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Intimin is an outer-membrane adhesin that is essential for colonization of the host gastrointestinal
tract by attaching and effacing pathogens including enteropathogenic Escherichia coli (EPEC),
enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR). The N-terminus of intimin from
the different strains is highly conserved while the C-terminus, which harnesses the active
receptor-binding site, shows sequence and antigenic polymorphism. This diversity was used to
define a number of distinct intimin types, the most common of which are ¢, f and y. Intimin binds the
type lll secretion system effector protein Tir. However, a large body of evidence suggests that intimin
also binds a host-cell-encoded receptor(s) (Hir), and interaction of different intimin types with
Hir contributes to tissue and host specificity. The aims of this study were to compare the activity of
the major intimin types («,  and y) in vivo and ex vivo, using the CR mouse model and in vitro organ
culture (IVOC), and to determine their exchangeability. The results confirm that intimin y is not
functional in the CR mouse model. In the pig, intimin  can substitute for EPEC intimin o but when
placed in an EHEC O157 : H7 background it does not produce an intimin o-like tropism, although
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some adhesion to the small and large intestine was observed. In contrast, in human IVOC,
intimin 8 in an EHEC background produces small intestinal colonization in a similar manner

INTRODUCTION

Enteropathogenic Escherichia coli (EPEC) and enterohaem-
orrhagic E. coli (EHEC) are important causes of acute
gastroenteritis in humans (Nataro & Kaper, 1998). EPECis a
frequent cause of infantile diarrhoea in the developing world
(Chen & Frankel, 2005) while EHEC causes a wide spectrum
of illnesses ranging from mild diarrhoea to severe diseases,
such as haemorrhagic colitis and haemolytic uraemic
syndrome (HUS). HUS is the leading cause of acute renal
failure in children, and is associated with the production of
potent Shiga toxins (Stx) (Thorpe, 2004). Strains of EHEC
belonging to serogroup O157 are most commonly asso-
ciated with severe human disease (Mead et al, 1999).
However, infections with other EHEC strains, such as those
of serogroups 026 and 0103, are on the rise (Brooks et al.,
2005).

Abbreviations: A/E, attaching and effacing; CR, Citrobacter rodentium,;
EHEC, enterohaemorrhagic E. coli; EPEC, enteropathogenic E. coli
IVOC, in vitro organ culture; HPS, haematoxylin, phloxine and safranine;
LEE, locus of enterocyte effacement; p., post-inoculation; SEM,
scanning electron microscope/microscopy.

EHEC and EPEC exhibit narrow host specificity and,
given that mice are by and large resistant to symptomatic
infection, a difficulty with studying EPEC and EHEC
pathogenesis is the lack of a simple small animal model to
simulate an in vivo situation. For this reason, infection of
mice with Citrobacter rodentium (CR), a natural mouse
pathogen that shares many of its virulence factors and
mechanism of colonization with EPEC and EHEC, has
become a popular surrogate model for in vivo studies
(Mundy et al., 2005).

When adhering to intestinal epithelial cells EPEC, EHEC
and CR subvert cytoskeletal processes to produce a
histopathological feature known as an attaching and effacing
(A/E) lesion (Nataro & Kaper, 1998; Garmendia et al., 2005;
Mundy et al, 2005). This is characterized by localized
destruction of brush border microvilli and intimate
attachment of the bacteria to the plasma membrane of the
host epithelial cells. The capacity to form A/E lesions is
encoded mainly on a pathogenicity island termed the locus
of enterocyte effacement (LEE) (McDaniel et al., 1995),
which encodes components of a type III secretion system
(Jarvis et al., 1995), chaperones, translocator and effector
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proteins (Garmendia et al., 2005) as well as the outer-
membrane adhesin intimin (Jerse et al., 1990).

Intimin, the product of the LEE eae gene, was the first to be
associated with A/E lesion formation (Jerse et al, 1990).
Analysis of intimin sequences from different EPEC and
EHEC strains revealed that while the first ~700 amino acids
are highly conserved (over 97 % identity), the C-terminal
280 amino acids (Int280) are variable; the active receptor-
binding site of intimin resides within the Int280 domain
(Frankel et al, 1994). Indeed, when expressed as an N-
terminal fusion with carrier proteins, Int280 binds directly
to epithelial cells (Frankel et al., 1994) and interacts with
nucleolin (Sinclair & O’Brien, 2004) and integrin (Frankel
et al., 1996a). Int280 also binds the LEE-encoded effector
protein Tir, which connects the extracellular bacterium to
the host cell cytoskeleton (Kenny et al., 1997).

The solution (Kelly et al., 1999) and crystal (Luo et al., 2000)
3D structure of Int280u revealed that the polypeptide
comprises a series of three globular modules with a distinct
organization. The two domains (D1-2) closest to the
bacterial cell surface comprise f-sheet sandwiches and
structurally resemble immunoglobulin (Ig)-like folds. A
third domain (D3) located at the C-terminal tip of the
molecule is formed by the 76 amino acid disulfide loop that
shows some structural similarity to C-type lectin. The Cys
residues (C860 and C937) forming the disulfide loop are
totally conserved among the different intimin types and are
required for cell-binding activity (Frankel ef al., 1995) and
A/E lesion formation (Frankel ef al., 1998).

Based on polymorphism within Int280, we reported the
existence of several different classes of intimin, the most
common of which are «, f and y (Adu-Bobie et al., 1998). In
particular, intimin o is associated with the distinct
evolutionary lineage of EPEC known as EPEC-1, intimin y
is associated with EHEC O157: H7, while intimin f§ appears
to be the most ubiquitous type and is found among human
and animal pathogens including EPEC-2, EHEC-2 and CR.
A large body of evidence suggests that the different intimin
types influence host specificity and tissue tropism (Girard
et al., 2005; Phillips & Frankel, 2000; Tzipori et al., 1995). In
vivo experiments using gnotobiotic piglets revealed that
EHEC 0157 :H7, which expresses intimin v, is associated
with extensive colonization and destruction of the large
intestinal epithelium while EPEC O127:H6, which
expresses intimin o, colonizes both the small and large

intestine (Tzipori et al., 1995). Importantly, complementa-
tion of an eae mutant of EHEC O157 : H7 with eae, alters the
pattern of colonization so that colonization was seen in the
small and large intestine in a similar manner to EPEC
(Tzipori et al., 1995). Using human and porcine intestinal in
vitro organ culture (IVOC) we have shown that as in the
gnotobiotic piglet model, intimin exchanges in both EHEC
0157:H7 and EPEC O127:H6 resulted in alteration in
tissue tropism (Fitzhenry et al., 2002a; Girard et al., 2005;
Phillips & Frankel, 2000). In this study we compared the
functionality of the different intimin types in vivo and ex vivo
and performed further intimin exchange studies evaluating
the function of CR intimin f in EPEC and EHEC isolates.

METHODS

Bacterial strains and plasmids. The bacterial strains used in this
study were wild-type CR strain ICC169, EPEC O127:H6 (strain
E2348/69), EHEC O157:H7 strain 85-170 and their eae deletion
mutants, strains DBS255 (Schauer & Falkow, 1993), CVD206
(Donnenberg & Kaper, 1991) and ICC170 (Fitzhenry et al., 2002a).
The plasmids used in this study are listed in Table 1. Plasmid
pCVD438 is a pACYC184 vector harbouring the intimin « gene
from E2348/69 (Donnenberg & Kaper, 1991). pICC55 is a derivative
of pCVD438 in which the 3’ end of the eage gene, encoding the
Int2800 domains, was substituted with a fragment of eae, from
EHEC encoding Int280y (Fitzhenry et al., 2002a). Bacteria were
grown at 37°C in either high-glucose Dulbecco’s Modified Eagle’s
Medium (DMEM) or LB and where appropriate, nalidixic acid,
kanamycin and chloramphenicol were added to final concentrations
of 100, 50 and 35 pg ml™" respectively.

Replacing the Int280a coding region in pCVD438 with CR
Int280f. A schematic representation of the strategy used to replace
the Int280o region of pCVD438 with Int280f from CR is shown in
Fig. 1. Two unique restriction endonuclease sites located in
pCVD438 were used, a conserved Sall site located upstream of the
Int280 domain (position 1663 of the eae gene) and an Eagl site
located downstream of the TAA stop codon and within the
PACYC184 vector plasmid (Frankel et al, 1998). The DNA fragment
between the Sall site and the 3’ end of the eae gene encoding inti-
min f from CR strain ICC169 was amplified by PCR using a for-
ward primer (CReaefor2 5'-CCGTTCTGTCGAATGGTCAAGTAG-
3') and a CR eaeg-derived reverse primer overlapping the end of the
gene and including an Eagl restriction site (CReaerevlEagl 5'-
CGGCCGTACACAGAATTATGGACAGTCCCG-3"). The amplified
eae fragment, flanked by Sall and Eagl restriction sites, was used to
replace the corresponding fragments of pCVD438 as previously
described (Frankel et al, 1998) (Fig. 1). Following confirmation by
DNA sequencing, the modified plasmid, pICC327, was transformed
into the eae deletion mutants of EPEC, EHEC and CR, strains
CVD206, 85-170 and DBS255, respectively, by electroporation.

Table 1. Plasmids used in this study

Plasmid Description Reference
pACYC184 Cm® Tc® medium-copy-number cloning vector New England Biolabs
pCVD438 PACYC184 encoding EPEC intimin « Donnenberg & Kaper (1991)
pICC55 pCVD438 derivative encoding recombinant intimin y Hartland et al. (2000)
pICC327 pCVD438 derivative encoding recombinant intimin f  This study
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Infection of mice. Male, specific-pathogen-free C3H/Hej mice that
were 6-8 weeks old were purchased from Harlan Olac (Bicester,
UK). All the mice were housed in individual ventilated cages with
free access to food and water. Bacteria were grown to stationary
phase in LB broth containing the appropriate antibiotic. A 1 ml
sample of the broth was centrifuged and the bacterial pellet was
resuspended in 2.5 ml PBS. Mice were orally inoculated with 200 pl
of the bacterial suspension (approx. 1x 10® c.fu. per mouse) by
gavage. The viable count of the inoculum was determined by retro-
spective plating on LB agar containing appropriate antibiotics. Each
bacterial strain was tested in independent experiments at least twice
using groups of at least five mice per strain. Stool samples were
recovered aseptically at various times after inoculation and the
number of viable bacteria (c.f.u.) per g stool was determined by plat-
ing samples onto LB agar containing appropriate antibiotics. Mice
were euthanased by cervical dislocation 8 days post-challenge. Colon
and caecum were removed from each mouse, photographed and
weighed after removal of stools. The colons were then homogenized
mechanically with a Seward 80 stomacher (Seward, London, UK)
and the numbers of viable bacteria per colon were determined by
plating onto LB agar containing the appropriate antibiotics.

Statistical analysis. All results are presented as the group
mean + SEM. One-way analysis of variance (ANOVA) was performed
to test any differences between strains. Analysis was performed using
Minitab Statistical Software, release 10.5 Xtra.

Immunofluorescence staining of frozen tissue. Frozen distal
mouse colons were embedded in OCT compound (Sakura) and
serial sections of 8 um were cut with an MTE cryostat (SLEE
Technik). Sections were picked up on poly-L-lysine-coated slides
and air-dried. After formalin fixation for 10 min, tissue sections
were blocked with 0.5% BSA and 2 % normal goat serum in PBS for
20 min. Slides were incubated in primary antibody (rabbit anti-Tir
1:200 or rabbit anti-CR 1:1000) for 60 min at room temperature,
washed and incubated in Alexa Fluor 488-conjugated goat anti-
rabbit IgG (Molecular Probes) for 30 min. Actin filaments were
stained with Alexa Fluor 647 phalloidin (Molecular Probes).
Counterstaining of bacteria and cell nuclei was performed using pro-
pidium iodide (Sigma). Sections were analysed with a Radiance 2100
confocal laser scanning microscope equipped with an argon-krypton
laser and a red diode (Bio-Rad).

Human in vitro organ culture (IVOC). Tissue was obtained with
fully informed parental consent and local ethical committee
approval using grasp forceps during routine endoscopic (Fujinon
EG/EC-41 paediatric endoscope) investigation of gastrointestinal
complaints. Proximal small intestinal mucosal biopsies (patients’ age
72, 103, 132 and 181 months) from the fourth part of the duode-
num which appeared macroscopically normal were taken for organ
culture experiments. Light microscopy subsequently showed no his-
tological abnormality. IVOC infections were performed as described
previously (Hicks et al., 1998). In each experiment an un-inoculated
sample (to exclude endogenous bacterial adhesion) and a positive
control were included. Samples were fixed with 2.5% glutaralde-
hyde, post-fixed in 1 % aqueous osmium tetroxide and processed for
viewing by a JEOL JSM 5300 scanning electron microscope (SEM).

Collection and culture of porcine intestinal IVOC explants.
Piglets were cared for in accordance with the Guidelines of the
Canadian Council for Animal Care. The porcine intestinal IVOC
model was used as previously described (Girard et al, 2005). Briefly,
segments of the duodenum, jejunum, ileum, caecum and colon were
obtained from colostrum-deprived newborn piglets of a conven-
tional herd. Piglets were tranquillized before being euthanased as
described elsewhere (Girard et al., 2005). Explants were inoculated
three times at hourly intervals with 50 pl broth culture applied to

the mucosal surface, and incubated at 37 °C on a rocker in a 95%
0,/5% CO, atmosphere for 8 h. Sample explants were processed for
SEM as previously described (Girard et al., 2005).

Histopathology. After culture, porcine explants were rinsed thor-
oughly in sterile PBS and fixed in 10 % buffered formalin for micro-
scopic examination. Formalin-fixed tissues were processed, paraffin-
embedded, sectioned at 5 pum, and stained with haematoxylin,
phloxine and safranine (HPS) according to standard techniques.
Sections were examined by light microscopy for the presence of
adhering bacteria on intestinal cells, as previously described (Girard
et al., 2005).

RESULTS AND DISCUSSION

Expression of isogenic intimin types in CR

Intimin (encoded by eaecy) is essential both for colonization
of mice by CR and for the production of transmissible
colonic hyperplasia (TMCH) (Schauer & Falkow, 1993).
Strain DBS255 (Aeaecy) is completely avirulent; although
this phenotype could not be complemented in trans,
putting the wild-type eaecr gene back into the chromosome
restored virulence (Schauer & Falkow, 1993). Subsequently
a pACYC-borne EPEC eae, gene (pCVD438) has been
shown to complement strain DBS255, restoring virulence
and hyperplasia to infected mice (Frankel et al, 1996b).
More recently, the eae region within pCVD438 encoding
Int280x was replaced with that of EHEC O157:H7
eae,, producing plasmid pICC55 (Hartland et al., 2000).
Significantly, strain DBS255(pICC55) was unable to cause
hyperplasia in mice (Hartland et al., 2000).

The aim of this study was to perform direct comparisons
between the functionalities of Int280a, Int280 and Int280y
in vivo. To this end we replaced the region within pCVD438
encoding Int2800 with that of CR encoding Int280f,
producing plasmid pICC327 (Fig. 1). Although some
differences in total intimin expression were noted in
Western blots (data not shown), the three plasmids
(pCDV438, pICC55 and pICC327) are isogenic in that
intimin expression is driven from the same, natural, eae
promoter and the three Int280 domains are presented on the
surface from the same intimin platform.

Effect of intimin type on colonization of C3H/
Hej mice = host specificity

Mice were challenged orally with 1 x 10° c.f.u. of the wild-
type (wt) strain, the Aeaecr strain DBS255 and DBS255
containing pCVD438 (eae280,), pICC55 (eae280,) or
pICC327 (eae280;). Stool samples were collected during
the course of the infection and the numbers of c.f.u. per g
stool were determined by plating. The wt strain had a growth
curve typical of CR infection of C3H/Hej mice; the number
of c.f.u. per g stool slowly increased over the first few days
post-inoculation (p.i.), peaking at days 6-8. In contrast
strain DBS255 was shed in stools only for the first 24 h p.i.
(Fig. 2A). Plasmid pICC327 (eae280;) fully complemented
strain DBS255, restoring colonization and resulting in wt
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levels of c.fu. shed in stools over the 8 day infection
(Fig. 2A). Interestingly, plasmid pCVD438 not only fully
complemented strain DBS255 in terms of c.f.u. shed in
stools, but it colonized mice more efficiently than the wt
strain during the first 48 h of infection (Fig. 2B). This is a
reproducible result that we have observed on each of the
more than 10 occasions that we have tested this strain in
mice. In comparison, strain DBS255(pICC55) had an
intermediate colonization phenotype, with 1-2 logs fewer
c.f.u. shed in stools over the whole 8 day infection (Fig. 2B).

The mice were euthanased at day 8 p.i. and colons were
removed for post mortem examination. This time point was
chosen as a number of the infected mice had lost 10-15 %
of their original body weight and had become almost

immobile. The macroscopic appearance of the colons is
shown in Fig. 3. Mice infected with DBS255 and DBS-
255(pICC55) had colons of normal appearance with plenty
of dark, well-formed stools, no obvious mucosal thickening
and a full caecum. Mice infected with the wt and with strains
DBS255(pCVD438) and DBS255(pICC327) all showed
visible thickening of the distal colon and only a few pale,
diffuse stools. In addition, the caecum was often half-full or
entirely empty. The distal 8 cm of colon was washed of
stools and weighed to give an indication of degree of
hyperplasia (Fig. 4A). Mice infected with DBS255 and
DBS255(pICC55) had colon weights indistinguishable from
those of uninfected mice (<0.2 g), whereas wt-infected
mice and those infected with DBS255(pCVD438) had
colons which were nearly double the weight (0.4 g).
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Fig. 2. Colonization of mouse gastrointestinal tracts by different CR strains, as indicated by shedding of c.f.u. in stools. The
levels of colonization are indicated by the viable bacterial counts (c.f.u., means £ SEM) from stool samples taken at different
times for the 8 days post-challenge. (A) Strain DBS255(pICC327) () was shed in stools at levels very similar to those of the
wt strain (H), whereas strain DBS255 ([J) was not recovered after 2 days post-challenge. (B) Strain DBS255(pCVD438)
(A) was shed in stools at a slightly higher level than the wt strain () on days 1 and 2 post-challenge. In contrast, strain
DBS255(pICC55) (O) was shed at levels approximately 2 logs lower than those of the wt strain from days 2 to 8 post-

challenge.
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Fig. 3. Caeca and colons of mice infected with different CR
strains for 8 days. Mice infected with strains DBS255 and
DBS255(pICC55) showed a full caecum and well-formed dark
stools in the distal colon. In contrast, mice infected with wt,
DBS255(pCVD438) and DBS255(pICC327) strains had shorter,
thicker colons with a few diffuse watery stools and visible hyper-
plasia at the distal end. In addition, the caeca in these mice were
often half-full or completely empty.

Colons from mice infected with DBS255(pICC327) had a
mean weight of around 0.3 g, intermediate between wt-
infected mice and those infected with DBS255.

The levels of c.fu. recovered from the colons agreed
with those shed in stools, with similarly high levels
found in mice infected with wt, DBS255(pCVD438) and
DBS255(pICC327); mice infected with DBS255(pICC55)
had ~10* fewer CR bacteria associated with the washed
mucosa. No bacteria were recovered from DBS255-infected
mice (Fig. 4B).

Colonization, protein translocation and A/E
lesion formation

In order to visualize adherent CR bacteria, protein
translocation and A/E lesion formation, colonic tissues
from infected animals were cryosectioned and processed for
immunofluorescence microscopy. Adherent bacteria were
confirmed as CR using rabbit CR polyclonal antiserum
(Fig. 5A). Tir translocation and A/E lesions were apparent in
tissue taken from mice infected with wt CR, DBS255
(pICC438) expressing eae280, and DBS255(pICC327)
expressing eae280; (Fig. 5B-D). In contrast, we could not
detect adherent DBS255(pICC55) expressing eae280,
(Fig. 5E).

These results show that in contrast to a previous report
(Schauer & Falkow, 1993) a CR eae280; plasmid can
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Fig. 4. Virulence of CR strains in the mouse colon. (A) The total
colon was weighed after the removal of all stools at day 8 post-
challenge. Mice infected with DBS255(pCVD438) had colon
weights that were not significantly different from those of mice
infected with the wt CR. There was no significant difference
between the colon weights of mice infected with DBS255 and
DBS255(plCC55) and the colon weights of uninfected mice. In
contrast, the colon weights of mice infected with strain
DBS255(pICC327) were significantly greater than those of unin-
fected mice (P<0.001) but still slightly less than those of mice
infected with the wt (P<0.05). (b) Mice infected with the wt
strain and with DBS255(pCVD438) and DBS255(pICC327) all
had similarly high pathogen burdens (around 10%-10° c.fu. per
colon). In contrast, mice infected with DBS255(pICC55) had sig-
nificantly lower bacterial loads (around 10%-10° c.f.u. per colon;
P<0.001), although the levels were still higher than those in mice
infected with the DBS255 mutant, from which no challenge bac-
teria were recovered.
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Fig. 5. Immunofluorescence staining of CR-
infected cryosectioned mouse colons. Stain-
ing was performed for CR (A, green) and Tir
(B-E, green). Filamentous actin was visua-
lized by phalloidin staining (blue), and bac-
teria and cell nuclei were counterstained
with propidium iodide (red). Intimately adher-
ing bacteria with translocated Tir underneath
were observed on mouse colons infected
with wt CR (B), DBS255(pICC438) (C) and
DBS255(pICC327) (D). No adherent bacteria
were detected on mouse colons infected with
DBS255(pICC55) (E).

complement CRAeae, restoring colonization and hyperpla-
sia. CR expressing eae280, is more virulent than the wt CR,
with higher levels of colonization in the first few days of
infection. In contrast, despite being present in stools at a
relatively high number, CR expressing eae280, did not
establish intimate contact with the epithelium and was
unable to induce hyperplasia. Considering that all the CR
strains are isogenic, that all possess identical type III
secretion systems and EspA filaments, and that Int280y
binds Tircg (Hartland et al, 2000), the attenuated
phenotype is likely to reflect the absence of a host-cell-
encoded intimin y receptor.

In a previous study we showed that CR(pICC55) does not
induce hyperplasia (Hartland et al, 2000). However, as
colonization was only studied in infected tissue at
12 days p.i., we did not record bacterial shedding at earlier
time points. Nevertheless, the current study supports our
original conclusion that intimin 7y is not functionally
equivalent to intimin « or f§ in the CR model.

Effect of Int280/ on tissue specificity = human
IvoC

Previous studies have shown that exchanging intimins
between EPEC O127:H6 and EHEC O157:H7 resulted in
restriction of EPEC colonization to the Peyer’s patch mucosa
of human IVOC and extension of colonization of EHEC to
proximal small intestine (Fitzhenry et al., 2002a; Phillips &
Frankel, 2000). In this study pICC327 was transformed into
EPECAeae (strain CVD206) and EHECAeae (strain ICC170)
mutants. Both CVD206(pICC327) and ICC170(pICC327)
adhered to small intestine on 4/4 and 3/4 occasions,
respectively (Fig. 6). No adhesion was seen in the eae-
negative controls (0/4) (data not shown), while the positive
controls EPEC E2348/69 and CVD206(pCVD438) adhered
to small intestinal mucosa 4/4 and 3/4 times, respectively
(data not shown). These results show that like intimin o,
intimin f§ can also allow colonization of proximal small
intestine by EHEC 0157 : H7 while EPEC expressing intimin
o or intimin f show similar tissue specificity.

.
"0 suwieeg4ss

f"

Fig. 6. SEM of human IVOC. (A) Non-infected duodenal tissue showed smooth surface epithelium without any bacteria. In
contrast, intimately attaching bacteria were present on duodenal mucosa infected with ICC170(pICC327) (B) and

CVD206(pICC327) (C). Bars, 5 pm.
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Table 2. Adherence

of EPEC and EHEC strains to porcine intestinal explants

Strain Duodenum Jejunum Ileum Caecum Colon
E2348/69 13/13 (100 %) 13/13 (100 %) 11/11 (100 %) 6/6 (100 %) 1/6 (16.7 %)
CVD206 1/11% (9.1 %) 5/10 (50 %) 3/11 (27.3 %) 0/11 (0%) 0/6 (0%)
CVD206(pICC327) 10/12 (83.3%) 12/12 (100 %) 12/12 (100 %) 4/12 (33.3%) 1/12 (8.3 %)
85-170 0/6 (0%) 2/6 (33.3%) 14/15 (93.3 %) 3/6 (50 %) 0/6 (0%)
ICC170 0/6 (0%) 0/6 (0) 14/18* (77.8 %) 0/6 (0%) 0/6 (0)
ICC170(pICC327) 0/11 (0%) 5/11 (45.5%) 3/12 (25.0%) 4/12 (33.3%) 3/12 (25.0%)

*Although adhering bacteria were observed on HPS-stained sections, SEM demonstrated no A/E lesions for both Aeae strains CVD206 and

ICC170 in all intestinal sites assessed.

Effect of Int280/ on tissue specificity — porcine
IVOC

A previous study showed that exchanging intimin « and y
between EPEC O127:H6 and EHEC O157: H7 resulted in
restriction of EPEC colonization to the ileal mucosa of
porcine IVOC and extension of colonization of EHEC to
small intestine (Girard et al., 2005).

In order to determine the functionality of intimin f during
infection of porcine IVOC, biopsies taken from different
sites were infected with recombinant EPECAeae and
EHECAeae strains. Observation of HPS-stained sections
showed that CVD206(pICC327) adhered to all parts of the
small intestine at a comparable level to that seen with E2348/
69 (Table 2), whereas only a few sites with adhering bacteria
were observed in the caecum and the colon (Table 2). For
its part, adherence of ICC170(pICC327) was mostly
observed in the jejunum, whereas few sites with adhering
bacteria were observed in the ileum, caecum and colon
(Table 2). Foci of small to large aggregates of adherent
bacteria were observed for CVD206(pICC327) (Fig. 7A),
whereas relatively small foci or individual adherent bacteria
were observed on epithelial cells for ICC170(pICC327)
(Fig. 7B). Loose association of bacteria with the intestinal
mucosa of some villi, with no obvious change in associated
epithelial cell morphology, was observed for the eae
mutants CVD206 and ICC170 (data not shown), as
previously described (Girard et al., 2005). SEM analysis of
the mucosal surface of whole explants inoculated with
CVD206(pICC327) demonstrated typical A/E lesions and
gross microvillous elongation in the duodenum, jejunum
and ileum, whereas the caecum and colon were more
slightly colonized, but still demonstrated some A/E lesions
(Fig. 8). On the other hand, explants inoculated with
ICC170(pICC327) demonstrated only rare A/E lesions with
very localized effacement and no microvillous elongation in
the duodenum and jejunum (Fig. 8); in all other intestinal
segments examined the bacteria were associated with the
epithelial cells in small or large aggregates, with no direct
evidence of A/E lesions (Fig. 8).

These results show that while intimin f in EPECAeae can
completely restore colonization of porcine IVOC, the

expression of intimin f in EHECAeae does not restore
colonization potential fully. This is unlikely to be due to
incompatibility between intimincg and Tirgygc, as EHEC
expressing Intcg was functional during infection of human
IVOC (Fig. 6), and Deng et al. (2003) have shown that Tircg
and Tirgygc are interchangeable.

Fig. 7. Representative micrographs of HPS-stained sections of
porcine IVOC segments inoculated with the complemented
mutant strains CVD206(pICC327) (A, ileal IVOC,), or ICC170
(pICC827) (B, jejunal IVOC). Large foci of intimately adhering
bacteria, along with mucosal irregularities, were observed for
CVD206(pICC327) (arrowheads), whereas either smaller foci of
intimately adhering bacteria, or individually adhering bacteria,
not always associated with mucosal irregularities, were ob-
served for ICC170(pICC327) (arrow). Bars, 500 um.
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Fig. 8. Adherence of the complemented mutant strains
CVD206(pICC327) and ICC170(pICC327) to porcine intestinal
IVOC prepared from duodenum, jejunum, ileum, caecum and
colon, as observed by SEM. Although CVD206(plCC327) in-
duced typical A/E lesions in all intestinal sites investigated (**),
complemented mutant strain ICC170(plICC327) showed only rare
A/E lesions in the duodenum (arrowheads). Bacteria associated
with the epithelium were observed in small to large foci (arrows) in
all other intestinal sites investigated, without direct evidence of A/E
lesions. Bars, 5 um [CVD206(plICC326) and ICC170(pICC327)
duodenum] or 10 um [ICC170(pICC327) jejunum, ileum, caecum
and colon].

These results show, as we have shown before for EPEC O55
(Fitzhenry et al., 2002b), that determination of host and
tissue specificity by A/E-lesion-forming E. coli is multi-
factorial, involving other bacterial and host determinants, as
well as intimin.
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