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Abstract
Background—Age-related macular degeneration (ARMD) is the most prevalent cause of visual
loss in patients older than 60 years in the United States. Observation of drusen is the hallmark finding
in the clinical evaluation of ARMD.

Objectives—To segment and quantify drusen found in patients with ARMD using image analysis
and to compare the efficacy of image analysis segmentation with that of stereoscopic manual grading
of drusen.

Design—Retrospective study.

Setting—University referral center.

Patients—Photographs were randomly selected from an available database of patients with known
ARMD in the ongoing Columbia University Macular Genetics Study. All patients were white and
older than 60 years.

Interventions—Twenty images from 17 patients were selected as representative of common
manifestations of drusen. Image preprocessing included automated color balancing and, where
necessary, manual segmentation of confounding lesions such as geographic atrophy (3 images). The
operator then chose among 3 automated processing options suggested by predominant drusen type.
Automated processing consisted of elimination of background variability by a mathematical model
and subsequent histogram-based threshold selection. A retinal specialist using a graphic tablet while
viewing stereo pairs constructed digital drusen drawings for each image.

Main Outcome Measures—The sensitivity and specificity of drusen segmentation using the
automated method with respect to manual stereoscopic drusen drawings were calculated on a rigorous
pixel-by-pixel basis.

Results—The median sensitivity and specificity of automated segmentation were 70% and 81%,
respectively. After preprocessing and option choice, reproducibility of automated drusen
segmentation was necessarily 100%.

Conclusions—Automated drusen segmentation can be reliably performed on digital fundus
photographs and result in successful quantification of drusen in a more precise manner than is
traditionally possible with manual stereoscopic grading of drusen. With only minor preprocessing
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requirements, this automated detection technique may dramatically improve our ability to monitor
drusen in ARMD.

Extensive drusen area as seen on the fundus photograph is a strong risk factor for the
progression of age-related macular degeneration (ARMD).1–8 However, there is difficulty in
obtaining interobserver agreement in drusen identification. For example, interobserver
agreement on the presence of soft drusen only was 89% and on the total number of drusen was
76% in one study.9 Studies have been based on the current standard for drusen grading of
digital fundus photographs in ARMD: manual grading of stereo pairs at the light box.10,11

Examiners are asked to mentally aggregate the amount of drusen in the field occupying the
macular region. Then, lesion quantification using the international classification assigns broad
category intervals of 0% to 10%, 10% to 25%, and so forth.11 Clearly, there is a pressing need
for the development of techniques that allow for more precise grading and thereby result in
significant improvement in the quality of data being gathered in clinical trials and
epidemiological studies.

Known for precision, computers have the computational power to solve this problem. However,
digital techniques have not as of yet gained widespread acceptance, despite progress,12–18 for
several reasons. First, the inherent nature of the reflectance of the normal macula is nonuniform.
There is less reflectance centrally and increasing reflectance moving out toward the arcades.
Local threshold approaches to drusen segmentation have been attempted with only partial
success because the background variability limits the extent to which purely histogram-based
methods can succeed. This has increased the need for operator intervention and has been the
main obstacle to automating drusen segmentation. We had previously developed an interactive
method to correct the macular background globally by taking into account the geometry of
macular reflectance.19,20 This method required subjective user choice of background input and
final threshold. Here we combine automated histogram techniques and the analytic model for
macular background to give a completely automatic measurement of macular area occupied
by drusen.

The second major obstacle to drusen identification has been that of object recognition. A
computer must ultimately learn to differentiate drusen from areas of retinal pigment epithelial
hypopigmentation, exudates, and scars. Goldbaum et al21 have suggested subtleties of
coloration and shape as modes of automated recognition. However, this subject has not been
developed further. At present, in our hands, the complete attention of the operator during the
preprocessing phase is required to exclude such confounders in approximately 20% of images.
20,22

The third major obstacle to drusen identification is that of boundary definition: soft, indistinct
drusen have no precise boundary, and therefore the solution to their segmentation, by definition,
cannot be precise. The central color fades into the background peripherally, and on stereo
viewing there is no well-defined edge. Practical segmentation of drusen then requires that areas
of drusen determined by a digital method agree, in aggregate, with the judgments of a qualified
grader. This approach was adopted by Shin et al12 for validation of their method. However,
expert manual drawings themselves are necessarily variable. For some of the images reported
here, expert manual drawings varied as much as digital segmentation methods. Indeed,
specificity and sensitivity calculations for expert manual drawings of 2 retinal experts
demonstrated significant interobserver differences. Therefore, achieving comparable accuracy
in automated drusen segmentation relative to an acceptable stereo viewing standard represents
an advance.

We hope to demonstrate the ability of our automated method to more accurately segment drusen
using an algorithm based on the geometry of macular reflectance. We believe the methodology
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described may gain widespread acceptance as a useful tool in studying problems of clinical
relevance with respect to ARMD. This method is speedy, reproducible, and cost-effective in
drusen segmentation, and we believe it will be applicable for use in clinical trials.

METHODS
SUBJECTS

A group of 20 stereo pair slides from 17 patients was chosen randomly from the Columbia
University Macular Genetics Study, a study approved by the institutional review board of New
York Presbyterian Hospital, New York, NY. All patients were white and older than 60 years.
One slide from each pair was digitized (CoolScan LS-2000; Nikon Corp, Tokyo, Japan) at
2700 pixels-per-inch tagged image file format (TIFF) files (8 bits per channel, RGB color
mode, with a gray scale range of 0 to 255 per color channel).

IMAGE PREPROCESSING
All image preprocessing and analysis were performed with commercially available software
(Photoshop 7.0; Adobe Systems Inc, San Jose, Calif; and Matlab; Mathworks, Natick, Mass)
on a desktop personal computer. The region studied was the central 3000-μm-diameter circle
(the combined central and middle subfields defined by the Wisconsin grading template: central
subfield, the circle of diameter 1 mm; middle subfield, the annulus of outer diameter 3 mm).
All area measurements are stated as percentages of the entire 3000-μm-diameter circle.

All images were resized in Photoshop so that the distance from the center of the macula to the
temporal disc edge was 500 pixels. This macula-disc distance (3000 μm) is established as the
constant of reference in clinical macular grading systems. Although this distance varies
anatomically, it does not affect area measurements calculated as percentages.

By methods described previously, we next corrected the large-scale variation in brightness
found in most fundus photographs23 (photographic variability not intrinsic to retinal
reflectance). This shading correction was carried out independently on each color channel, and
results were combined as the RGB channels of a new standardized, color-balanced image. Each
image was also paired with a contrast-enhanced version (Au-to levels command in Photoshop)
for ease of lesion visualization. All further image analysis was carried out on this preprocessed
image, which we call the standardized image.

IMAGE ANALYSIS
Stereo Viewing and Manual Tracing Method for Drusen—We obtained manual digital
segmentations of drusen as follows. On a graphic tablet (Intuos; Wacom Corp, Vancouver,
Wash), the user drew the boundaries of all lesions identified in the contrast-enhanced image.
As the user drew, the 1-pixel pencil tool in Photoshop outlined the lesions in a transparent
digital layer. Reference was also made as needed to the stereo fundus photographs to determine
the exact boundary. The lesion outlines were then filled and their areas calculated. The same
technique was used to segment possible confounding lesions such as geographic atrophy in 3
images as a preprocessing step before automated segmentation. We also refer to the stereo
viewing method as the ground truth method in image analysis terminology.

Automated Method of Drusen Measurement
Luteal Compensation: The first step is a luteal pigment correction applied to the green channel
of the standardized image. The ratio of the median values of the histograms of the green channel
in the middle and central subfields was calculated. This ratio was applied to a Gaussian
distribution centered on the fovea and having a half-maximum at 600-micron diameter. The
green channel was multiplied by this Gaussian distribution to produce the luteal compensate
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dimage. This compensation is a variable version of a fixed luteal compensation described
previously.23 All further processing and segmentation were carried out on this image.

Two-Zone Math Model: Zone 1 is the central subfield, and zone 2 is the annulus of inner and
outer diameters of 1000 and 3000 microns, respectively. The pixel gray levels were considered
to be functions of their pixel coordinates (x, y) in the x-y plane. The general quadratic q (x, y)
=ax2+bxy+cy2+dx+ey+constant in 2 variables was fit by custom software employing least-
squares methods to any chosen background input of green-channel gray levels to optimize the
6 coefficients (a, b, c, d, e, and constant).24 In this case, the model consists of a set of 2
quadratics, 1 for each zone, with cubic spline interpolations at the boundary.24

Initial Background Selection by Otsu Method: We employed the automatic histogram–
based thresholding technique known as the Otsu method25 in each zone to provide initial input
to the background model. Briefly, let the pixels in the green channel be represented in L gray
levels [1, 2, …, L]. Suppose we dichotomized the pixels into 2 classes, C0 and C1, by a threshold
at level k. C0 denotes pixels with levels [1, …, k] and C1 denotes pixels with levels [k+1, …,
L]. Ideally, C0 and C1 would represent background and drusen. A discriminant criterion that
measures class separability was used to evaluate the goodness of the threshold (at level k). The
Otsu method uses the criterion of between-class variance and selects the threshold k that
maximizes this variance.25 The Otsu method can be generalized to the case of 2 thresholds k
and m, where there are 3 classes, C0, C1, and C2, defined by pixels with levels [1, …, k], [k
+1, …, m], and [m+1, …, L], respectively. In a given image, these classes might represent
background, objects of interest, and other objects (eg, retinal vessels), in some permutation.
The criterion for class separability is the total between-class variance

 where ωi and μi are the zero-order and the first-
order normalized cumulative moments of the histogram for class Ci as defined above for i=1,
2, 3, and μT is the image mean. The solution is found by the finite search on k for k=1, …, L
−1 and m for m=k+1 to L for the maximum of σB. The Otsu method may also be performed
sequentially to subdivide a given class. That is, if a given class, C, is already defined (by Otsu
or otherwise), then C may be treated as the initial histogram (setting other histogram values to
zero), and one can apply an Otsu method to subdivide C into 2 (or 3) classes.

Operator Options: We found by trial and error on a large variety of images that on most
images (15/20 in the present series) the 2-threshold Otsu method performed well in zone 2 to
provide an initial segmentation by thresholds k and m into 3 desired classes: C0 (dark
nonbackground sources, eg, vessels and pigment), C1 (background), and C2 (drusen). In zone
1 where vasculature was not present, the single-threshold Otsu method was used to divide the
region into 2 classes labeled C1 (background) and C2 (drusen). In particular, for each region,
we then had an initial choice of background, C1, for input to the mathematical background
model. These were the default settings, or option 0, used in 15 images. If multiple large, soft,
ill-defined drusen were present, we found that the upper (drusen) thresholds tended to capture
the brighter central portions of these drusen and miss the fading edges. Option 1, which allowed
the operator to reduce all initial thresholds by 4, was used in 3 such images. Finally, when
drusen load was small (5% or less estimated range), we found that their statistical power was
insufficient to be recognized by the initial Otsu subdivision, which instead would pick out a
larger subset C2 that included brighter background and the drusen themselves. It was on further
subdivision of this C2 by the single-threshold Otsu method, as described earlier, that small
groups of drusen were recognized. The higher pixel values became the new C2, and the
remainder was included in C1. This option (option 2) was used on 2 images. These were the
only operator decisions needed to determine C1 (the background) for input to the model. The
rest of the algorithm up to final segmentation was completely automatic. These initial
subdivisions of the image are illustrated in Figure 1 A and B.
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Sequential Automated Background Leveling and Thresholding: Let Z be the luteal
corrected image data and let Q be the model fit to the background data C1 determined by the
Otsu method specified previously. The first leveled image Z1 is defined as Z1=Z−Q+125. The
constant offset 125 maintains an image with an approximate mean of 125. The process can
now be iterated, with Z1 the input to the Otsu background segmentation, resulting in a new
background choice C1 from Z1. If Q1 is the model fit to the new background data, the next
leveled image is Z2=Z1−Q1+125, and so forth. The process terminates after a predetermined
number of steps or when the net range of the model Q reaches a set target (that is, the range is
sufficiently small, indicating that the new background is nearly flat). The final drusen
segmentation is then obtained by applying the specified Otsu method to the final leveled image
and removing any confounding lesions identified in manual preprocessing. In practice, we
found our final results changed little after 2 iterations of the leveling process. This sequence
is illustrated in Figure 1C through F.

MEASUREMENTS
We compared the automated digital method with the stereo viewing method. Two retinal expert
graders (R.T.S., I.B.) each used the stereo viewing method on 10 images, and the results were
compared. Total drusen areas were measured. In cases in which the experts disagreed by more
than 5%, the 2 graders collaborated to redraw to consensus. Expert drawings were also made
of the remaining 10 images. On a total of 20 images, the drusen areas were also measured by
the automated method (R.T.S., J.K.C.) and compared with a stereo viewing drawing of an
expert grader. As described earlier, the only choices made in the automated method were the
options chosen to guide the Otsu method in background selection. The 95% limits of agreement
were calculated. False-positive pixels (drusen areas found by the automated method but not
selected by the retinal expert) and false-negative pixels (drusen areas selected by the retinal
expert but not selected by the automated method) were also identified. Specificity and
sensitivity of the automated method were calculated accordingly.

RESULTS
In 10 images, the difference in drusen area measurements between 2 expert graders ranged
from −0.2% to 7.0% (stereo viewing measurements by grader I.B. were 3.4% higher on
average). The 95% limits of agreement were from −2.0% to 8.8%.26

The segmentations created by the automated method were then compared on a pixel-by-pixel
basis with the respective manual drawings with sensitivity from 0.42 to 0.86 (median, 0.70)
and specificity from 0.53 to 0.98 (median, 0.81).

Comparison of these methods for a representative patient is illustrated in Figure 2. Two expert
stereo viewing drawings of the same image are also compared in Figure 2. They demonstrate
variability similar to the differences between the automated method and a stereo drawing.

Sensitivity and specificity of drusen quantification by the automated method compared with
the stereo viewing method is detailed in the Table. The lowest sensitivity of 0.42 occurred in
measurements of small quantities of drusen (patient 7), for which small false-negative errors
of 4.2% caused large decrements in the sensitivity.

Comparing the automated with the ground truth method showed the difference in drusen area
measurements of the 20 images ranged from −6.7% to 12.7% (ground truth measurements were
3.4% higher on average). The 95% limits of agreement between the 2 methods were −7.1% to
13.5% Figure 3.
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The 3 images requiring supervision in the form of manual segmentation of confounding lesions
(geographic atrophy, retinal pigment epithelial hypopigmentation, and photographic dust
spots) are shown in Figure 4. In these complex images, combining the manual and automated
techniques produced a more accurate segmentation. In contrast to the multiple and poorly
defined drusen, the smoother contours of these few lesions were easily traced. In each case,
the specificity improved.

COMMENT
This article combines 2 approaches to the digital analysis of macular drusen: a stereo viewing
method with manual tracing on a graphic tablet and an automated method with automatic
threshold selection. Shin et al12 introduced stereo viewing with tracing for drusen only as an
adjunct for validation of their digital measurements, without determining reproducibility of the
stereo viewing method itself. We have addressed reproducibility, added the ergonomic
superiority of the graphic tablet for smooth tracing, and improved lesion visualization in the
contrast-enhanced image to lessen user fatigue and improve accuracy. This method as a
validation tool is also improved herein by explicitly depicting false positives and false negatives
for specificity and sensitivity calculations. The automated drusen method offers efficiency in
the tedious task of drusen segmentation (requiring about 10 seconds per slide) and provides
results comparable with those of stereo viewing.

A limitation of any drusen measurement method (human or automated) is optimum boundary
definition. There is no absolute correct choice for indistinct, soft drusen. If photograph quality
is suboptimal, the difficulty is compounded. Highly reflectant lesions, such as retinal pigment
epithelial hypopigmentation, geographic atrophy, exudates, and scars as well as photographic
dust spots, would more likely be mistaken for drusen by the automated method than by an
expert grader. In this study, such lesions were present in 3 cases and were manually segmented
in the preprocessing step. We felt it was important to include these cases to demonstrate an
important limitation of the completely automated method, as well as to illustrate that a
straightforward solution was available.

The sensitivity (median, 0.70) of the automated method was less than the specificity (median,
0.81) with respect to the stereo viewing method. A partial explanation lies in our finding that
lowering the threshold for drusen identification past critical levels to try to improve drusen
recognition usually resulted in an unacceptable increase in false positives. However, we also
found that stereo drawing measurements of the same macula by 2 retinal experts could vary
comparably, with similarly limited sensitivity and specificity.

Further testing should include application of these drusen measurements to serial images over
a number of years for sensitivity, specificity, and reliability. Another potential application, with
appropriate modification of the statistical methods, would be screening of normal to near-
normal images for the presence or absence of age-related maculopathy.

In summary, we have demonstrated a digital drusen measurement method that reproduces
expert stereo drawings with an accuracy rivaling that of the expert stereo gradings themselves.
When combined with easily implemented expert drawing for other lesions, such as geographic
atrophy, this method also handles important categories of more complex images. This
efficiency and accuracy may become useful in clinical studies.
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Figure 1.
Sequential automated background leveling and thresholding. A, A standardized image, green
channel, gray scale, slightly contrast enhanced for visualization. B, The initial Otsu double
thresholds in each region have provided estimates for vessels and some darker perivasculature
inferiorly (pixel values below the lower threshold, red), background (pixel values between the
2 thresholds, gray), and drusen (pixel values above the higher threshold, green). C, The
mathematical model fit to the background in B, displayed as a contour graph. D, The image in
A has been leveled by subtracting the background variability of the math model in C (result
slightly contrast enhanced). E, The new mathematical model fit to the background in D has a
significantly smaller range than the initial model in C, indicating that the background in D is
more nearly uniform than in A. F, The process is repeated (leveling by subtracting the model
and Otsu segmentation). This is the final iteration and drusen segmentation, showing a
significant improvement.
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Figure 2.
Comparison of drusen segmented by the automated method and 2 expert drawings for patient
13. The drusen in the original image (A) were identified by the automated method (green) in
B. The drusen in the contrast-enhanced version of the image (D) were traced manually in E by
a retinal expert (I.B.), who also viewed the original stereo slide pair as needed. The drusen
tracings in the central and middle subfields in E have been filled (yellow), while other partial
tracings have been left unfilled for illustration. C shows the results of the automated method
digitally overlaid on the retinal expert’s drawing. The remaining yellow regions in C (not
selected by the automated method) are the false negatives (7.0%). F shows the retinal expert’s
drawing digitally overlaid on the results of the automated method. The remaining green regions
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(not selected by the retinal expert) are the false positives (6.5%). Both types of errors are rather
randomly distributed. There is almost exact agreement in total drusen area (34.6% vs 34.1%).
Pixel-by-pixel agreement, however, is not exact (sensitivity, 0.80; specificity, 0.81). The
drusen were also traced manually in G by a second retinal expert (R.T.S.): the drawing (orange)
was slightly more conservative than that of the first expert (total drusen area 26%). These
results were overlaid on those of the first expert’s drawing in H and vice versa in I, highlighting
areas of disagreement. If the first expert drawing is taken as truth, then the second expert
drawing has a sensitivity of 0.70 and a specificity of 0.91, roughly comparable to the accuracy
of the automated method.
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Figure 3.
A comparison of the automated segmentation method with the manual stereo drawing by a
retinal expert grader. Areas are given as a percentage of the 3000-μm-diameter circle.
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Figure 4.
Combined manual and automated segmentation of complex images. A is image 16 in the Table,
showing ill-defined drusen and a lesion of geographic atrophy (GA). The latter was manually
segmented in B (pink). The expert drusen drawing (yellow) was overlaid on the initial
automated drusen segmentation in C to show the false positives (green), which include part of
the GA. Removing the pixels identified as GA from the automated segmentation, shown in D,
reduced the false positives by 3.4% and improved the specificity from 0.70 to 0.78. The
combined method also provided segmentation into drusen and GA. E is the contrast-enhanced
version of image 7. Fading drusen are surrounded by areas of retinal pigment epithelial
hypopigmentation, which were manually segmented in F (orange). The expert drusen drawing
(yellow) was overlaid on the initial automated drusen segmentation in G to show the false
positives (green), which include part of the retinal pigment epithelial hypopigmentation.
Removing the pixels identified as retinal pigment epithelial hypopigmentation from the
automated segmentation, shown in H, reduced the false positives by 0.4% and improved the
specificity from 0.87 to 0.98. I is the contrast-enhanced version of image 2a, showing ill-
defined drusen, as well as a central lesion of GA and 2 bluish photographic artifacts that are
segmented manually in J (pink and blue, respectively). The expert drusen drawing (yellow)
was overlaid on the initial automated drusen segmentation in K to show the false positives
(green), which include part of the GA and the photographic artifacts. Removing these
confounding pixels from the automated segmentation, shown in L, reduced the false positives
by 2.0% and improved the specificity from 0.73 to 0.78.
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