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Abstract

Equol [7-hydroxy-3-(49-hydroxyphenyl)-chroman], an isoflavan produced by intestinal bacteria in response to soy isoflavone

intake in some but not all humans, exhibits a wide range of biological properties. It exists as the diastereoisomers S-(-)

equol and R-(+)equol. Intestinal bacteria produce exclusively S-(-)equol, which has selective affinity for estrogen receptor

(ER)-b. The evidence is conflicting on whether there is an advantage to producing S-(-)equol in response to soy isoflavone

intakes, but the ability to now synthesize these diastereoisomers opens the way for future clinical trials to directly examine

their potential in a number of hormone-dependent conditions. In this review, the plasma and urinary pharmacokinetics of

S-(-)equol and R-(+)equol are reviewed and summarized, and some of the more recent evidence supporting potential

biological effects of S-(-)equol is considered. J. Nutr. 140: 1363S–1368S, 2010.

Introduction
In Part 1 of this overview of equol (1), the history, chemistry, and
factors that influence equol production were reviewed. Part 2
separately reviews the pharmacokinetics and the biological
properties of equol that have led to the current interest in this
unique isoflavone metabolite.

The hormonal effects of equol are well documented from
early observations using estrogen bioassays. It was not until after
the discovery of the first estrogen receptor (ER)-a (2) and the
discovery that a second ER (ERb) was present in specific tissues

(3) that the relative affinity of equol for both receptors could be
quantified (4–6). The results from these studies places the
natural soy isoflavone metabolite, S-(-)equol, into a category of a
selective ER modulator and consequently prompts many ques-
tions as to whether it could confer some specific benefits in
hormone-related conditions.

The ability of both S-(-)equol and its diastereoisomer, R-(+)
equol, to antagonize the in vivo actions of dihydrotestosterone (7)
further makes equol a unique molecule with potential for
the treatment or prevention of androgen-mediated conditions.
For these reasons equol is currently attracting considerable
interest as a potential pharmaceutical or nutraceutical agent.
The following will review its pharmacology and biological effects.

Pharmacokinetics of equol
To our knowledge, data from the first pharmacokinetic study of
equol was described in a single healthy adult female adminis-
tered 25 mg of (6)equol given as a single oral bolus dose (8). The
plasma (6)equol concentration appearance/disappearance curve
suggested that equol differed in its pharmacokinetic behavior
from the soy isoflavones daidzein and genistein. Most notably it
had a much higher apparent bioavailability and slower clearance
rate (8). This was confirmed in later studies when the plasma
pharmacokinetics of S-(-)equol and R-(+)equol were compared
in 3 healthy adults (6). More recently, using [13C]labeled tracers,
the plasma and urinary pharmacokinetics of enantiomeric pure
S-(-)equol and R-(+)equol were determined in 12 healthy adults
(6 males, 6 females) (9). Both enantiomers were rapidly
absorbed and reached peak plasma concentrations after 2–3 h
when taken with a meal. In an evaluation of the pharmacoki-
netics of a new S-(-)equol–containing supplement (SE5-OH)
given to 12 healthy postmenopausal women, the average peak
plasma concentration was observed after 1–2 h when taken
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without a meal (10). The differences in the absorption rates of
S-(-)equol between these 2 studies is explained by a meal-effect
altering gastric emptying time and slowing the initial absorption
rate. Such differences will influence peak plasma concentrations,
as was evident from the much higher dose-adjusted Cmax values
attained with the S-(-)equol supplement given without a meal
compared with the pure compounds given with a meal (10).
Therefore, in practice, the maximal effect of S-(-)equol is more
likely to occur if it is administered before a meal. Independent of
this difference, the pharmacokinetics of enantiomeric pure S-(-)
equol was similar to that of the S-(-)equol supplement produced
by the fermentation of soy germ isoflavones with Lactococcus
garvieae (10). S-(-)equol has an terminal elimination half-life of
7–8 h in healthy adults and, therefore, steady-state levels will be
more readily attained by dosing twice daily to minimize peaks
and troughs in circulating concentrations. Within the constraints
of small sample-sizes, data from all these studies suggested no
obvious gender differences in the pharmacokinetics of S-(-)
equol. Two interesting findings arose from a comparison of the
pharmacokinetics of the [13C]labeled enantiomers. Racemic (6)
[13C]equol showed slower absorption, attained lower peak
plasma concentrations, and had lower systemic bioavailability
compared with S-(-)[13C]equol and R-(+)[13C]equol. Also, the
apparent systemic bioavailability of R-(+)[13C]equol was signif-
icantly greater than that of S-(-)[13C]equol (9).

S-(-)equol and R-(+)equol undergo little biotransformation
in humans, save phase II metabolism by conjugation to glu-
curonic acid and to a minor extent sulfuric acid. S-(-)equol
circulates in plasma and is excreted in urine as predominantly
the 7-glucuronide conjugate (11–13). In this respect, its me-
tabolism is similar to that of the soy isoflavones daidzein and
genistein (14–18). Conjugation is extremely efficient in humans
and takes place on first-pass absorption within the enterocyte
and also the liver. Uridine diphosphate-59-glucuronosyltransferase
is widely distributed throughout the gastrointestinal tract
(19) and it is probable that it is the uridine diphosphate-
59-glucuronosyltransferase 1A10 isoform that catalyzes glu-
curonidation, because this one conjugates genistein (15). For
equol, its major route of elimination is by renal excretion into
urine. The percent fractional elimination in urine after oral
administration is extremely high and in some adults it can be
close to 100% (9,10), which is far higher than that of daidzein
(30–40%) and genistein (7–15%) (20,21). Recoveries averaged
82% when S-(-)equol was given as a supplement and 61.3 6
19.5% for enantiomeric pure S-(-)[13C]equol. The bioavailabil-
ity of R-(+)equol was higher than its diastereoisomer S-(-)equol
based on the plasma pharmacokinetics and urinary recovery of
the [13C] tracers (9). Overall, the very high bioavailability of S-
(-)equol would indicate that relatively modest doses (10–30 mg
twice a day) would result in high steady-state plasma concen-
trations in the range observed for plasma S-(-)equol derived from
soy foods.

Endogenous estrogens, as with most hormones, circulate
predominantly bound to albumin and sex hormone binding
globulin (22) and also to a-fetoprotein (23). Less than 5% of
estradiol is present in the free (unbound form), which is the
fraction that is available for receptor occupancy. For equol it has
been reported that 49.7% circulates in the free form, which is
significantly higher than daidzein (18.7% free), its precursor
(22). Thus, the biological activity of equol should be enhanced
by its reduced binding to serum proteins and greater availability
for receptor binding. In a dose-dependent manner, equol in vitro
inhibits the binding of estradiol and testosterone for serum
proteins (24).

Biological properties of equol
The diastereoisomers of equol share many similarities yet
some significant differences in biological properties. The more
planar-looking S-(-)equol enantiomer is strikingly similar in
conformational structure to estradiol and, not surprisingly, this
enantiomer binds to the ER (Fig. 1). When first isolated from
equine urine in 1932, long before the discovery of the first ER
(2), it was reported to have no estrogenic activity when injected
into ovariectomized mice in doses up to 0.086 mg (25); however,
its uterotrophic activity was later acknowledged. The earliest in
vitro study of the binding of S-(-)equol, isolated from sheep
urine showed it to have a relative molar binding affinity of 0.4
compared with estradiol, which was about 4 times the affinity
of its precursor, daidzein (26). Later, 5 mg of equol, presumed
to be the racemic form because it was chemically synthesized
by methods at the time that were not enantioselective, when
injected subcutaneously into 3-wk-old female rats increased
uterine weight to the same extent as 0.005 mg of estradiol (27)
and it was shown to antagonize the binding of estradiol to the
ER. Others have reported similar relative binding affinities using
a selection of different in vitro systems (28–30). It should,
however, be pointed out that in most cases these early studies
would have examined binding to ERa, because they predated
the discovery of ERb (3) and because this is the major ER
subtype localized to the uterus (31). These early data are also
possibly underestimated because of the use of racemic mixtures.
Several more recent studies have since reported the binding
characteristics of the individual enantiomers toward ERa and
ERb (4–6,32–34). S(-)equol produced from incubation of soy

FIGURE 1 A comparison of the conformation structures of estra-

diol, S-(-)equol, and R-(+)equol.
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isoflavones with enteric bacteria when tested in competitive
binding assays with human ERa and ERb, and in a gene
expression assay, was found to bind more strongly to ERb than
to ERa (4). The preferential binding of S(-)equol to ERb has been
confirmed in multiple studies (5,6,32) and indicates the molecule
shares the characteristics of a selective ER modulator in this
regard. However, S-(-)equol induces transcription either similarly,
or more strongly, with ERa than with ERb (4,5), as does R(+)
equol (5), indicative of both being agonists. So the differential
effects of 2 almost identical molecules on the ER subtypes is quite
striking and shows how the presence of a chiral center in the
molecule confers quite different biological properties.

Given the present interest in S-(-)equol as a possible
pharmaceutical or nutraceutical agent for a number of hormone-
dependent disorders (9,10,35), the question of whether the ER
agonist action could pose some risk for women with breast
cancer or for those in high risk groups remains to be addressed
(36–38). Recent studies using animal models of breast cancer
have examined the role of equol on the growth of mammary
tumors (39,40). In one model, S-(-)equol did not stimulate the
growth of human ER positive MCF-7 cells transplanted into the
athymic mouse (39). This important finding is in striking
contrast to the marked stimulatory effect of the soy isoflavone
genistein reported earlier by the same investigators in this same
model (41), an observation that led to the issue of whether soy
foods are safe for women with breast cancer. To date, there are
no human data to support this concern, but 2 recent large
prospective clinical studies of breast cancer survivors suggest
that soy food consumption is associated with more favorable
prognosis, in reducing risk of recurrence and improving survival
(42,43). In a different animal model, S-(-)equol did not stimulate
the growth of mammary tumors induced by the chemical
carcinogen dimethylbenz[a]anthracene, but neither did it prove
to be chemopreventive (40). R-(+)equol on the other hand was
found in this same model to be potently chemopreventive (40).
Combining data from these 2 animal models of breast cancer
suggests that S-(-)equol should not increase risk for breast cancer
andR-(+)equol could be a useful chemopreventive agent. If these
animal data can be reliably extrapolated to humans, then the
ability to make equol when consuming soy foods could be
advantageous in reducing the risk of breast cancer.

While much of the interest in equol has centered on its
estrogenic effects, equol enantiomers have a myriad of other
biological properties with the potential to be of value in many
clinical areas, including cancer, cardiovascular disease, osteo-
porosis, and menopausal symptoms (8); several of these areas
are discussed below.

Uniquely, both S-(-)equol and R-(+)equol bind dihydrotes-
tosterone and inhibit the in vivo stimulatory effect of this potent
androgen on prostate growth (7). Neither S-(-)equol nor R-(+)
equol bind to the androgen receptor, but its selective androgen-
modulating activity, combined with S-(-)equol having selective
affinity for ERb, suggests that S-(-)equol may have potential in a
number of androgen-mediated conditions, in particular prostate
cancer treatment or prevention. The pharmaceutical industry
has more recently turned its attention toward ERb agonists in
the search for the next generation of drugs to treat prostate
cancer (44) and in this regard S-(-)equol may be a potential
candidate. A small case control of prostate cancer patients from
South Korea, Japan, and the US found a low frequency of equol-
producers among the patients compared with age-matched
controls (45), while in a separate Japanese study, the risk for
prostate cancer was reported to show an inverse dose-response
relationship with plasma equol concentrations (46).

Equol can be broadly classified as a polyphenol and due to the
high number of p-electrons, it has hydrogen/donor properties
and will scavenge free radicals. The in vitro antioxidant property
of equol, presumed to be racemic equol, is well documented
(47–50) and the antioxidant activities of the individual enanti-
omers should be similar. (6)Equol has the highest antioxidant
activity of all the isoflavones that have been tested. To date there
are no in vivo human data on the extent to which administering
equol may influence lipid peroxidation, an important risk factor
for atherosclerosis, but LDL oxidation by cultured monocyte/
macrophages was shown to be inhibited by an antioxidant effect
mediated through inhibition of superoxide radical production
(51). The effect of equol on inhibition of nitric oxide (NO)
production by inducible NO synthase gene expression in murine
macrophages was reported as being mediated through upstream
signaling pathways, specifically by Akt activation and down-
regulation of nuclear factor-kB activity (52); inducible NO
synthase is implicated in the development of atherosclerosis.
These findings are perhaps not unexpected, because genistein is
antiinflammatory by an effect on reducing NO production (53).
Several studies show equol to be a vasorelaxant, inducing
endothelial and NO-dependent relaxation (54–60), suggesting
equol may be helpful in reducing risk of cardiovascular disease.
The isoflavone intermediate dihydrodaidzein and the closely
related dehydroequol are also vasodilatory (55,61). No study
has yet examined the vasodilatory actions of S-(-)equol or R-(-)
equol separately and it is too early to know whether either
enantiomer may be effective in the clinical arena. Studies of soy
isoflavones have yielded mixed results with regard to the effects
on endothelial function (62–69), but equol-producer status was
not directly examined. In one recent clinical study of hypercho-
lesterolemic patients, brachial artery-mediated vasodilatation
was significantly greater in equol-producers compared with
equol-nonproducers after 4 wk of dietary intervention with a soy
isoflavone-containing food that resulted in a high proportion of
equol-producers (70). Similar differential effects between equol-
producers and nonproducers were observed in arterial stiffness
in a study of postmenopausal women taking tibolone (71) and
these translated into lower diastolic blood pressure (72). This
was not the case in the former study (69). Because inflammation
plays a key role in the onset of cardiovascular disease (73), it is
possible, given equol’s documented effect on the NO pathway,
that it may act as an antiinflammatory agent. Serum high
sensitivity C-reactive protein concentration, a surrogate marker
of inflammation and cardiovascular risk, was shown in a recent
study to be reduced in equol-producers by a soy isoflavone-
containing food (70). In a recent study, equol and genistein, but
not daidzein, modulated the inflammatory response in activated
macrophages by inhibition of NO and prostaglandin E2 while
regulating gene transcription of cytokines and inflammatory
markers (74).

In vitro cell culture and animal studies have provided
impressive data on the bone-trophic effects of isoflavones (75),
but recent clinical studies of soy isoflavone supplementation in
postmenopausal women have proved disappointing (76–80).
None of these trials have prescreened for equol-producer status
and randomized accordingly and all have used isoflavone
mixtures of predominantly conjugated rather than aglycon
forms. Interestingly, the aglycon genistein given at a dose of 54
mg/d for 3 y to postmenopausal women was reported to have
impressive effects on bone, with increases in spine and hip bone
mineral density (81). Studies from Japan show more favorable
responses in measures of bone loss in those women who are
equol-producers (82). Equol in its racemic form has been shown
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to have modest effects in preventing bone loss in animal models
of osteoporosis (83–87) but has yet to be used in clinical trials.
S-(-)equol is also being studied for its effects on reducing the
incidence and frequency of menopausal symptoms (88), partic-
ularly hot flushes. Data from Japan have indicated that the
severity of overall menopausal symptoms is significantly lower
in women who are equol-producers treated with a soy isoflavone
supplement (89).

In conclusion, S-(-)equol is a unique nonsteroidal estrogen
that binds preferentially to ERb and at the same time antago-
nizes the in vivo action of the potent androgen dihydrotestos-
terone. It occurs as 2 distinct diastereoisomers and both have
properties that warrant their further investigation for the
prevention and/or treatment of a number of estrogen- and
androgen-mediated diseases or disorders as was first proposed in
1984 (90). The ability to now synthesize bulk quantities of
enantiomeric pure S-(-)equol and R-(+)equol should permit
future clinical studies to be conducted that will more clearly
define the potential benefits of these diastereoisomers. More
importantly, such direct studies of the pure compounds will
enable a better understanding of the extent to which there are
advantages to producing equol from soy foods, as has been
proposed. If the equol hypothesis can be substantiated, then for
those adults who are unable to produce equol due to a lack of
intestinal equol-producing bacteria or some other factors, one
option is to administer these enantiomers in the form of a
nutraceutical or pharmaceutical. Major clinical studies are likely
to emerge in the near future that will permit a better understanding
of the potential value of equol in numerous clinical areas, not just
those discussed above.

Note added in proof: Work by Setchell et al (9) has shown that
the unconjugated fraction of [2-13C]S-(-)equol accounted for
only 0.10 6 0.05% of the total [2-13C]S-(-)equol in plasma
following oral administration of 20 mg of the [13C]equol tracer
to 12 healthy adults.
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