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Abstract
Determination of side-chain conformations is an important step in protein structure prediction and
protein design. Many such methods have been presented, although only a small number are in
widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained
popular due to its speed, accuracy, and ease-of-use for the purpose of homology modeling.
However, higher accuracy at comparable speed is desirable. This has been achieved through: 1) a
new backbone-dependent rotamer library based on kernel density estimates; 2) averaging over
samples of conformations about the positions in the rotamer library; 3) a fast anisotropic hydrogen
bonding function; 4) a short-range, soft van der Waals atom-atom interaction potential; 5) fast
collision detection using k-discrete oriented polytopes; 6) a tree decomposition algorithm to solve
the combinatorial problem; and 7) optimization of all parameters by determining the interaction
graph within the crystal environment using symmetry operators of the crystallographic space
group. Accuracies as a function of electron density of the side chains demonstrate that side chains
with higher electron density are easier to predict than those with low electron density and
presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of
χ1+2 are predicted correctly within 40° of the X-ray positions. Among side chains with higher
electron density (25th–100th percentile), these numbers rise to 89% and 80%. The new program
maintains its simple command-line interface, designed for homology modeling, and is now
available as a dynamic-linked library for incorporation into other software programs.
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Introduction
The side-chain conformation prediction problem is an integral component of protein
structure determination, protein structure prediction, and protein design. In single-site
mutants and in closely related proteins, the backbone often changes little and structure
prediction can be accomplished by accurate side-chain prediction1. In docking of ligands
and other proteins, taking into account changes in side-chain conformation is often critical to
accurate structure predictions of complexes2–4. Even in methods that take account of
changes in backbone conformation, one step in the process is recalculation of side-chain
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conformation or “repacking.”5 Because many backbone conformations may be sampled in
model refinements, side-chain prediction must also be very fast. In protein design, as
changes in the sequence are proposed by Monte Carlo steps or other algorithms,
conformations of side chains need to be predicted accurately in order to determine whether
the change is favorable or not6–8.

Most side-chain prediction methods are based on a sample space that depends on a rotamer
library, which is a statistical clustering of observed side-chain conformations in known
structures9. Such rotamer libraries can be backbone-independent, lumping all side chains
together regardless of the local backbone conformation10, or backbone-dependent, such that
frequencies and dihedral angles vary with the backbone dihedral angles φ and ψ11,12. An
alternative to using statistical rotamer libraries is to use conformer libraries, which are
samples of side chains from known structures, usually in the form of Cartesian coordinates,
thus accounting for bond length, bond angle, and dihedral angle variability13–16. Once a
search space in the form of rotamers (and samples around rotamers in some cases) or
conformers is defined, a scoring function is required to evaluate the suitability of the
sampled conformations. These may include the negative ogarithm of the observed rotamer
library frequencies17–20, van der Waals or hard sphere steric interactions of side chains with
other side chains or the backbone, and sometimes electrostatic, hydrogen bonding, and
solvation terms20–24. Many search algorithms have been applied, including cyclic
optimization of single residues or pairs of residues11,16, Monte Carlo5,18,25, dead-end
elimination26,27, self-consistent mean field optimization28, integer programming29, and
graph decomposition17,30,31. These methods vary in how fast they can solve the
combinatorial problem, and whether they guarantee a global minimum of the given energy
function or instead search for a low energy without such a guarantee. In general, such a
guarantee is not necessary, given the approximate nature of the energy functions, and it is
the overall prediction accuracy and speed that are more important features of a prediction
method. In recent years, it has become clear that some flexibility around rotameric
positions15,16,32 and more sophisticated energy functions20,33 are needed for improved side-
chain packing and prediction.

SCWRL3 is one of the most widely used programs of its type with 2986 licenses in 72
countries as of April 30, 2009. It uses a backbone-dependent rotamer library12, a simple
energy function based on the library rotamer frequencies and a purely repulsive steric energy
term, and a graph decomposition to solve the combinatorial packing problem30. It has a
number of features that have made it widely used. The first of these is speed, which has
enabled the program to be used on a number of web servers that predict protein structure
from sequence-structure alignments34 and may perform many hundreds of predictions per
day. The second is accuracy. At the time of its publication, it was one of the most accurate
side-chain prediction methods. However, a number of other methods have appeared
claiming higher accuracy15,18,20,35, although often at much longer CPU times. The third
feature of SCWRL3 is usability. The program takes input PDB coordinates for the
backbone, optionally a new sequence, and outputs coordinates for the structure with
predicted side chains using the same residue numbering and chain identifiers as the input
structure. This feature is simple but in fact many if not most side-chain prediction programs
renumber the residues of the input structure and strip the chain identifiers, making them
difficult to use in homology modeling. One unfortunate feature of SCWRL3 is that the graph
decomposition method used may not always result in a combinatorial optimization that can
be solved quickly. In such cases, the program may go on for many hours instead of finishing
in a few seconds, since it lacks any heuristic method for simplifying the problem and
finishing quickly.
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In developing a new generation of SCWRL, called SCWRL4, we had several goals. First,
we wanted to increase the accuracy over SCWRL3 such that SCWRL4’s accuracy would be
comparable or better than programs developed in the last several years. Second, we wanted
to maintain the speed advantage that SCWRL has over most similar programs. Third, we
wanted to maintain the usability of the program for homology modeling and other purposes.
As part of this, we wanted to make sure that the program always solves the structure
prediction problem in a reasonable time, even if the graph is not sufficiently decomposable.
This is accomplished with an approximation, that while not guaranteeing a global minimum
of the energy function given the rotamer search space, does complete the calculation quickly
in all cases tested.

In this paper, we describe the development of the SCWRL4 program for prediction of
protein side-chain conformations. We used a number of different approaches to accomplish
the goals described above. We have improved the SCWRL energy function using a new
backbone-dependent rotamer library (Shapovalov and Dunbrack, in preparation) which uses
kernel density estimates and kernel regressions to provide rotamer frequencies, dihedral
angles, and variances that vary smoothly as a function of the backbone dihedral angles φ and
ψ. SCWRL4 also uses a short-range, soft van der Waals interaction potential between atoms
rather than a linear repulsive-only function used in SCWRL3, as well as an anisotropic
hydrogen bond function similar to that used in Rosetta36 (but using a different functional
form that is faster to evaluate). To account for variation of dihedral angles around the mean
values given in the rotamer library, we used the approach of Mendes et al.32, which samples
χ angles around the library values and averages the energy of interaction between rotamers
of different side chains over these samples, resulting in a free-energy-like scoring function.
In order to determine the interaction graph, as used in SCWRL3, we implemented a fast
method for detecting collisions (i.e., atom-atom interactions less than some distance) using
k-discrete oriented polytopes (“kDOPs”). kDOPs are three-dimensional shapes with faces
perpendicular to common fixed axes, such that kDOPs around two groups of atoms can be
rapidly tested for overlap37.

In SCWRL3, we used a graph decomposition method that broke down the interaction graph
of residues into biconnected components, which overlap by single residues called
articulation points. In most cases, this solves the graph quickly. However, with a longer-
range energy function and sampling about the rotameric dihedral angles, this is no longer
true. We therefore implemented our own version of a tree decomposition of the graphs, as
suggested by Jinbo Xu for the side-chain prediction problem31. This is almost always
successful but in a small number of cases may still not result in an easily solvable
combinatorial problem. We therefore added a heuristic projection of the pairwise energies
onto self-energies within some threshold. This approximation of the full prediction problem
always results in a solution, even if it is not guaranteed to find the global minimum. Finally,
the new program has been developed as a library, so that its functions can be called easily by
other programs such as loop modeling and protein design.

Methods
In Figure 1 we show a flowchart of the basic steps in SCWRL4 to solve the side-chain
prediction problem. These will be discussed further below. The major steps are 1) inputting
the data and constructing the side-chain coordinates; 2) calculating energies; 3) graph
computation, with symmetry operators if any; 4) combinatorial optimization via edge
decomposition, dead-end elimination, and tree decomposition; 5) outputting the results.
SCWRL4 runs on a command line with a number of required and optional flags. A number
of other options and parameters are specified in a required initialization file with
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extension.ini, which uses a standard name=value format (see
http://en.wikipedia.org/wiki/INI_file).

lnput and construction of coordinates
An individual residue position is defined by specifying four backbone atoms (N,Cα,C,O) in
a PDB-format input file. These individual residue sites can comprise one or more
polypeptide chains, from which the backbone dihedral angles φ and ψ are calculated for
each residue. For purposes of looking up residues in the rotamer library, the N-terminal
residue φ is set to −60°. Similarly for C-terminal residues, ψ is set to 60°. These values are
those for which there is weak dependence of the rotamer probabilities on the missing
dihedral angle38. The Ci−1-Ni atom distances are checked to determine whether there are
missing internal residues in a chain.

For each residue, rotamers are read from a new version of the backbone-dependent rotamer
library (Shapovalov and Dunbrack, in preparation). This rotamer library is based on a much
larger data set, and is derived using kernel density estimates and kernel regressions. The
rotamer library includes rotamer frequencies and mean dihedral angles and their standard
deviations over a discrete (φ,ψ)-grid. This library offers much greater detail for non-
rotameric degrees of freedom, in particular χ2 for Asn, Asp, His, Phe, Trp, and Tyr and χ3
for Glu and Gln. Optionally SCWRL4 can determine frequencies and dihedral angle
parameters by bilinear interpolation from the four neighboring φ,ψ grid points in the library.
For each χ1 rotamer of Ser and Thr, SCWRL4 generates three rotamers for the hydroxyl
hydrogen with χ2 dihedral set to −60°, +60° and 180° and the variance set to 10° times the
corresponding parameter given in the configuration file. For each χ1, χ2 rotamer of Tyr, two
rotamers are generated for the hydroxyl hydrogen with χ3 dihedral set to 0° and 180°, which
are the values observed in neutron diffraction studies39. For His, extra rotamers are created
for the singly protonated states (proton on ND1 or NE2). Rotamers that represent positively
charged His can be enabled in the program using a command-line option.

Side-chain coordinates are built for all rotamers and for subrotamers about these rotamers
used by the Flexible Rotamer Model (FRM, see below). Subrotamers as used here are
conformations with dihedral angles ± one standard deviation (or a fixed proportion thereof)
away from rotamer values given in the rotamer library. For subrotamers, only one dihedral
at a time differs from the library value, since we found that allowing multiple deviations did
not noticeably improve the accuracy but did slow the calculation (data not shown). Side
chains are represented in a tree-like structure, so that atoms common to more than one
subrotamer (e.g., same CG position for different χ2 conformers) are calculated and stored
only once40. Coordinates are built using a fast incremental torsion to Cartesian conversion
method41.

Because SCWRL4 uses a large number of rotamers and subrotamers, we implemented a fast
collision detection algorithm based on k-dimensional Discrete Oriented Polytopes or
kDOPs37. The kDOP algorithm is based on two key ideas. The first idea is to enclose each
geometric object into a convex polytope of a special kind and use these as bounding boxes
for clash checks. A particular class of kDOPs is defined by a set of k pairwise non-collinear
unit vectors, and consists of all convex polytopes with 2k facets such that any facet is
perpendicular to one of these vectors. Examples are shown in Figure 2. For instance, if k=3,
these could be the x, y, and z-axes, so that all bounding boxes are rectangular parallelepipeds
whose faces are perpendicular to the Cartesian axes. The second key idea is to organize all
bounding boxes related to a particular group of geometric objects as a hierarchy. These
hierarchies can then be used for efficient search of all possible clashes between individual
bounding boxes.
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The advantage of using a single set of vectors for defining the bounding boxes is that two
bounding boxes of the same kDOP class can be efficiently checked for clashes. As
illustrated in Figure 2, this can be accomplished by testing for overlaps of the real intervals
that represent their projections across the corresponding basic axes. Let  and  be
the sets of these intervals for two kDOPs “A” and “B” respectively. “A” does not clash with
“B” if there exists I ∈ {1..k} such that min (ai)>max (bi) or if there exists j ∈ {1..k} such that
min (bi)> max (ai). If neither of these conditions are met, then the underlying objects
enclosed inside of these two boxes may clash, but do not necessarily do so. The last is to be
checked by pairwise distance calculations of the objects enclosed in the bounding boxes.

Building a kDOP around a geometric object consists of finding projections of the object
onto the basic axes. Both the van der Waals function and the hydrogen bond potentials
described in the next section have a certain boundary distance beyond which the potential is
zero. These distances are used to represent each atom as a sphere with a certain radius. To
build a bounding box around a whole side chain, each atom is enclosed into a kDOP and
then the elementary shells are merged. The rotamers and subrotamers of a side chain can be
enclosed into a single kDOP, such that all residue-residue interactions can be checked very
quickly. In SCWRL4, we use four basic axes and construct bounding boxes around
individual atoms, backbone atoms of each residue, parts of each side chain, individual
rotamers (i.e. entire set of its subrotamers) and every residue (all rotamers). The basic axes
form a tetrahedral geometry:

Using these four axes results in somewhat faster calculations, by about 15%, than using
three axes along the x,y, and z axes, despite some overhead involved in calculating the
projections.

Calculating of self energies and pairwise energies via modified flexible rotamer model
SCWRL4 uses both a rigid rotamer model (RRM), as in SCWRL3, and a flexible rotamer
model (FRM)32. In the rigid rotamer model, the total energy of the system is expressed as:

where the vector r specifies a single rotamer for each of N residues in the system. In this
case, the self energy of each rotamer is:

where the first term expresses the rotamer energy relative to the most populated rotamer,
rmax, given the backbone dihedrals φ and ψ of residue i and the frame term expresses
interaction of the side chain with the backbone and any ligand or other fixed atoms present.
We allow the value of the constant in front of the log term to be residue-type dependent.

In contrast to SCWRL3, in SCWRL4 the frame and pairwise rotamer energies consist of
repulsive and attractive van der Waals terms as well as a hydrogen bonding term. The
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repulsive van der Waals term is the same as the piecewise linear term used in SCWRL3, but
is combined with a short-range attractive potential as follows. If σij is the sum of the hard-
sphere radii of atoms i and j and Eij is , where the Ei values are the Emin values from
the CHARMM param19 potential42, and d is the distance between the two atoms, then

This potential is shown in Figure 3 along with the standard Lennard-Jones potential with the
same Eij and Rij. The hard-sphere radii were manually optimized for the training set

accuracies. The minimum energy occurs at  which is close to the
standard Lennard-Jones parameterization in which the minimum occurs at rmin = 21/6σij =
1.12σij. The parameters are given in Supplemental Information.

The hydrogen bonding term in SCWRL4 is similar to the one used in Rosetta36, although it
is parameterized in a different way, as shown in Figure 4. We define d in this case as the
distance between a polar hydrogen (HN- or HO-) and a hydrogen bond acceptor (oxygen), n⃗
as a unit vector from O acceptor to H, e⃗0 as a unit vector along the covalent bond from the
hydrogen bond donor heavy atom D to H, and two unit vectors and e⃗1 and e⃗2 from the
hydrogen bond acceptor O toward the middle of the oxygen lone-pair electron clouds. For
carbonyl oxygens these two vectors are 120° apart from the double bond and coplanar with
the carbonyl carbon substituents. For hydroxyl oxygens, these two vectors are 109.5° from
each other and from the other two oxygen substituents (H and C), forming a tetrahedral
arrangement. The hydrogen bond function is evaluated first for e⃗1, and if no hydrogen bond
is found, then for e⃗2. For e⃗1, the weight w for the hydrogen bond is defined:

where  is the angle between the D-H bond and the H…O vector and
 is the angle between the O-lone pair and the O…H vector. If the

multiplicand under the square root is negative then the score is set to zero. The calculation of
this score enables an efficient implementation and together with the distance d and vector n⃗
can be done within 30 arithmetic operations, one division, and two square root evaluations.

After the weight w has been computed it is used to derive the final energy of oxygen-
hydrogen interaction by balancing the default van der Waals energy and pure hydrogen-
bond attraction terms:
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where qH and qO are the charges from the CHARMM param19 potential. The formulas
above include five atom-independent coefficients:d0, σd, αmax, βmax, B. The values of these
coefficients were optimized on the training set proteins and are given in the Supplemental
Data.

Using single rotamers sometimes results in poor packing predictions, due to fluctuations in
the dihedral angles and imprecise representations of the backbone in homology modeling.
We investigated the use of subrotamers, which we define as conformations that differ in one
or more dihedral angles by one standard deviation (or some constant times this value) from
the mean values given in the rotamer library:

If we allowed variations in all dihedral angles in this manner, treating the subrotamers as
additional rotamers resulted in intractable calculations using the graph decomposition
algorithm used in SCWRL3. Even with the tree decomposition of Xu31, implemented in
SCWRL4 (see below), the calculations often remained intractable. So we implemented the
flexible rotamer model of Mendes et al.32, in which the subrotamers are integrated to
produce an approximate free energy using the Kirkwood superposition approximation43:

We treat the first term as the “self free energy” and the second term as the “pairwise free
energy”. Aself (ri) and Apair, (rj, rj)are defined as:

The terms Eframe (ri, si) and Aframe (ri)contain only the van der Waals and hydrogen bond
energies. In our implementation, each residue type has a separately optimized temperature,
and for the pairwise free energy, Tij = (Ti + Tj)/2.

Graph construction
As with SCWRL3, some rotamers with high self-energy are removed from the calculation,
since they are very unlikely to be part of the predicted structure. These rotamers are marked
as inactive. In SCWRL3, rotamers with self-energy above a certain residue-independent
bound were inactivated. However it sometimes happens that all rotamers have self-energy
above this bound. In this case all rotamers were reactivated. In SCWRL4 we replaced this
heuristic by making the bound relative to the lowest energy rotamer for each residue. This
approach guarantees that at least one rotamer will remain active. After some study the value
of this threshold was set to 30. The exact value of the threshold can be customized through
the configuration file.

Before the graph is constructed, disulfide bonds are resolved. SCWRL4 uses the same
criterion as SCWRL3 to identify if two cysteine side chains can form a disulfide bond, but
introduces a new procedure for resolving ambiguities. An ambiguity occurs when more than
one rotamer of a particular cysteine residue can form a disulfide bond or when one rotamer
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can form disulfide bonds with more than one other cysteine side chain. To select a particular
collision-free combination of disulfide bonds, SCWRL4 finds the minimum total energy out
of all possible combinations of feasible disulfide bonds. To do this we use an objective
function in the form:

where the summations run over all possible disulfide bonds, C is a large positive constant
and η is a binary function that evaluates to one if a particular disulfide bond is switched on
and to zero otherwise. The functional above is of the same form as the one used to compute
the total energy of rotamer assignment. Therefore we can minimize it for function η via the
same optimization procedure. Doing this yields a list of the optimal disulfide bonds that do
not have collisions. If for a particular cysteine residue one of the rotamers is part of an
optimal disulfide bond then all other rotamers are inactivated for that residue. Energies of
interaction of cysteines in disulfides are added to the self-energies of rotamers of other side
chains within interacting distance.

SCWRL uses an interaction graph to represent the side-chain placement problem17,30. In
this graph, vertices represent residues while edges between vertices indicate that at least one
rotamer of one residue has a non-zero interaction with rotamers from another residue
connected by the edge. For a single protein or protein complex, the graph is constructed by
checking for overlap of the kDOP around whole residues. If at least one rotamer or
subrotamer of one residue can interact with non-zero energy with a rotamer or subrotamer of
another residue, then an edge is added to the graph between the vertices in the graph
representing these residues.

SCWRL4 is able to model side chains in symmetric complexes using symmetry operators.
These rotation-translation operators can be generated from the CRYST1 record in the input
PDB file or specified explicitly by the user in a separate input file. For crystals, if the input
PDB file contains the asymmetric unit, all residues in asymmetric units that may contact the
input coordinates are constructed, as described previously44. Bounding boxes are
constructed around the residues, rotamers, subrotamers, and atoms of the symmetry copies.
Interactions between atoms in the input structure and its side chains and atoms in the
symmetry copies and their side chains are determined. If side chains in the input structure
interact with the backbone or ligands of the symmetry copies, then the static frame energies
of these residues are modified accordingly. If the side chains of the input structure interact
with the side chains of the symmetry copies, then an edge is created between the
corresponding residues, if it does not already exist. If it does, then the pairwise energies are
modified to account for the additional interactions between symmetry-related proteins. Thus
a residue on one side of a protein may have an edge with a residue on the other side of a
protein because of symmetry.

Graph solution via tree decomposition
Before the major optimization via dynamic programming is launched the interaction graph
undergoes some preprocessing consisting of edge decomposition and dead-end elimination.
Typically this eliminates a significant number of rotamers as well as some edges and nodes.
Because edges were formed based on overlapping of bounding boxes some of them may
contain only zeros as pairwise rotamer-rotamer energies. If this is the case or if the actual
energies of interactions are very close to zero then the edge is removed.
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Edge decomposition removes edges that can be approximated as the sum over single-residue
energies. If this representation is feasible within a certain threshold then the corresponding
self-energies are modified and the edge is removed. With larger thresholds, more edges may
be removed. In this preprocessing stage, the threshold is set to a very small value, ε =0.02
kcal/mol.

The pairwise energies of two residues, (Epair ri, rj), in the rigid rotamer model or free
energies, (Apair ri, rj), in the flexible rotamer model, may be represented by a matrix of real
numbers for rotamers k=1..m and l=1..n. Edge decomposition consists of finding two sets of
real numbers  and  which minimize the average deviation:

By setting the partial derivatives of δ with respect to ak and bl to zero, we find that these two
sets should satisfy the following equations:

The initial task is not well defined as its solution is not unique. Thus adding some value to
all ak and subtracting the same value from all bl does not change the sum ak + bl Therefore
we can set ā to an arbitrary value. For example we can set:

Substituting this value into the second equation we find the corresponding value for b̄:

Using these values, we can determine ak and bl and evaluate the maximal absolute deviation:

SCWRL4 checks if this deviation is less than a certain threshold and if so then we remove
the corresponding edge and modify the self-energies of the kth rotamer of residue i and the
lth rotamer of residue j:

As stated earlier, the initial value of the threshold is 0.02, which enables the algorithm to
eliminate almost all redundant “near-zero” edges. We remove from the graph those nodes
that now have zero edges; its assigned rotamer is that of lowest Eself.
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The next step is to perform dead-end elimination (DEE) that identifies and removes rotamers
that cannot be the part of the global solution. These rotamers are identified via Goldstein’s
criterion that was used in SCWRL327. If for a certain residue only one rotamer is left after
DEE then that rotamer is part of the solution. If this residue has adjacent edges then all
pairwise energies with the remaining rotamer are incorporated into self-energies of the
corresponding rotamers from adjacent residues and these edges are removed. This makes the
residue isolated, which means that it can be removed from the graph; the self-energy of its
single rotamer is added to the total value of the minimal energy. The edge decomposition
and DEE steps are repeated until nothing further is removed.

As in SCWRL3, the resulting graph may contain separated graphs or clusters with no edges
between them; each of these clusters is then subject to graph decomposition. In SCWRL3,
the graph decomposition was based on the determination of biconnected components, which
are subgraphs that cannot be broken into parts by the removal of a single node. The graph is
then a set of biconnected components connected by single nodes called articulation points.
Tree decomposition can be viewed as a generalization of graph decomposition based on
biconnected components31. To see this, we show in Figure 5 the same graph as described in
the SCWRL3 paper, its decomposition into biconnected components, and its tree
decomposition. The nodes of the graph on the left are gathered into “bags” which are nodes
of the tree shown on the right. Every node of the graph is represented in one or more of the
bags (condition 1 of the definition given below). Every edge of the graph on the left is also
represented in one or more of the bags, so that the two nodes of an edge are together in at
least one bag (condition 2). Finally, for any vertex of the graph, all those bags on the tree
that contain the vertex form a connected subtree (condition 3). More formally:

Definition—A tree-decomposition of a graph G=(V, E) is a pair (T, Z), where T=(W, F) is a
tree (i.e., a graph with no cycles) with vertex set W and edge set F and Z = {Zw : Zw ⊆
V}w∈W is a family of subsets of the set V associated one-to-one with the vertices of T that
satisfies the conditions:

1.

2. ∀(u, v) ∈ E ∃ w ∈ W : u, v ∈ Zw

3. ∀ v ∈ V a set of vertices{w ∈ W : v ∈ Zw}is connected in T

Due to the one-to-one correspondence between sets Z and W, we will denote the vertices of
tree T as “bags”. Figure 5 shows that condition 1 is satisfied by this tree decomposition,
since all the residues are present in one or more bags. Residues c,d illustrate that condition 2
is satisfied since the edge c-d is contained in at least one bag (in this case, two). Residue h
illustrates condition 3, since all the bags that contain h are connected in a single subtree.

Typically several different tree-decompositions can be built for a given graph. The width of
a particular tree-decomposition is the size of the largest bag minus one. For a given graph a
tree-decomposition with the minimal possible width is the optimal one and its width is
called the treewidth of the graph. This characteristic indicates how well a graph is tree-
decomposable. For example if a graph has no cycles (and thus is a tree) then its treewidth
equals one, while for a simple cycle the treewidth equals two.

In SCWRL3, the graph solution begins with any biconnected component with a single
articulation point by finding the minimum energy of the biconnected component residues for
each rotamer of the articulation point. This energy is then added to the self-energy of the
articulation point rotamer, and the rotamers of the biconnected component that achieve this
minimum energy are assigned to the articulation point rotamer. The biconnected component
can then be removed, and the process continues for all biconnected components with one
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articulation point in the remaining graph. The combinatorial problem is thus reduced to the
order of the largest biconnected component (i.e., the one with the largest number of rotamer
combinations).

In a tree decomposition, instead of using single nodes to separate the graph, the graph can be
separated by removing one, two, or more nodes. To see this, in the tree decomposition in
Figure 5, each bag w is broken up into two sets of residues, Lw and Rw, where the residues in
Lw are those residues in the bag that are shared between the bag and its immediate parent
bag. For each bag in the figure, these are listed to the left of a vertical bar. The remaining
residues in the bag, the set Rw, are those not in the parent and are placed to the right of the
vertical bar. Each set Lw is a separation set of the graph G45; that is removing the residues in
Lw breaks the original residue graph into two or more separate unconnected graphs. For
instance, removing residues b and c breaks the original graph into two graphs, one
consisting of residue a and the other the rest of the graph below residues b and c.

Solving for the minimum energy of the graph proceeds as it does in SCWRL3. Starting at a
leaf (a bag with no children), y, e.g. the one containing “b c | a”, find the lowest energy of
the residue(s) in Ry (in this case residue a) for each combination of the rotamers in Ly (in this
case, residues b and c), saving the corresponding assignment of rotamers of Ry. Then add
these energies to that rotamer combination in the parent bag, which by the definition of tree
decomposition contains b and c. The procedure continues up the tree to the parent node of y
(let us call it node z). Again, the minimum energy of all the rotamer combinations of those
residues in Rz is calculated for each rotamer combination in set Lz. These energies need to
include the energies for b,c calculated for the child node y. This procedure continues until
only the root bag is left. We provide a more formal description of this procedure below.

The complexity of the solution is associated with the width of the tree, since all the rotamer
combinations of the residues in each bag need to be enumerated. It is in general difficult to
compute a treewidth and to find the optimal tree-decomposition, and it has been proved to
be NP-hard for an arbitrary graph46. For building a tree-decomposition we have developed a
heuristic algorithm. Our algorithm is similar to the one suggested by Xu31 who referred to it
as a “minimal degree heuristic.”

In the first step, the family of sets Z is built. The input graph is gradually disassembled using
a loop of the following steps:

1. Select any vertex with the minimal number of adjacent edges.

2. Form a bag of the tree from this vertex and all its neighbors. The selected vertex we
will denote as the primary vertex of the corresponding bag.

3. Add edges into the graph being processed so that the neighbors of the selected
vertex become a clique (a subgraph where all nodes have edges to each other).

4. Remove the selected vertex and all adjacent edges from the graph.

5. Repeat from the first step until there are no more vertices left in the graph.

Thus we obtain a set of “bags” which represent the vertices of the tree-decomposition.

Bags are numbered in the order of their construction. It is important to notice here that
within any iteration the intersection of the bag w with the vertices of the remaining graph
(Sw) consists solely of the neighbors (Nw) of the initial vertex of the bag concerned, Zw ∩ =
Sw = Nw. The one-to-one correspondence between vertices and the bags verifies that the first
condition in the definition of tree decomposition is automatically satisfied. Also it is clear
that the edges are removed solely during the bag construction and that when any edge is
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removed both adjacent vertices are included into a bag. This guarantees that the second
condition in the definition of a tree-decomposition is satisfied.

The second step is to connect the “bags” to obtain a tree that meets the definition of tree
decomposition. This is done by sequentially fastening these bags to the tree in the reverse
order in which they were constructed. Thus the bag that was created last becomes the root of
the tree. The next bag becomes connected to it and thus becomes its immediate child. For
the next bag, there are two choices for where to attach it. However, the appropriate node of
the tree-decomposition must meet the following condition:

According to this condition a set of vertices in the appropriate node must contain all vertices
from the bag to be added that are already present in the tree.

The tree decomposition just obtained undergoes some additional minor processing. This
consists of two normalization rules, which are applied until they cannot be applied further:
1) If all vertices associated with some bag belong to the vertex set of its immediate parent
then this node is removed and all its immediate children are reconnected to the parent node.
2) If some bag contains all vertices associated with its parent node then the parent bag is
substituted by this bag which thus moves up one edge towards the root.

The minimum energy rotamer configuration is calculated as follows. Starting with a leaf
node consisting of sets L and R, the left and right portions of each bag as defined above, we
define 〈L〉 as the set of all rotamer combinations of the residues in the set L, and similarly
define 〈R〉 for set R. A single member of 〈L〉 we denote as l, which is a vector of rotamer
assignments, one rotamer li for each residue i in the set L; similarly define r for 〈R〉. For a
leaf node, we calculate energies for each vector l :

where

and

For fixed rotamers in L, only the pairwise interactions with rotamers in R are included, while
both self and pairwise interactions among the rotamers in R must be added. For the flexible
rotamer model, the values of Aself and Apair are used instead Eself and Epair. For an inner
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node of the tree decomposition, we need to add in the energies assigned to rotamer
combinations in the node via its children:

where

where the sum is over the children c of the inner node, and lc is a vector of the rotamers of
the residues in the set Lc, such that these rotamer are in the set {li : i ∈ L; rj : j ∈ R}. By
definition of the tree decomposition, all the residues in Lc are in {L∪R}. In order to calculate
the energies of the internal nodes, the nodes must be traversed in leaf to root order. Since the
root has no parent, it has no set L (equivalently, its set L is empty). Its energies are given by

In the last part of the algorithm the nodes of the tree-decomposition are traversed in the root-
to-leaves order to assemble the global assignment of rotamers for the cluster being
processed. For any node except the root we have a local partial solution that lets us obtain an
optimal assignment of rotamers of R for any rotamer assignment of rotamers over L. But by
construction L belongs to the parent bag, which means that we can easily retrieve the
optimal assignment over all residues in some bag if we know the optimal assignment at the
parent node. Thus we have a recursive procedure that gradually extends an assignment for
the entire cluster starting from the root node:

For each child c of the root, the optimal assignment of rotamers to the residues in Rc may be
made, given the assignment of rotamers of the root, and the minimum energy added to the
total:

where the assignments in lc are already known from rroot. The rotamers are assigned and the
energies updated for each child of each c, and so on, following from the root to all leaves in
a depth-first search.

The actual search for the local solution is done via exhaustive direct enumeration, which is
quite affordable if the product of rotamer numbers within the corresponding bag is not very
large. The number of possible rotamer assignments over a particular bag we will refer to as
local complexity of the node. The sum of the local complexities of all nodes gives the overall
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computational complexity of the optimization. Typically tree-decompositions of smaller
width yield lower complexity. In order to limit the time required by SCWRL4 for a single
rotamer assignment we introduced an upper bound for the overall complexity of 108. If the
actual complexity exceeds this bound then the optimization is treated as not tractable and
SCWRL4 returns to the graph construction step (edge decomposition and DEE) after
doubling the value of the edge decomposition threshold. This process continues until a
solution is found.

Outputting the results
The optimization resolves both the minimal total energy of the entire model and the
corresponding assignment of rotamers. The SCWRL4 executable saves the resolved optimal
conformation of the whole protein model into PDB file. The corresponding value of the total
energy is printed into the standard output, which can be redirected to a file for further
analysis. If the task was set up and solved via the API of the SCWRL4 library then the
corresponding workspace with or without modifications can be used in subsequent
calculations.

Training and test sets
We constructed a training set of proteins for optimizing the parameters and procedures, and
a separate testing set for reporting the accuracy of SCWRL4. Because we wanted to use
electron density calculations to estimate the reliability of side-chain coordinates, we started
with the list of PDB entries with electron densities available from the Uppsala Electron
Density Server47, generally those with deposited structure factors. We removed entries with
ligands other than water, so that side chains could be predicted without requiring charges,
hydrogen positions, or van der Waals radii of ligands. This set was culled using the PISCES
server48,49 at maximum mutual sequence identity 30%, ≤1.8 Å resolution, and maximum R-
factor of 20%. Because we planned to optimize the energy function by predicting side chains
in the crystal form, we checked whether the CRYST1 records and scale matrices produced
viable crystals. We removed some entries that produced extensive clashes of protein atoms
when crystal neighbors of the asymmetric unit were constructed (e.g. PDB entry 1RWR).
The resulting list of proteins was broken up into the training and testing set, with the training
set consisting of monomeric asymmetric units to speed the optimization procedures
described below.

For all complete side chains in the resulting protein lists, we calculated the geometric mean
of the electron density, as described previously50. In this prior work, low values of mean
electron density were correlated with non-rotameric side chains and conformationally
disordered side chains. For each residue type, mean electron densities for the training and
testing sets were sorted and turned into percentiles, with 0% for the lowest electron density
side chain and 100% for the highest.

For both sets, we used the program SIOCS (Heisen and Sheldrick, unpublished) available
with SHELX51 to resolve the ambiguity in the flip state of Asn and His χ2 and Gln χ3.
SIOCS uses hydrogen bonding and crystal contacts to indicate whether these side chains are
correctly placed in crystal structures, or if it is likely that the terminal dihedrals should be
flipped by 180°.

In crystal mode, calculations were performed on the asymmetric unit with inclusion of
interactions with crystal neighbors. However, accuracy was only assessed on one protein of
the asymmetric unit, as provided by PISCES.
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Optimization of the energy parameters
The accuracy of SCWRL4 depends on the choice of rotamer library, the non-bonded energy
functions and their parameters, the parameters used in the flexible rotamer model (FRM),
and several other procedural choices. We first needed to decide on an objective function to
be optimized. There are a number of possible choices, including RMSD, percent χ1 correct
within some threshold (typically 40° in previous literature), percent χ1+2 correct, and percent
of side chains correct (side chains with all χ angles within some threshold). We decided to
use the average absolute accuracy. For a side-chain type such as Lys, this is an average of
percent χ1, percent χ1+2, percent χ1+2+3, and percent χ1+2+3+4 correct:

where N12 for instance is the number of lysine side chains with both χ1 and χ2 correct within
40°. This value gives added weight to the more reliably determined degrees of freedom
closer to the backbone. To obtain an accuracy across all side-chain types, we weight PC for
each amino acid type by its frequency:

We have a large number of parameters that can be optimized. First, the χ-angle deviations δi
for the sub-rotamers can be set individually for each dihedral degree of freedom. SCWRL4
uses a constant times the standard deviation provided in the rotamer library, where the
constant is specific for each degree of freedom for each side-chain type:

We also optimize the “temperature” used in the FRM procedure separately for each amino
acid type. For calculation of pairwise rotamer-rotamer energies the temperature is taken as
the arithmetic average of the temperatures of the corresponding amino-acid types. The last
parameter is the coefficient in front of the rotamer library term which balances the influence
of the static frame and the rotamer library in the self-energy of a rotamer. Thus for every
amino-acid type we obtain l+2 parameters, where l is the number of χ angles required to
specify the conformation of the side-chain of a certain amino-acid type. These parameters
form a 78-dimensional space that can be searched to improve the quality of prediction. In
addition, we also have the hydrogen bond parameters and the atomic radii that can be
optimized to improve the prediction accuracy.

We used a special technique to perform the optimization in the 78-dimensional space of the
parameters concerned. The main idea is similar to classical block-coordinate descent
methods52, where on each iteration an optimum along one or several axes is resolved. In our
case, the search space of any iteration consists of the parameters of a single amino-acid type,
while the objective function is maximized within some vicinity of the current values of these
parameters. Every iteration updates only the parameters associated with the corresponding
amino-acid type while the parameters of the other amino-acid types remain unchanged. In
this method, any iteration updates the parameters in a way that increases the value of the
objective functions, otherwise keeping the parameters unchanged. Within each iteration, the
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approximate solution of the underlying optimization task is obtained using a special
technique as described in the Supplementary Material. Changing the amino-acid types from
one iteration to another will impose a sequence of points in the original 78-dimensional
space along which the value of the objective function will gradually increase (or at least will
remain unchanged). Iterations are grouped into rounds – a randomly shuffled sequence of 18
iterations, which contains all residue types except ALA and GLY. Our experiments showed
that a few rounds are typically enough to find some (not necessarily global) maximum of the
objective function.

The key advantage of the protocol is that it lets us utilize specific properties of the internal
structure of the rotamer assignment procedure. When the flexible rotamer model is enabled,
the most CPU-consuming part of the whole prediction is the calculation of the interaction
graph and especially the calculation of the pairwise energies. However for some pair of
amino acids, if neither of the rotamers has been changed then the current energy of the
pairwise interaction between them is valid and does not need to be recalculated. Conversely,
changing the parameters of some amino acid type affects only the rotamers of that type and
their interactions with rotamers of any other type. During a single iteration only side chains
of one amino-acid type are modified and so most of the interaction graph can be preserved
while only a minor part has to be recomputed. Moreover if only the weight of the rotamer
library’s energy term is changed, then neither the static frame energies nor the energies of
pairwise interactions have to be recomputed. The parameters were optimized such that all
side chains were in their crystal environment, interacting with crystal neighbors of the
asymmetric unit. This is particularly important for polar side chains with contacts between
asymmetric units.

Accuracy vs. accessible surface area and percentile electron density
The smoothed curves in Figure 8 and 9 were calculated using kernel density estimates53 by
calculating probability density estimates of correctly and incorrectly predicted side chains as
a function of relative accessible surface area (RSA) and percentile of electron density:

where Ai is the RSA of residue i or its electron density percentile, and K is a Gaussian kernel
with bandwidth h:

The prediction rate at A is calculated using Bayes’ rule:

where p(A|corr) and p(A|incorr) are calculated using the expression for f(A) using the
correctly predicted and incorrectly predicted side chains respectively. p(corr) and p(incorr)
are just the frequencies of correctly and incorrectly predicted side chains overall. Kernel
density estimates exhibit unfavorable behavior at boundaries, and so the data were reflected
across A=0 to account for this. No correction was made at A=100.
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Library
SCWRL4 has been redesigned as a library, so that its optimization engine can be used in
other scenarios such as protein design. It utilizes a delayed computation model. At first the
model data (referred to as the workspace) is defined by specifying the location of amino-
acid residues with appropriate rotamers via calls to functions of the library. After that the
calling program uses the SCWRL4 engine in the library to derive the optimal assignment of
rotamers. This will request that SCWRL4 calculate all the required energies and perform
combinatorial optimization after which for each residue one of its rotamers will be marked
as optimal. This information can then be used in other applications. The SCWRL4 library
keeps the model alive for further usage even after the optimal assignment has been found.
This means that after the optimal rotamers have been resolved, some modifications can be
introduced into the model and the optimization requested again. In this case SCWRL4 will
recalculate only those energies that need to be modified due to changes in the model, while
for energies between persistent objects it will use cached values.

Availability
SCWRL4 is available at http://dunbrack.fccc.edu/scwrl4.

Results
Training and testing sets

We used separate training and testing sets of 100 and 379 proteins respectively to optimize
and test various parameters and algorithmic choices for development of SCWRL4. Details
of these sets are given in Supplementary Data. The resolution cutoff for both sets was 1.8 Å,
and the maximum mutual sequence identity was 30%. All calculations below are performed
either on the asymmetric unit or using crystal symmetry, although in each case the accuracy
results are compiled on sets consisting of only one chain of each sequence.

Accuracy of SCWRL4
The overall accuracy of SCWRL4 is presented in Table I for those side chains with electron
density above the 25th percentile. The accuracy is reported in three different ways. First, for
each side-chain type, the conditional accuracy for each dihedral degree of freedom, χi, is
reported. This is the percent of χi that is correct, given that the χ angles closer to the
backbone, χi−1,…, χ1 are also correct. So for instance, for Met, for those residues with both
χ1 and χ2 correct, 77.1% have χ3 correct. The column “ALL” counts only those residue types
with that degree of freedom. Second, for each side-chain the absolute accuracy at each
degree of freedom is the percentage of all residues of that type such that χi,…, χ1 are all
correct. So for instance, for Met, 60.9% of all residues are predicted correctly for χ1,χ2, and
χ3. Finally, the average RMSDs are given for each side chain type. For a set of residues of
the same type, there are two ways to calculate the RMSD. First, one can calculate the RMSD
for each residue, and then average these values. Second, one can do the sum of square
distances over all of the atoms of all of the residues, take the mean, and then the square root.
The values are not the same. We use the former definition.

The numbers most frequently cited for side-chain prediction accuracy are the χ1 and χ1+2
rates over all side-chain types, where χ1+2 is the absolute accuracy at the χ2 degree of
freedom in Table I. These values are 89.3% and 79.7% respectively for the 25–100th
percentiles of electron density. For all side chains, these values fall to 86.1% and 74.8%. We
exclude the bottom 25% because of the inherent uncertainty in these conformations (see
below). For 10 of 18 residue types, the χ1 accuracies exceed 90%, and these are
predominantly the aliphatic and aromatic residue types. Ser is the most difficult to predict,
with an accuracy rate of 75.8%.
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In Table II, we show the improvement in prediction accuracy of SCWRL4 over SCWRL3
for each residue type and for the conditional and absolute accuracy measures. The overall
improvement in χ1 accuracy is 3.5% (SCWRL4 accuracy - SCWRL3 accuracy on the same
test set of 379 proteins). The largest improvements are in Trp, Arg, Gln, Glu, Met, Asp, Asn,
and Ser, all of which exceed 6% improvement in average absolute accuracy.

The improvement in accuracy in SCWRL4 over SCWRL3 was achieved through a number
of different changes in the sampling space, the energy function, and the algorithm. Each of
these feature changes was chosen and/or optimized on the basis of improvement in the
training set of 100 proteins. In Figure 6, we show the effects of each change added to
SCWRL3 (boxes R through T) or each change removed from the final SCWRL4 protocol
(boxes A through I). The figure demonstrates that the effect of each feature is context-
dependent; that is, the effect is different when added to SCWRL3, which contains none of
the new features vs. when it is removed from the final SCWRL4, which contains all of the
new features. The directed graph leading from SCWRL3 to SCWRL4 along the outside of
the figure shows the improvements as each feature is added consecutively. The most
important changes include the flexible rotamer model, the new rotamer library, the addition
of a hydrogen bonding function, changes in the atomic radii used, and using a larger
percentage of the rotamer library (the top 98% of rotamer density, instead of 90% as used in
SCWRL3). The rigid rotamer model (RRM, box C) is 2.01% less accurate in average
absolute accuracy than the full flexible rotamer model (FRM, box A). The decrease in χ1 and
χ1+2 accuracies are 1.4% and 2.8% respectively.

Prediction of side-chain conformation in crystals
We enabled consideration of crystal symmetry in side-chain conformation prediction in
SCWRL4. This is accomplished by determining the interaction graph in the context of
neighboring chains to the asymmetric unit within the crystal. Thus, a residue in the graph
may have a neighbor on the other side of the protein, if that residue makes contact with that
residue in a crystal neighbor. Crystals were built and neighbors determined as described in
previous work44. It is of interest to determine the effect on prediction accuracy when crystal
symmetry is taken into account. It should be noted that this is a bona fide prediction within
the crystal, since the side chains in the neighboring asymmetric units have the same
conformations as the asymmetric unit whose structure is being predicted.

In Figure 7, we show the improvement in accuracy for all side chains and for those in crystal
contacts when the crystal symmetry feature is enabled. The accuracy values shown are
average absolute accuracy, which are averages of the χ1, χ2, χ3, and χ4 absolute accuracies
shown in Table I. Improvement occurs for all side-chain types. Among all side chains, not
just those in crystal contacts, the effect is strongest for those most likely to be on the surface,
in particular the longer side chains, Arg, Lys, Glu, and Gln. However, when other side chain
types are in crystal interfaces, their accuracy is also strongly affected by the presence of the
crystal neighbors. This is especially true for Trp and Met. The χ1 and χ1+2 accuracy in the
crystal for side chains with electron densities in the 25–100% percentiles are 90.9% and
82.6% respectively. For all side chains, the values are 87.4% and 77.1%

Prediction of side-chain conformation vs. accessible surface area and electron density
Exposed side chains have fewer steric constraints and are more difficult to predict
accurately. We have calculated the accuracy of predictions (within 40°) as a function of the
relative surface accessibility (RSA) of side chains calculated with the program naccess54.
Both the predictions and the surface area calculations were performed in the crystal
environment, so that side chains in protein interfaces in the crystal are considered buried.
The results are shown in Figure 8. The accuracy vs. surface area was calculated using kernel
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density estimates as described in the Methods section. In Figure 8, the probability density of
each residue type as a function of accessible surface area is shown in magenta (multiplied by
20). These curves show that in the crystal, most residue types are predominantly buried
(RSA<40%) with maxima at 0% RSA. The only exceptions are Lys, Arg, and Glu with
density modes at 30–40% exposure.

The frequency of accurate predictions is shown for each side-chain type for all side chains
with RSA>0%: χ1 (black), χ1+2 (red), χ1+2+3 (orange), χ1+2+3+4 (blue). As expected, less
accessible side chains are predicted more accurately than accessible side chains. Note that at
high RSA, the estimates can be quite noisy due to very small counts, especially for Cys and
Trp. Separate points are plotted for those side chains with 0% RSA (using the same color
scheme), calculated separately from the kernel density estimates shown in the curves, For
completely buried side chains in the crystal, 96.0% of χ1 and 91.5% of χ1+2 dihedrals are
correctly predicted. All side-chain types are predicted with greater than 95% accuracy for χ1
except Cys (94.4%), Pro (91.9%), and Ser (79.1%).

We have previously shown that rotameric side chains have higher electron density than non-
rotameric side chains, and that non-rotameric side chains are likely to be disordered in a
manner similar to side chains that are annotated in PDB files as existing in more than one χ1
rotamer in the crystal50. Since SCWRL4 predicts only one conformation per side chain, it
seems likely that side chains with lower electron density should be harder to predict, since
they may be placed in only a portion of the observable electron density. In Figure 9, we
show prediction accuracy as a function of the percentile of electron density of the entire side
chain, using the same color scheme as that in Figure 8. The curves are also calculated with
kernel density estimates. Low percentiles correspond to low electron density, disordered side
chains, and high percentiles correspond to high electron density, well-ordered side chains.
Some low-density side chains may be incorrectly placed in the density.

For all side-chain types and all degrees of freedom, the accuracy rises with increasing
electron density. For some degrees of freedom, this is only true at low electron density, and
the accuracy plateaus above the 30th percentile. But for the longer side chains, the increase
in accuracy extends from 0 to 100%. For all side chains, the χ1 accuracy increases from
69.0% to 94.6% at 0th and 100th percentiles of electron density. For χ1+2, the equivalent
numbers are 52.4% and 82.3%. At the highest electron densities, the χ1+2+3 and χ1+2+3+4
accuracies are 71.9% and 56.5%.

CPU time
In Table III, we show a comparison of the CPU time for the testing set of 379 proteins for
SCWRL3 and SCWRL4, for both the rigid rotamer model (RRM) and the flexible rotamer
model (FRM) and for the asymmetric units and crystals. The mean, median, and maximum
CPU times over the testing set reveal that the different calculations have different properties.
SCWRL3 is very fast on most proteins, but on a small number of structures takes
exceedingly long times. On two ASUs, SCWRL3 failed to finish and on one protein took
1409 seconds. SCWRL4 with the RRM model takes slightly longer than SCWRL3 with
median times of 1.51 and 1.27 seconds respectively. This is due to slightly longer times
required for the more complicated energy function and denser and larger graphs that result.
However, the maximum time for the SCWRL4 RRM is 72 seconds and the mean time only
4 seconds.

For the FRM model, SCWRL4 takes a median of 7.9 seconds, a mean of 12.2 seconds, and a
maximum of 98 seconds. Thus the median time is about 6.3 times slower for the SCWRL4
FRM calculation compared to SCWRL3, and the mean time is 1.5 times slower. SCWRL4 is
also able to calculate the conformations of proteins in the crystal environment, taking
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account of crystal symmetry. Calculation with crystal symmetry takes 1.7–1.8 times that of
the ASU for the FRM model of SCWRL4. The effect on the RRM model is somewhat
larger.

The calculations were performed on a machine with an AMD Athlon 64 X2 Dual Core
Processor 4400+ at 2.21GHz, with 3.25 GB of RAM, and running by 32-bit Microsoft
Windows XP Professional Service Pack 3.

Discussion
While the process of sequence-structure alignment is well represented by many available
web servers and downloadable programs, relatively few programs exist for producing three-
dimensional coordinates from target-template alignments55. We have previously developed
the MolIDE program that takes an input target sequence and produces alignments of this
target sequence to available homologous proteins of known structure56,57. In a graphical
environment, it is then possible to use the SCWRL3 program to produce a model of the
target sequence retaining the input sequence numbering. We intend for SCWRL4 to perform
the same function within the existing MolIDE, but with higher accuracy than SCWRL3. It
may also be used in existing web servers that perform searches for remote homologues such
as FFAS0334. Using the rigid rotamer model, SCWRL4 is about the same speed as
SCWRL3 in most cases but is able to complete all test cases in a reasonable time, while
SCWRL3 sometimes does not converge. With the flexible rotamer model, the median value
of SCWRL4 is slower by a factor of about 6, but with convergence in all cases tested.
SCWRL4 has a similar ease of use, and therefore will function in similar environments as
SCWRL3.

There are a number of potential sources of disagreement between predicted side-chain
conformations based on native backbones and experimental structures. In this paper, we
have explored several of these. The first and most obvious is the scoring function that must
realistically represent the physical forces that position side chains in proteins. We have
improved the rotamer library that SCWRL depends on, especially in those degrees of
freedom that are not strictly rotameric. These include the amide and carboxylate moieties of
Asn, Asp, Glu, and Gln, and the aromatic rings of Phe, Tyr, His, and Trp (Shapovalov and
Dunbrack, in preparation). Second, we have also explored issues of sampling by including
conformations near the rotameric positions using the flexible rotamer model approach
suggested Mendes et al.32 Each of these issues can be explored further, for instance by
including solvation energy terms as well as continuous dihedral angle minimization, as
performed in Rosetta.19 For the latter, the new rotamer libraries may afford an opportunity
by providing continuous energy functions as a function of the side-chain χ dihedral angles,
independent of rotamer definitions.

We have explored two other aspects of side-chain prediction that affect the overall accuracy.
The first of these comprise the interactions of side chains within the crystal. For the first
time, we have developed a side-chain prediction program that can account for arbitrary
symmetry, that is, predicting the conformation of all side chains within the crystal. We find
increases in accuracy of almost all side-chain types, especially for those most likely to be in
crystal contacts. Improvement in the crystal is interesting for two reasons. First, if side-chain
prediction is used for molecular replacement or structure refinement, then the ability to
consider the crystal symmetry will be very useful. Second, this is some indication that the
prediction of side-chain conformation in protein-protein interfaces with SCWRL4 is likely
to be significantly better than for side chains on the surface but not in protein interfaces.
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The second important issue is the apparent disorder of many side chains in crystals that we
have studied previously50. We have shown that prediction accuracy monotonically improves
with increasing electron density, such that side chains that are clearly positioned in one
conformation in the crystal are the easiest to predict. Similarly, side chains that are buried
within the crystal (either within single proteins or within asymmetric-unit or crystal
interfaces) are much better predicted than those that are exposed to the solvent.

In this paper we have explored the properties of SCWRL4 and we hope that users will find it
beneficial for predicting the structures of proteins.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Steps in SCWRL4 side-chain conformation prediction
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Figure 2. k-Dimensional Oriented Polytopes (kDOPs)
Left: examples of kDOPs in the plane (k=2,3,4) and in three dimensions (k=3,4). Right:
Overlap test for kDOP A (black) and kDOP B (gray). The objects enclosed within the
kDOPs may clash if one of the conditions shown is satisfied.
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Figure 3. SCWRL4 van der Waals potential
The van der Waals potential used in SCWRL4 is shown (solid line) with a standard
Lennard-Jones 6–12 potential (dotted line) with Eij = 1.
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Figure 4. Hydrogen bond potential
Interaction of hydrogen bond acceptor O and hydrogen bond donor, D. Unit vector n⃗ is the
vector from atom O to atom H. Unit vectors e⃗1 and e⃗2 are placed from atom O along each
lone pair of electrons. Unit vector e⃗0 connects the hydrogen bond donor D to the hydrogen
atom.  is the angle between the D-H bond and the H…O vector and

 is the angle between the O-lone pair and the O…H vector.
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Figure 5. Tree decomposition as generalization of biconnected component decomposition
At left, the graph used in the SCWRL3 paper is shown along with its biconnected
component decomposition. At right, a tree decomposition of the same graph is shown.
Residues in blue and green illustrate conditions 2 and 3 of a tree decomposition being
satisfied. The relevant conditions are shown below the tree decomposition. At each node of
the tree, those residues that are members of set L are shown to the left of the vertical bar, and
those of set R are shown to the right. Set L consists of those residues shared with the parent
of each node, and R the remaining residues of the node.
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Figure 6. Effect of SCWRL4 features on differences in SCWRL3 and SCWRL4 accuracy
The accuracy shown is average absolute accuracy of the training set, which covers all side-
chain dihedral angles (see text). “Atomic radii” = use of optimized radii; “Interpolation” =
interpolation of rotamer library probabilities and dihedral angles; “Local BB” = adding
interaction between side chain and atoms N,HN of residue i−1 and C,O of residue i+1,
previously neglected in SCWRL3; “P=98%” = reading in top 98% of probability from
rotamers sorted in descending order of frequency (90% in SCWRL3); “H-bonds” = new
hydrogen bond potential; “New RL” = new rotamer library; “FRM” = Flexible rotamer
model; “Tuning of parameters” = tuning of FRM parameters and rotamer library weights.
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Figure 7. Improvement in accuracy due to inclusion of crystal neighbors
The accuracy figures shown reflect the differences in average absolute accuracy for the
testing set as described in the text.
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Figure 8. Accuracy vs. relative surface area
Accuracy of SCWRL4 predictions is shown as a function of side-chain relative accessible
surface area, calculated with kernel density estimates (see Methods): χ1 (black), χ1+2 (red),
χ1+2+3 (orange), χ1+2+3+4 (blue) within 40°. The data points for 0% RSA were calculated
separately from the kernel density estimates. The magenta curves are the probability density
estimates of all side chains of each type in the crystal.
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Figure 9. Accuracy vs. percentile of electron density
Accuracy of SCWRL4 predictions is shown as a function of electron density percentile
calculated for each residue type, calculated with kernel density estimates (see Methods).
Curves for χ1 (black), χ1+2 (red), χ1+2+3 (orange), χ1+2+3+4 (blue) within 40° are shown.
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