect to interrupted illumination: if there is no
interrupted illumination in the initial data geometry, there is also none after rebinning, and
conversely.

To prove statement (i) above, we rewrite equation (31) into an expression that yields the z-
coordinate of the point (x, y, z) that belongs to #(Asurf; Wsurf) at given x and y:

SOy, Agur) | Wt [
20X, Y, AsurtsWourt=20+hAsuce+h arcsin ( )1;0 )+ ;;r (T(x, y, Asurt)+ R(Z) = s(x,y, /lsurf)z)

(A.1)

with

s(x, ¥, Aguer)= — x sin(Agyee+Ap)+y cos(Agyer+Ap), (A.2)

T(X, Y, Agurt)= — X €OS(Aguer+Ap) — ¥ sin(Agyee+Ap). (A.3)

Then, we examine the behavior of 0z/0\,f for any (x, y) within the FOV. Straightforward
calculations yield

0z _ (/’l _ Wsurf S(X, Y, /lsurl‘)) 1+ 7(x, Y, Asurf)

OMgut D
surf R(Z) — s(x, Yy, /lsurf)2 (A.4)

7 €oS(Agurt — @)

\/R(Z) = r2+r2cos(Agut — ¢)

= (h+% - rsin(Agyef — <p)) 1-

(A.5)

We s
= (h+%rf < r Sin(Agyer — (P)) k(cos(Aguct — ¢)), (A.6)

where r >0 and ¢ € [0, 2x) are the polar coordinates of x and y, and where

k(=1 ~ r1/ \JR§ = r*+r°1 |t turns out that K(t) > O for all t when r < Rq because

K ()= — r(R2 — *)/(R2 — P+ <0 for any tif r <Ry,
e lime o k() = 2, 1M sy K()=0.

Therefore, 0z/0 gy > 0 Whenever r < Rg and |wgy|]r < hD. However, under conditions (9), we
have pmin < p, which can easily be rewritten in the form waxRg Sin ymax < hD from the
definition of p, Wmax and pmin. Given that Ry Sin ymax is the radius of the FOV, we can conclude
at this stage that 6z/0hgrf > 0 for any (x, y) within the FOV. This proves statement (i).

Phys Med Biol. Author manuscript; available in PMC 2010 August 7.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Schondube et al.

Page 17

The proof of statement (ii) goes as follows. If there was interrupted illumination, there would
exist a point within the FOV that is projected at least twice onto W = Wpax (Or W = Wpin). But
any point that is on the M-line surface M (Asurf; Wsurf) Sits on an M-line that represents the course
of a ray projecting it onto the detector row w = wg,f, With the direction ¥ = Agys + 7/2 in the
rebinned geometry. Thus, if a point is projected onto the detector row w = Wyax (OF w =
Wmin) twice, say under the rebinned projection angles ¢4 and %5, it must also be located on
two M-line surfaces, namely (1 — n/2; w) and @ (&, — n/2; ). This is only possible if those
two M-line surfaces intersect. Hence, there is no interrupted illumination if the surfaces M
(Asurf; Weyrf) do not intersect each other within the FOV for [Wgyrf| = Winax-
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Figure 1.
Data acquisition geometry. Our algorithm is designed for the geometry of third generation CT
scanners with a multi-row detector.
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Figure 2.

M-lines and backprojection range. Reconstruction at x can be achieved by computing and then

inverting the HT on any M-line through x, but this procedure requires a different range of

projections depending on the position of Ay (the angle defining the M-line) relative to A, and

A2 (the angles defining the m-line through X). Three cases are possible: A can be located before

M\ (left diagram), after A, (right diagram) or between X4 and A, (middle diagram). In each case,

the highlighted portion of the helix depicts the required backprojection range. Note also that

the selection of A is restricted to the interval [A;, o] over which no interrupted illumination
occurs.
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Figure 3.

Depiction of the M-line surface M(Asyrf; Wsyrf). Each M-line on #(Asurf; Wsurf) hits the detector
at w = Wgyf, i.€., on a fixed row of the virtual detector onto which the data are mapped by the
wedge rebinning. By varying Aq,rf from —oo to +oo at fixed wgf, We get a stack of nutating
slices that covers the entire FOV.
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Figure 4.

[llustration of the three different kinds of M-line surfaces used in our approach. From left to
right: Weyrf = Winax, Wsurf = 0 and wgyrf = Wiin- The curved black lines on the rebinned detector
denote the boundaries of the TD window; the shaded detector area shows the amount of data
needed for reconstruction on each surface.
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Figure 5.

Reconstructions of the FORBILD head phantom (with right ear only). Upper row: DBP-HT
reconstructions from data simulated without (left) and with (right) angular FFS. Bottom row:
ground truth (left) and difference image between the two reconstructions in the top row. The
grayscale window for the ground truth and the reconstructions is [0, 100] HU. The window for
the difference image is [-50, 50] HU.
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Figure 6.

Profile at y = 0 cm through the ear of the reconstructions shown in figure 5; dotted line: ground
truth, solid black line: DBP-HT from data simulated with angular FFS, solid gray line: DBP-
HT from non-FFS data.
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Figure 7.

Impact of redundant data in our reconstruction process. The top row shows the reconstruction
of the FORBILD head phantom with no ears, as obtained when setting to zero either all data
outside the TD window (left) or all data inside the TD window (right). The grayscale is [-1000,
1000] HU. Bottom row: sum of the two images in the top row, displayed with two different
grayscales: (left) [-1000, 1000] HU, (right) [0, 100] HU.
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Figure 8.

Reconstruction of the FORBILD thorax phantom with Poisson noise added to the data,
assuming an emission of 150 000 photons per ray. The standard deviation measurements
reported in table 2 were evaluated in the rectangular areas. Top left: combined reconstruction
= Top right: reconstruction V*(0), which is based only on the M-line surfaces defined with
Wgyrf = 0. Middle left: reconstruction V*(wWmax), Which is based only on the surfaces defined
With Weyrf = Wmax. Middle right: reconstruction V*(wWnin), Which is based only on the surfaces
defined with wgyrf = Wmin. Bottom left: ground truth. Bottom right: difference image between
= and V*(0). The following grayscale window was used in all cases: [-50, 50] HU.
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Data-simulation parameters.

Table 1

No of detector rows

No of detector columns
Detector pixel height

Detector pixel width
Source-to-detector distance (D)
Height of the focal spot

Width of the focal spot

Anode angle

Radius of the helix (Ry)

No of projections per turn (no FFS)

No of projections per turn (with FFS)

Pitch factor

64

736
0.10947 cm
0.12858 cm
108.56 cm
0.135cm
0.12cm
7.0°
59.5cm
1152

2304

1.35
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Table 2

Page 28

Standard deviation in HU within seven different regions of interest of the reconstructed images displayed in

figure 8.
V*Wma)  V*Wnin)  V*(0) —
\%
A 3274 32.36 2556  18.33
B 1229 13.57 11.94 8.56
C 1752 14.61 11.34 9.02
D 2045 21.00 1444  13.62
E 2455 25.25 17.73 1476
F 29.84 25.81 28.29 18.34
G 3281 27.57 2132 1741
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