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ABSTRACT
Background: Vitamin E supplementation may be a potential strat-
egy to prevent respiratory tract infections (RIs) in the elderly. The
efficacy of vitamin E supplementation may depend on individual
factors including specific single nucleotide polymorphisms (SNPs)
at immunoregulatory genes.
Objective: We examined whether the effect of vitamin E on RIs in
the elderly was dependent on genetic backgrounds as indicated by
SNPs at cytokine genes.
Design: We used data and DNA from a previous vitamin E inter-
vention study (200 IU vitamin E or a placebo daily for 1 y) in
elderly nursing home residents to examine vitamin E–gene interac-
tions for incidence of RI. We determined the genotypes of common
SNPs at IL-1b, IL-2, IL-6, IL-10, TNF-a, and IFN-c in 500 partic-
ipants. We used negative binomial regression to analyze the asso-
ciation between genotype and incidence of infection.
Results: The effect of vitamin E on lower RI depended on sex and
the SNP at IL-10 2819G/A (P = 0.03 for interaction for lower
RI). Furthermore, we observed that subjects with the least prevalent
genotypes at IL-2 2330A/C (P = 0.02 for upper RI), IL-10
2819G/A (P = 0.08 for upper RI), and IL-10 21082C/T
(P , 0.001 for lower RI in men) had a lower incidence of RI
independent of vitamin E supplementation.
Conclusions: Studies that evaluate the effect of vitamin E on RIs
should consider both genetic factors and sex because our results
suggest that both may have a significant bearing on the efficacy
of vitamin E. Furthermore, common SNPs at cytokine genes may
contribute to the individual risk of RIs in the elderly. This trial was
registered at clinicaltrials.gov as NCT00758914. Am J Clin
Nutr 2010;92:106–14.

INTRODUCTION

Respiratory tract infections (RIs) impose a substantial eco-
nomic burden (1–3) and are a significant cause of mortality and
morbidity in the United States (4). The elderly have an increased
risk of infection (5), and RIs are common among elderly nursing
home residents (6). The immune response plays an important role
in resistance to RIs and declines with age (7–11).

Vitamin E has been shown to enhance the immune response
and resistance to infection (12–15). However, not all individuals
supplemented with vitamin E show improved immune responses
or fewer RIs. The immunomodulatory effect of vitamin E is
partially mediated via its effect on cytokine production (15–18).

A vitamin E–induced reduction in influenza infection has been
associated with changes in cytokine concentrations in aged mice
(12). The current study focuses on functional single nucleotide
polymorphisms (SNPs) at the genes for interleukin-1b (IL-1b),
IL-2, IL-6, IL-10, interferon-c (IFN-c), and tumor necrosis
factor-a (TNF-a) (19–23). Specific genetic differences at cyto-
kine genes may account for the variable susceptibility to RIs
(24) by influencing the function of immune cells or the cytokine
response to pathogens. Given the public health effect of RIs and
the potential use of vitamin E as a preventative measure, in-
formation on genetic factors that influence the response to
vitamin E is needed. We used data from a vitamin E interven-
tion in a nursing home population (13) to test the hypothesis that
the varied effects of vitamin E on RIs [total RIs, upper RIs
(URIs), and lower RIs (LRIs)] are partially due to genetic dif-
ferences at cytokine genes. Furthermore, we explored the effect
of sex on this interaction on the basis of previous reports that
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indicated that the functionality of some SNPs at cytokine genes
may be sex dependent (25, 26).

SUBJECTS AND METHODS

Study population

Between 1998 and 2001, elderly volunteers who lived in long-
term care facilities were recruited to participate in a 1-y randomized,
double-blind, placebo-controlled, vitamin E intervention trial
(13). Participants were randomly assigned to receive either
vitamin E (200 IU all-rac-a-tocopherol) or placebo daily in
addition to a multivitamin containing one-half of the Recom-
mended Dietary Allowance of essential vitamins and minerals,
including 4 IU vitamin E. Of the 617 participants enrolled in the
study, 451 subjects completed the study. Most participants
were white/non-Hispanic (93%) and women (71%) between the
ages of 65 and 102 y (mean: 84.6 y). The institutional review
board of Tufts–New England Medical Center approved the study
protocol, and an informed consent form was provided by all
participants.

Nutrient status and blood count differentials

Fasting blood samples that were collected from participants at
enrollment and at the completion of the study were used to
measure clinical chemistries, blood cell differentials, and plasma
status for select nutrients including vitamin E as previously
described (13, 15).

Infection assessment

Study nurses collected information weekly that was related to
infection and included respiratory and heart rates and temperature
(13). At the end of the study, data collected from the participants
in each supplementation group were randomly assigned to 1 of
the 2 study physicians for diagnosis of infections. Infection data
from any one participant were evaluated by only one physician,
except for 18 participants whose records were used to determine
concurrence between physicians.

The study physicians, who were blinded to the supplemen-
tation group, evaluated data collected by the nurses from the
participant examinations, interviews, and record reviews to de-
termine the incidence and duration of the RI. Clinical definitions
of RIs (13) were developed according to accepted definitions (see
supplemental Table 1 under “Supplemental data” in the online
issue) (27–29).

DNA isolation and genotyping

Five hundred participants consented to DNA analysis. DNA
was isolated from blood samples with spin-prep kits according to
the manufacturer’s instructions (QIAamp DNA Blood Mini Kit;
QIAGEN Inc, Valencia, CA). The following locations were in-
vestigated: IL-1b 21473G/C, IL-1b 2511G/A, IL-1b
3954C/T, IL-1b 6054G/A, IL-6 2174C/G, TNF-a 2308
G/A, IL-2 2330A/C, IL-10 21082C/T, IL-10
2819G/A, IL-10 2592G/T, and IFN-c 874A/T. These
SNPs were selected on the basis of previous reports of func-
tionality in other populations, particularly associations between
the genetic variants and differences in cytokine production (25,

30–36) and the role of these cytokines in protection from in-
fection. Genotyping was performed with Taqman 5# nuclease
allelic discrimination (Assay by Design/Demand; Applied Bio-
systems, Foster City, CA). All genotypes were determined with
Validated ABI Assays (Applied Biosystems) with the exception
of IFN-c 874A/T, which was determined by using primer and
probe sequences described by Yu et al (37) (see supplemental
Table 2 under “Supplemental data” in the online issue for a list
of primer and probes used for genotyping).

SNPs were tested for Hardy-Weinberg equilibrium (HWE)
with Utility Programs for Analysis of Genetic Linkage (J Ott,
Beijing Institute of Genomics, Beijing, China). For SNPs that
deviated from HWE, genotyping assays were repeated, and the
HWE was recalculated in samples from our study population and
in nonrelated, younger (,65 y) subjects who were enrolled in
the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) Study (38). The GOLDN study population was ho-
mogenous, predominantly white, lived in the United States, and
was considered a younger, ethnically similar study population.

The linkage disequilibrium between SNPs was assessed with
Haploview 4.0 software (Broad Institute, Massachusetts Institute
of Technology, Cambridge MA). Diplotype for the 3 IL-10
promoter SNPs (IL-10 21082C/T, IL-10 2819G/A, and
IL-10 2592G/T) was generated with HelixTree software
(Golden Helix, Bozeman, MT) by using the expectation maxi-
mization algorithm. Haplotypes with a frequency of ,0.05% in
this population were excluded from analyses.

Statistical power calculations and analyses

Power calculations indicated that we had a �80% chance
(a = 0.05) of detecting significant differences in total RIs
and URIs between genotypes at IL-2 2330A/C,
IL-6 2174C/G, and IFN-c 874A/T on the basis of pre-
viously published effect sizes for these SNPs (24, 39) and
.61% for total RIs and URIs between genotypes at IL-1b
2511G/A, TNF-a 2308G/A, and IL-10 21082C/T,
which is within the range of differences by genotype reported
for other SNPs at cytokine genes (24, 39).

Statistical analyses were performed by with SAS statistical
software (SAS version 9.1.2; SAS Institute Inc, Cary, NC). The
distribution of continuous variables was examined and trans-
formed by using log transformation as needed. Descriptive
statistics are reported for nontransformed data. The baseline
characteristics of each supplementation group were compared by
using Student’s t test for independent samples for continuous
variables and the chi-square or Fisher’s exact test for categorical
variables. For these analyses, RIs were categorized broadly as
URIs or LRIs (see supplemental Table 1 under “Supplemental
data” in the online issue). Analyses considered associations with
all RIs, LRIs, URIs, and colds. Analyses of RI incidence as-
sumed a negative binomial distribution of infection data, with
the natural logarithm of days enrolled in the study as an offset.
The negative binomial model was selected over Poisson re-
gression because the infection data were overdispersed relative
to the Poisson distribution. Several models were tested to ex-
amine the effect of SNPs and vitamin E supplementation on RIs
as follows.

First, 3-way statistical interactions between sex, genotype, and
vitamin E supplementation were evaluated. When a 3-way
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interaction reached significance, the data were divided into
subgroups on the basis of sex, and the effects of vitamin E
supplementation and genotype were explored

Second, if the 3-way interaction did not reach significance,
statistical interactions between sex and genotype for infection
were evaluated. When a statistical interaction between sex and
genotype was observed, the effect of vitamin E and genotype was
examined in each sex separately.

Third, the statistical interaction between genotype and vitamin
E was tested. When analysis indicated a statistical interaction
between genotype and vitamin E supplementation, each sup-
plementation group was considered separately.

With the exception of the 3 IL-10 promoter SNPs, the effect of
single SNPs on infection incidence was examined in separate
negative binomial models. The effect of each IL-10 promoter
SNP was assessed separately; however, the effect of the com-
bined genotype of the 3 SNPs at IL-10 was also examined by
using estimated diplotype information for IL-10 21082/2819/
2592. Previous reports suggested that these 3 SNPs may act in
tandem to affect elicited IL-10 production, therefore, evaluation
of the 3 IL-10 SNPs together was performed to test if consid-
ering the 3 SNPs in tandem may better reflect their function. For
analysis of either single SNPs or multiple SNPs (IL-10), in-
dividual genotypes were contrasted if the P value for the main
effect of genotype suggested a difference in infection (P �
0.05).

Analysis examining interactions and the main effect of ge-
notype were initially adjusted for the year of enrollment. Sub-
sequent analyses were adjusted for other factors that might
influence infection including smoking, diabetes, dementia,
baseline albumin and baseline hemoglobin concentrations,
chronic obstructive pulmonary diseases, age, baseline body mass
index, cardiovascular disease, and hypertension. Models of LRIs
and pneumonia were further adjusted for baseline zinc status.
Interaction terms or main effects of genotypes did not gain
significance with additional adjustments for confounding varia-
bles. Differences in infection incidence by genotype were reported
as rate ratios and 95% CIs. The reference group for rate ratio
calculations for IL-2 2330A/C (20, 40), IL-10 2819G/A
(41), and IL-10 21082C/T (42) was assigned to the genotype
group previously reported to be associated with altered cytokine
production. Significance, determined at P , 0.05, was not ad-
justed for the number of statistical tests performed.

RESULTS

Subject characteristics

Most participants in this study were white women, and the
average age of the participants was 85 y old (Table 1). There
were no significant differences in baseline characteristics be-
tween the 2 supplementation groups with the exception of di-
abetes mellitus, which was more common in the placebo group.
Because susceptibility to infection may be affected by other
factors, such as concurrent micronutrient status, diabetes, and
other comorbidities; these factors were considered in our anal-
ysis. When we evaluated the relation between vitamin E and the
SNPs of interest for RIs, we included factors (see Methods) that
might influence infection rates in the statistical models. We

observed that the inclusion of these factors did not affect the
results.

The frequencies of genotypes at each SNPwere compared with
the expected frequencies that would be observed under HWE.
IL-2 2330A/C and TNF-a 2308G/A were not in HWE in
this population (Table 2). In some cases, deviations from HWE
are due to assay failures. To ensure that the observed deviations
from HWE were not due to a technical error, genotyping at these
SNPs was repeated and provided the same results. When we
used the same assays in the GOLDN study (38) cohort, IL-2
2330A/C did not deviate from HWE (A/A: n = 31; A/C: n =
32, and C/C: n = 3; HWE: P . 0.05). Because these results
indicated that deviations from HWE were not due to an assay
failure, genotype data for IL-2 2330A/C and TNF-a
2308G/A were included in the analyses.

Linkage disequilibrium gives a measure of the association
between alleles and can be used to assess if SNPs will be inherited
together. Linkage analysis among SNPs at the same locus
indicated that IL-10 2819G/A and IL-10 2592G/T were
in significant linkage disequilibrium (R2 = 0.99), which sug-
gested that SNPs at these locations are likely to be inherited
together. The phenotypic results for associations between in-
fection and IL-10 2819G/A were the same as that for
IL-10 2592G/T; therefore, only results for IL-10 2819G/A
are reported.

TABLE 1

Baseline characteristics of participants by supplementation group1

Supplementation group

Vitamin E

(n = 254)

Placebo

(n = 246)

Age (y) 85.9

(65.4–102.2)2
84.3

(65.7–102.6)

Women [n (%)] 181 (71) 174 (71)

White [n (%)] 235 (93) 230 (93)

BMI (kg/m2) 25.8 6 5.23 25.9 6 5.1

Serum albumin (g/dL) 3.8 6 0.3 3.77 6 0.4

Hemoglobulin (g/dL) 12.4 6 1.4 12.17 6 1.4

C-reactive protein (mg/L) 8.5 6 12.7 8.37 6 12.6

Plasma vitamin E (lg/dL) 1153 6 404 1166 6 424

Serum zinc (lg/dL) 83.8 6 25.7 84.1 6 27.8

Total number of medications 7.5 6 4.1 7.4 6 4.1

Participants taking NSAIDs [n (%)] 96 (38) 85 (35)

Medical history

Coronary artery disease [n (%)] 89 (35) 78 (32)

Congestive heart failure [n (%)] 51 (20) 52 (21)

Hypertension [n (%)] 131 (52) 135 (55)

Diabetes mellitus [n (%)]4 42 (17) 60 (24)

Dementia

Alzheimer disease [n (%)] 27 (11) 24 (10)

Non-Alzheimer dementia [n (%)] 101 (40) 89 (36)

Current smoker [n (%)] 14 (6) 22 (9)

COPD [n (%)] 65 (26) 56 (23)

Malignancy [n (%)] 22 (9) 27 (11)

1 NSAIDs, nonsteroidal antiinflammatory drugs; COPD, chronic ob-

structive pulmonary disease.
2 Mean; range in parentheses (all such values).
3 Mean 6 SD (all such values).
4 Significantly different between supplementation groups, P , 0.05

(chi-square test).
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Single SNPs and RIs

To examine if the effect of vitamin E depended on sex and
SNPs, we tested if sex, vitamin E, and each single SNP were
associated with RIs. We observed a 3-way interaction between
vitamin E supplementation, sex, and IL-10 2819G/A for total
RIs (P = 0.003) and LRIs (P = 0.03). The nature of the in-
teraction was similar for total RIs and LRIs.

Because the interaction was sex dependent, we examined the
effect of vitamin E supplementation and IL-10 2819G/A
within men and women separately. Analyses within men showed
no difference in the incidence of total RIs or LRIs between
vitamin E and placebo groups within each genotype or in in-
cidence of infection between genotypes within each supplement
group (Tables 3 and 4). Analyses within women indicated that,
among vitamin E–supplemented subjects, subjects with the G/G
genotype at IL-10 2819G/A had fewer total RIs than did
subjects with the A/G (P = 0.003) or A/A (P = 0.08) genotype
(Table 4). Furthermore, among vitamin E–supplemented sub-
jects, subjects with the G/G genotype at IL-10 2819G/A had
fewer LRIs than did those with the A/G (P = 0.03) or A/A (P =
0.04) genotype (Table 5). However, among subjects who re-
ceived the placebo, those subjects with the A/A genotype at
IL-10 2819G/A had fewer total RIs than did subjects with the
G/G genotype (P = 0.04) (Table 4). Subjects with the A/A
genotype at IL-102819G/Awho received vitamin E had more
LRIs (P = 0.06) and total RIs (P = 0.03) than did subjects with
the A/A genotype who were given the placebo (Tables 3 and 4).
However, there were no differences in total RIs or LRIs between
treatments in subjects with the A/G or G/G genotypes at
IL-10 2819G/A. The small number of subjects in each sub-
group limited our power to detect significant differences by ei-
ther supplement group or genotype after adjustment for covariates.

There were no interactions between vitamin E supplementa-
tion and the other single SNPs for RIs. We examined if there were
any associations between the SNPs and infection that were sex
dependent. We observed an interaction between sex and IL-10
21082C/T for LRIs (P = 0.004). Men with the C/C genotype
at IL-10 21082C/T had a lower incidence of LRIs than did
men with the C/T or T/T genotype (P , 0.01; Table 5). Similar
trends were seen for pneumonia incidence (P = 0.006 for in-
teraction between IL-10 21082C/T and sex; P , 0.05 for
effect of IL-10 21082C/T in men).

We examined the relation between each of the single SNPs and
infection.We observed that IL-22330A/Cwas associated with the
incidence of all URIs and colds (P = 0.02 and P = 0.04, respectively;
Table 6). Subjects with the C/C genotype at IL-2 330A/C had
a lower incidence of URIs and colds than did subjects with A/A and
A/C genotypes. Similar trends for IL-2 2330A/C were observed
for the incidence of all RIs (P = 0.06).

IL-10 2819G/A was associated with an incidence of
common colds (P = 0.04; Table 7). Subjects with the A/A ge-
notype at IL-10 2819G/A had a lower incidence of colds than
did subjects with the G/G and G/A genotypes. Similar trends
were observed for IL-10 2819G/A and the incidence of all
RIs (P = 0.09) and URIs (P = 0.08). We examined IL-2
2330A/C and IL-10 2819G/A together and did not observe
an interaction between the 2 SNPs for colds. When the 2 SNPs

TABLE 2

Frequency (n) of single nucleotide polymorphisms (SNPs)1

SNP

Major allele

homozygotes Heterozygotes

Minor allele

homozygotes

HWE

(P value)

IL-2 2330A/C 264 176 60 12.08 (0.001)

IFN-c 874A/T 161 228 108 2.57 (0.109)

IL-6 2174C/G 232 219 49 0.07 (0.797)

TNF-a 2308G/A 362 117 20 6.67 (0.009)

IL-1b 21473G/C 280 187 31 0.01 (0.976)

IL-1b 2511G/A 210 228 58 0.11 (0.744)

IL-1b 3954C/T 295 170 32 1.23 (0.266)

IL-1b 6054G/A 212 217 68 1.09 (0.297)

IL-10 21082C/T 153 241 106 0.38 (0.540)

IL-10 2819G/A 278 193 29 0.35 (0.552)

IL-10 2592G/T 277 194 29 0.43 (0.514)

1 HWE, Hardy-Weinberg equilibrium.

TABLE 3

Effect of vitamin E on total respiratory tract infections depends on sex and

IL-10 2819G/A

IL-10 2819G/A

Vitamin E Placebo

n Incidence1 n Incidence1

Women

A/A 16 1.61 9 0.392

A/G 68 1.61 70 1.48

G/G 99 0.993 96 1.31

Men

A/A 1 0.00 3 1.42

A/G 27 1.23 28 1.79

G/G 43 1.61 40 1.24

1 A negative binomial distribution was assumed for regression analysis

of infection incidence. Incidence is per person-year. Analysis was adjusted

for the year of enrollment.
2 Differences in the incidence of total respiratory tract infections be-

tween female subjects with the A/A genotype at IL-10 2819G/A who

received a placebo compared with subjects who received vitamin E (P =

0.03), and differences in the incidence of total respiratory infection between

female subjects with the A/A genotype at IL-10 2819G/A who received

placebo compared with subjects with A/G and G/G genotypes (P = 0.04).
3 Differences in the incidence of total respiratory tract infections

between female subjects with the G/G genotype at IL-10 2819G/A

who received vitamin E compared with subjects with A/G (P = 0.003) and

A/A genotypes (P = 0.08).
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were evaluated in the same model for colds, the main effect of
each SNP remained a predictor of infection incidence (P , 0.03
for both SNPs). IL-2 2330C/A and IL-10 2819G/A were
no related to the incidence of LRIs.

IL-10 21082/2819/2592 genotypes and RIs

We examined the combined effect of the SNPs at the IL-10
promoter (21082C/T, 2819G/A, and 2592G/T) on RI
incidence by using genotypes estimated with HelixTree
software (Golden Helix). There were 6 different estimated
IL-10 21082/2819/2592 promoter genotypes in this pop-
ulation (Table 8). We observed a 3-way interaction between
treatment, genotype, and sex for LRIs. We also observed an
association between IL-1021082/2819/2592 promoter genotype
and colds. However, further assessment of the data indicated that
the IL-10 2819G/A genotype was largely responsible for
these associations.

DISCUSSION

Our study suggests an association between common SNPs at
IL-10 and IL-2 genes and RIs in elderly subjects. We observed

that the SNP at IL-10 2819G/A was associated with a sus-
ceptibility to common colds, and subjects with the A/A genotype
at IL-10 2819G/A had a lower incidence of colds than sub-
jects with the G/G and G/A genotypes. Furthermore, in men, IL-
10 21082C/T was associated with incidence of LRIs, and
men with the C/C genotype at IL-10 21082C/T had a lower
incidence of LRIs than men with the C/T or T/T genotype.
In addition, we observed that the effect of the SNP at
IL-10 2819G/A on LRIs was modified by vitamin E sup-
plementation in women. Although the G/G genotype at
IL-10 2819G/A was associated with am increased incidence
of LRIs in women in the placebo group, in the vitamin E group,
the G/G genotype at IL-10 2819G/A was associated with
a decreased incidence of LRIs. In addition, women with the A/A
genotype at IL-102819G/Awho received vitamin E had more
LRIs than did women with the A/A genotype who were given the
placebo. To our knowledge, this is the first report of an associ-
ation between SNPs in the IL-10 gene and RIs in elderly as well
as its modification by a nutrient (ie, vitamin E) in any age group.
These associations between RIs and SNPs at the IL-10 gene may
reflect the importance of IL-10 in the resolution of infections.
IL-10 inhibits IL-1b, TNF-a, nitric oxide production, and
proinflammatory chemokines (43) and, thereby, reduces non-
specific damage to local tissue (43) and the risk of secondary
infections (44).

Previously, few studies have examined the relation between
SNPs at the IL-10 promoter and acute infections. Subjects with
the C allele at IL-10 21082C/T had an increased severity of
pneumococcal infections (45), including community-acquired
pneumonia (45, 46), but there was no association with the risk of
these infections (45, 46), severe acute respiratory syndrome
(39), or the common cold (24). Patients in intensive care with
the T allele at IL-10 2592G/T had a lower IL-10 release and
an increased mortality than did G/T and G/G subjects (47).
However, in contrast to our study, most previous studies used
a case-control design to compare patients admitted to hospitals
with healthy control subjects (39, 45, 46), and no other studies
specifically examined the elderly (39, 47). In addition, no pre-
vious studies described an interaction between IL-10 genotypes
and sex. This is particularly interesting because we observed that
the relation between the IL-10 SNPs and LRIs may be sex
specific.

We observed a 3-way interaction, which suggested that the
effect of vitamin E supplementation on RIs depends on both
IL-10 genotypes and sex. The interaction was similar for both
total and LRIs, which indicated that LRIs may be driving the
observations for total RIs. For women who were given the

TABLE 5

IL-10 21082C/T is related to lower respiratory tract infection in men1

Type of infection IL-10 21082C/T n Incidence2 RR (95% CI) P for RR3 P overall3

All lower respiratory T/T 50 0.61 3.36 (1.28, 8.83)4 0.01 —

T/C 66 0.80 3.99 (1.55, 10.26)4 0.01 —

C/C 26 0.20 1 — ,0.01

1 RR, rate ratio.
2 A negative binomial distribution was assumed for regression analysis of infection incidence. Incidence is per person-year.
3 For analysis between men and adjusted for the natural log offset of time in the intervention study and supplementation (a = 0.05). Adjustment for

baseline zinc did not significantly alter the association.
4 Compared with the C/C genotype group.

TABLE 4

Effect of vitamin E supplementation on lower respiratory tract infections

may depend on both sex and IL-10 2819G/A

IL-10 2819G/A

Vitamin E Placebo

n Incidence1 n Incidence1

Women

A/A 16 0.91 9 0.132

A/G 68 0.68 70 0.47

G/G 99 0.383 96 0.54

Men

A/A 1 0.00 3 1.06

A/G 27 0.64 28 0.68

G/G 43 0.68 40 0.48

1 A negative binomial distribution was assumed for regression analysis

of infection incidence. Incidence is per person-year. Analysis was adjusted

for the year of enrollment.
2 Differences in the incidence of lower respiratory tract infections be-

tween female subjects with the A/A genotype at IL-10 2819G/A who

received a placebo compared with subjects who received vitamin E (P =

0.06).
3 Significant difference in the incidence of lower respiratory tract

infections between female subjects with the G/G genotype at IL-10

2819G/A who received vitamin E compared with female subjects with

the A/G genotype (P = 0.03) and the A/A genotype (P = 0.04).

110 BELISLE ET AL



placebo, the A/A genotype was associated with lower rates of
infection than in women with G/A and G/A genotypes at IL-10
2819G/A. However, in the women given vitamin E, the G/G
group had lower rates of LRI than did women with G/A and A/A
genotypes at IL-10 2819G/A. Vitamin E–supplemented
women with the A/A genotype (the minority genotype) at IL-10
2819G/A had a higher incidence of total RIs and tended to
have higher LRIs than did women with the A/A genotype at IL-
10 2819G/A who received the placebo. By contrast, vitamin
E–supplemented women with other IL-10 2819G/A geno-
types did not have a different incidence of LRIs than did those
who received the placebo. In summary, these results suggest that
vitamin E supplementation may increase susceptibility to RIs
only in women with a particular genotype.

To our knowledge, this is the first report that vitamin E may
alter susceptibility to RIs in women in a genotype-dependent
manner. Previous reports have shown that vitamin E intake had no
overall effect on pneumonia in younger women (48) and that
supplemental vitamin E did not reduce the incidence of self-
reported infections in the elderly (49). Our observation that the
effect of vitamin E on LRIs in women depends on IL-10
genotypes may partly explain these previous null results and
raises the potential importance of considering genetic factors
when the effect of vitamin E on RIs is evaluated.

Our results build on previous reports of sex-dependent asso-
ciations between IL-10 21082C/T and arthritis (50), hepatitis
(51), and longevity (26, 52). The findings from these studies and
our results could be attributed to differences in IL-10 production
between men and women (53) and the effect of sex hormones
(54) on IL-10 production. Future studies are needed to de-
termine whether the interactions we observed between sex and
IL-10 genotypes for RIs are related to sex-hormone receptor
binding or signaling.

Further study is needed to determine the mechanisms that drive
the associations between RIs and SNPs at the IL-10 promoter and
why women with particular IL-10 genotypes may respond differ-
ently to vitamin E. Associations between infection and the IL-10
SNPs may have been due to differences in IL-10 production be-
tween subjects with different IL-10 genotypes (41, 55). Vitamin E
could unfavorably alter IL-10 production (56, 57) or respiratory
burst (58, 59) during LRIs, particularly among people genetically
predisposed to altered IL-10 production (41, 55). Future studies to
determine the effect of vitamin E on IL-10 production and re-
spiratory burst during LRIs, particularly in elderly women, will
help shed light on this observed interaction between vitamin E and
SNPs at the IL-10 promoter.

In addition to the relations between SNPs at IL-10 and in-
fection, we also observed that a common SNP at the gene that

TABLE 7

IL-10 2819G/A is related to cold susceptibility1

Type of infection IL-10 2819G/A n Incidence2 RR (95% CI) P for RR3 P overall3

All upper respiratory G/G 278 0.74 1.41 (0.78, 2.55)4 0.25 —

A/G 193 0.94 1.73 (0.94, 3.14)4 0.07 —

A/A 29 0.5 1 — 0.08

Colds G/G 278 0.63 1.90 (0.92, 3.92)4 0.08 —

A/G 193 0.79 2.24 (1.08, 4.66)4 0.03 —

A/A 29 0.31 1 — 0.04

1 RR, rate ratio.
2 A negative binomial distribution was assumed for regression analysis of infection incidence. Effect was sex independent. Incidence is per person-year.
3 Adjusted for the natural log offset of time in the intervention study, supplementation, smoking, diabetes, dementia, baseline albumin and hemoglobin

concentrations, year of enrollment, chronic obstructive pulmonary disease, age, sex, baseline BMI, cardiovascular disease, and hypertension (a = 0.05).
4 Compared with the A/A genotype group.

TABLE 6

IL-2 2330A/C is related to upper respiratory tract infection and cold incidence1

Type of infection IL-2 2330A/C n Incidence2 RR (95% CI) P for RR3 P overall3

All respiratory A/A 264 1.40 1.45 (1.05, 2.01)4 0.02 —

C/A 176 1.38 1.41 (1.01, 1.97)4 0.04 —

C/C 60 0.98 1 — 0.06

All upper respiratory A/A 264 0.82 1.67 (1.09, 2.57)4 0.02 —

C/A 176 0.87 1.78 (1.14, 2.76)4 0.01 —

C/C 60 0.54 1 — 0.02

Colds A/A 264 0.67 1.63 (1.04, 2.58)4 0.03 —

C/A 176 0.74 1.78 (1.12, 2.84)4 0.01 —

C/C 60 0.45 1 — 0.04

1 RR, rate ratio.
2 A negative binomial distribution was assumed for regression analysis of infection incidence. Effect was sex independent. Incidence is per person-year.
3 Adjusted for the natural log offset of time in the intervention study, supplementation, smoking, diabetes, dementia, baseline albumin and hemoglobin

concentrations, year of enrollment, chronic obstructive pulmonary disease, age, sex, baseline BMI, cardiovascular disease, and hypertension (a = 0.05).
4 Compared with the C/C genotype group.
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codes for IL-2 was associated with URIs. In the current study,
subjects with the C/C genotype at IL-2 2330A/C had a lower
incidence of all URIs and colds than did subjects with the A/A or
A/C genotype. These results are notable given the limited
number of studies that have examined the relation between IL-2
2330A/C and acute RIs. A smaller study of adults reported
that subjects with the A/C genotype at IL-2 2330A/C had
a higher incidence of self-reported common cold than did sub-
jects with the A/A or C/C genotype (24). IL-2 regulates lym-
phocytes and natural killer cells (60) and SNPs that affect IL-2
could influence the immune response to infection.

Because the C/C genotype at IL-22330A/C was previously
associated with higher IL-2 production than did the A/A or A/C
genotype (20, 40), we examined the relation between IL-2
2330A/C and ex vivo IL-2 production in a subset of our study
participants (n = 100). We did not observe an association be-
tween IL-2 2330A/C and IL-2 production (data not shown).
Thus, the association between IL-2 2330A/C and URIs may
not be wholly due to differences in IL-2 production, and alter-
nate explanations should be explored.

Our observation that participants with different IL-2
2330A/C genotypes had varied risk of RIs is particularly
interesting because we observed that IL-2 2330A/C and TNF-
a2308G/Awere not in HWE in this study. For both SNPs, the
frequency of heterozygotes was lower than what would be ex-
pected under HWE. In previous studies of elderly Europeans,
IL-2 2330A/C (61, 62) and TNF-a 2308G/A (63) did not
deviate from HWE. In addition, when we tested a younger
(,65 y old), predominantly white population, we observed that
IL-2 2330A/C was in HWE. In the current study, elderly
nursing home residents with the A/C genotype at IL-2
2330A/C had a higher incidence of URIs and colds. Together,
these data suggest that there is a gradual depletion of subjects
with the A/C genotype at IL-2 2330A/C as the population
ages, which may be related in part to greater RI risk among
those with the A/C genotype. Future studies are needed to rep-
licate our observation that IL-2 2330A/C deviated from HWE
in other elderly populations and to compare biological functions
relevant to longevity between IL-2 2330A/C genotypes.

In conclusion, we observed that RIs susceptibility among the
elderly may be influenced by SNPs at the IL-2 and IL-10 pro-
moter regions and that the efficacy of vitamin E supplementation
for reducing RIs in the aged may depend on sex and IL-10
genotypes. These observations may be used to generate further
hypotheses and studies of individual susceptibility to infection
and variable responses to vitamin E supplementation. Further
studies are needed to verify our results and understand the
mechanisms driving them, including how differences in the

cause of infection may affect associations. However, our results
suggest that the recommendations for vitamin E supplementa-
tion as a preventive measure against RIs should consider ge-
netics and sex. These observations may have ramifications for
public health through improved predictions of infection in the
elderly and help to identify individuals who may benefit the
most from taking supplemental vitamin E.
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