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Abstract
Ryanodine receptors (RyR) are intracellular Ca2+-permeable channels that provide the sarcoplasmic
reticulum Ca2+ release required for skeletal and cardiac muscle contractions. RyR1 underlies skeletal
muscle contraction, and RyR2 fulfills this role in cardiac muscle. Over the past 20 years, numerous
mutations in both RyR isoforms have been identified and linked to skeletal and cardiac diseases.
Malignant hyperthermia, central core disease, and catecholaminergic polymorphic ventricular
tachycardia have been genetically linked to mutations in either RyR1 or RyR2. Thus, RyR
channelopathies are both of interest because they cause significant human diseases and provide model
systems that can be studied to elucidate important structure–function relationships of these ion
channels.
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Ryanodine receptors and excitation–contraction coupling
A regulated rise in intracellular Ca2+ is required for many physiological functions including
muscle contraction, secretion, regulation of gene expression, and fertilization [10]. Intracellular
Ca2+ can be elevated via the activation of plasma membrane Ca2+ permeable channels or via
the release of Ca2+ from intracellular stores [22]. Unregulated or deficient Ca2+ signaling can
lead to deleterious cellular outcomes, especially in excitable cells such as skeletal and cardiac
myocytes [95]. The rise in Ca2+ required for myocyte contraction is provided by the activation
of the sarcoplasmic reticulum (SR) Ca2+ release channels in the ryanodine receptors (RyR)
[122]. Given the central role that RyR play in regulating Ca2+ release, it is not surprising that
dysregulation of these channels can lead to severe muscle pathologies. In fact, mutations in
RyR1 and RyR2 isoforms that are associated with human diseases have been identified [90,
96]. RyR channelopathies include malignant hyperthermia (MH) and central core disease
(CCD) in skeletal muscle and catecholaminergic polymorphic ventricular tachycardia (CPVT)
in cardiac muscle [17,42,96]. Furthermore, alterations in RyR post-translational modifications
and remodeling of the RyR channel macromolecular complexes are associated with acquired
muscle pathologies including skeletal muscle fatigue and heart failure (HF) [7,112]. A more
complete understanding of RyR channelopathies will allow a greater understanding of RyR
function and may help in the development of therapeutic strategies designed to rescue normal
RyR dysfunction.
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RyRs are a family of large, homotetrameric intracellular Ca2+ release channels that, upon
activation, allow rapid release of Ca2+ from SR stores into the cytosol (Fig. 1) [34]. There are
three mammalian isoforms (RyR1, RyR2, and RyR3) that exhibit subtype-specific tissue
expression patterns. RyR1 is the predominant isoform expressed in mammalian skeletal
muscle, and RyR2 is the exclusive subtype expressed in cardiac myocytes [34]. While RyR1
and RyR2 are required for myocyte contraction in their respective tissues, the role of RyR3 is
less clear, although this isoform is present early in skeletal muscle development, and a role for
RyR3 in learning and memory has been proposed based on murine knockout studies [5]. The
three RyR subtypes exhibit a high degree of structural and functional homology. Each monomer
is in excess of 560 Kd with the ∼90% of in the channel sequence comprising enormous cytosolic
domains. Indeed, the N-terminal ∼4,100 amino acids comprise the cytosolic domain, and the
transmembrane domain is contained in the C-terminal ∼800 residues [34]. The number of RyR
transmembrane domains has been the subject of much debate, but it is now generally accepted
that each monomer spans the SR membrane at least six times and possibly as many as eight
times [28]. The ion conducting pore and the regions required for SR membrane localization
are contained in this region, and the functional Ca2+ release channels are organized into
homotetramers [34].

RyR1 and RyR2 release the SR Ca2+ required for muscle contraction, and as such, they are
required for excitation–contraction (EC) coupling in skeletal and cardiac muscles, respectively
[11,77]. Even though RyR1 and RyR2 are structurally quite similar, they are activated by
divergent mechanisms. Both isoforms are functionally coupled to changes in sarcolemmal
membrane potential through voltage-gated Ca2+ channels (VGCC) of the L-type class, also
known as dihydropyridine receptors (DHPR) [103]. DHPR physically interact with RyR1 in
skeletal muscle, and conformational changes in the DHPR following membrane depolarization
induce RyR1 to open [103]. Activation of L-type Ca2+ channels also induces RyR2 activation
in cardiac myocytes, but there is no known physical interaction between the two channels.
Instead, Ca2+ enters the myocyte through active LTCC and triggers RyR2 activation in a
process known as Ca2+-induced Ca2+ release (CICR) [11]. All three isoforms exhibit a biphasic
response to free Ca2+ and can participate in CICR in permeabilized systems. The three isoforms
exhibit different sensitivities to Ca2+-dependent activation and inactivation, but Ca2+-
dependent RyR activation generally occurs at ∼0.3–10 μM Ca2+, and the channels are typically
inhibited by millimolar Ca2+ [34]. This Ca2+ sensitivity ensures that RyRs are normally closed
at resting cytosolic Ca2+ (50–150 nM) and may also help prevent the sustained activation of
RyR at high Ca2+ concentrations.

RyRs in myocytes are typically part of large macromolecular complexes and are regulated by
endogenous and exogenous ligands [34,122]. Endogenous regulatory molecules in addition to
Ca2+ include Mg2+ ions, which are inhibitory, and adenine nucleotides and cyclic ADP-ribose,
which both activate the channels [34,77,78]. Numerous proteins also interact with and regulate
Ca2+ release from RyR including SR resident and cytosolic proteins. Notably, FKBP12 and
FKBP12.6 (also known as calstabin1 and calstabin2) interact with and maintain the stability
of RyR isoforms in muscle [12,75]. Calstabin–RyR interactions also promote coupled gating
of RyR from skeletal and cardiac muscles [73,74]. Calmodulin binds to RyR1 and RyR2 and
likely participates in Ca2+-dependent regulation of channel activity [6,102]. Detailed studies
of the effects of CaM on RyR1 have revealed that Ca2+-free CaM activates the receptor, while
Ca2+-bound CaM inhibits channel function [82,97]. Phosphorylation represents an additional
mode of RyR regulation and kinases (PKA, CamK) and phosphatases (PP1, PP2A); the
phosphodiesterase PDE4D3 and the muscle A-kinase anchoring protein are present in RyR
macromolecular complexes [122]. RyR-mediated Ca2+ release may also be controlled by the
cellular oxidative state as the channels can be modulated by oxidation and nitrosylation [8,
29,32,115]. RyRs are therefore a focal point for regulating Ca2+ release by multiple separate
and interacting pathways.
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Exogenous pharmacological agents have long been known to regulate RyR activity and are
useful tools for examining RyR function [30,34,58,78,100]. The identification, purification,
and early characterizations of RyR were greatly facilitated by use of the plant alkaloid
ryanodine, which binds to RyR with high affinity [37,62,88]. Low (micromolar) concentrations
of ryanodine lock RyR into a characteristic open one-half subconductance state [49], and higher
concentrations of ryanodine inhibit RyR channels in a use-dependent manner. 3H-ryanodine
binding, therefore, is a commonly used readout of channel activity [29]. Caffeine and 4-chloro-
m-cresol (CmC) activate RyR channels and are thought to facilitate channel opening by
increasing the sensitivity of RyR to Ca2+-dependent activation [100]. Ruthenium red is a
commonly used RyR blocker [70], and local anesthetics such as procaine and tetracaine also
block RyR channel activity in bilayers and in intact cells [58,101,116]. Additional
pharmacological agents can exert toxic or beneficial effects on muscle function by acting on
RyR. For example, volatile anesthetics such as halothane are thought to increase RyR activity
and can precipitate MH in individuals carrying MH mutations in RyR1, and the muscle relaxant
dantrolene is used to prevent MH crises because it inhibits SR Ca2+-leak via mutant RyR1
[60,71]. While the exact mechanism(s) underlying the actions of these pharmacological agents
is not completely understood, RyR activators and inhibitors are routinely used to study RyR
function.

Skeletal muscle RyR channelopathies
MH, the first identified RyR channelopathy, is inherited in an autosomal dominant fashion and
continues to be of major concern for anesthetic-induced deaths in otherwise healthy individuals
[98]. Susceptibility estimates for MH range from 1 in 15,000 children to 1 in 50,000 adults
undergoing anesthesia [14]. The exact prevalence of MH susceptibility is difficult to determine
since the syndrome only becomes apparent after exposure to triggering agents such as halothane
and succinylcholine, but as many as 1 in 2,000–3,000 individuals may be susceptible to
anesthesia-induced hyperthermic episodes [81]. A related syndrome referred to as porcine
stress syndrome (PSS) is found in certain lines of domestic swine where stressed pigs undergo
stress-induced hyperthermia [71].

MH in humans and PSS in pigs are thought to develop following excessive skeletal muscle
contraction that results from excess Ca2+ in the myoplasm following anesthesia in humans or
during stress in pigs [71]. This excessive Ca2+ causes sustained contractions, which accounts
for the rapid onset of muscle rigidity. Continued contraction and elevated Ca2+ exert a severe
metabolic demand on myocytes, and ATP levels become depleted. Myocytes respond by
increasing ATP production via oxidative phosphorylation and glycolysis, which leads to
acidosis. This prolonged hypermetabolic state generates heat and is thought to underlie the
elevated body temperatures observed in MH episodes [71].

MH episodes in both humans and pigs are typically rapid and severe. Individuals who
experience an episode can reach core body temperatures of 43°C, which leads to organ failure
and death if not quickly treated [80]. Anesthetic-induced death rates in excess of 80% were
observed in MH episodes prior to the discovery of the preventative effects of the muscle
relaxant dantrolene [46]. Rapid administration of dantrolene during MH episodes has reduced
mortality to less than 10% [99]. Susceptibility can be determined in vitro by measuring the
contractile response to caffeine or halothane in biopsied muscle fibers from humans and pigs
[31]. Samples from MH cases exhibit an enhanced sensitivity to these agents. CICR from SR
isolated from MH-susceptible pigs exhibited increased sensitivity to Ca2+, caffeine, and
halothane, which implicated abnormal Ca2+ release as the source of MH. Alterations in 3H-
ryanodine binding properties in porcine MH samples provided evidence linking RyR1
dysfunction to the disease [79]. 3H-ryanodine binding was increased at optimal [Ca2+] as well
as in the presence of inhibiting [Ca2+] indicating an overall gain-of-function defect. Ryanodine-

Betzenhauser and Marks Page 3

Pflugers Arch. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sensitive channels in MH samples are also dysfunctional, further implicating altered RyR1
function in the etiology of the disease [35,36].

While hyperthermic responses to surgery where known since the early 1900s, the link between
volatile anesthetics, family history, and MH was initially described in a letter to Lancet from
Denborough and Lovell in 1960 [25]. Therein, they described a patient who had survived a
severe hyperthermic response after receiving halothane in preparation for surgery to repair a
broken leg. The patient's family history had numerous instances (ten of 38 individuals who
underwent surgery) of deaths during or shortly following surgeries in which general inhaled
anesthetics were administered [24]. MH has since been described as a pharmacogenetic
disorder since the disease is only manifested in humans during or immediately following the
application of a general anesthetic [98]. While it was long suspected that MH was caused by
defective Ca2+ handling, the critical link between MH and RyR1 was provided by a molecular
genetic study of the condition in swine. Comparison of the cDNA sequence of RyR1 in MH
pigs to that of normal controls revealed a missense mutation (C to T) at nucleotide position
1,843 leading to a substitution of a cysteine residue for an arginine at position 615 (R615C)
[39]. An analogous mutation in human ryr1 (R614C) was identified later [44].

Mutations in ryr1 are also associated with the rare congenital myopathy CCD and the related
diseases multi-minicore disease, nemaline myopathy, and centronuclear myopathy [54]. These
rare diseases exhibit autosomal dominant and recessive modes of inheritance and have variable
pathologies, but the defining characteristic is the presence of cores of metabolically inactive
tissue in the center of muscle fibers [54]. These cores develop over time in CCD patients and
are devoid of mitochondria and signs of oxidative metabolism. The pathological significance
of these cores is unclear, but the most severe cases of CCD involve pronounced muscle
weakness. CCD symptoms are present at a young age, but unlike MH, these symptoms are
apparent in the absence of other factors. MH and CCD may result from similar molecular
mechanisms since some CCD patients also exhibit MH symptoms [54].

The clinical overlap of MH and CCD and the severity of CCD-related symptoms may relate
to the specific set of mutations that patients carry. Significant symptomatic heterogeneity exists
in patient populations that carry ryr1 mutations. Dominant mutations in ryr1 that are associated
with MH are typically localized to MH susceptibility regions 1 and 2 [123]. Conversely, a
recent analysis of a group of patients with various core myopathies demonstrated that CCD
mutations inherited in a dominant fashion were clustered in the C-terminus and were associated
with patients who exhibited pronounced cores and a strong CCD phenotype [123]. In contrast,
core-associated mutations inherited in a recessive fashion spanned the entire ryr1 gene, and
patients with these mutations exhibited a wider range of clinical severity [123].

Molecular mechanisms of MH and CCD
To date, nearly 200 mutations in ryr1 have been linked to MH and/or CCD (Fig. 1) [96]. The
bulk of the mutations are missense substitutions and are conserved in three “hot spots” located
in the N-terminal (C35–R614), central (D2129–R2458), and C-terminal regions (I3916–
G4942) in the amino acid sequence of RyR1 [96]. As shown in Fig. 1, however, many mutations
are located outside these hot spots, and the apparent clustering in three regions may be the
result of a sequencing bias [76]. Attempts to understand the molecular mechanisms behind MH
and CCD have involved the examination of the effects of these mutations on RyR1 function.
This initially involved the laborious methodology of obtaining muscle biopsies from affected
patients or MH pigs and testing the sensitivity of contracture to activating agents such as
caffeine or halothane [55,84]. Sensitivity to halothane, caffeine, and CICR was measured in
these samples, and 3H-ryanodine binding and single channel studies were also conducted
[55,79,86]. These studies established that MH and CCD mutations typically increased the
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sensitivity of RyR1 to activation, indicating a gain-of-function. Recently, the use of
recombinant techniques has rapidly increased the knowledge about the molecular mechanisms
underlying MH and CCD.

The ability to clone and express mutant RyR1 cDNA in heterologous systems has allowed
detailed analyses of RyR1 function and dysfunction. Recombinant RyR1 expressed in C2C12
[87], HEK-293 [106], and COS-7 [107] cell lines function as intracellular Ca2+ release channels
and are activated by caffeine, halothane, and CmC. Ca2+ released from the ER via RyR1 can
be monitored in individual cells by using Ca2+-sensing dyes combined with imaging or
photometric detection. Detailed biophysical analyses can be performed on single recombinant
RyR1 by isolating microsomes and fusing them to lipid bilayers. Single RyR1 can be measured
under tightly controlled conditions to measure the sensitivity to Ca2+ activation or inhibition
or the sensitivity to endogenous or pharmacological activators and inhibitors. Similar studies
have been performed using recombinant RyR2.

Early experiments on heterologously expressed RyR1 established that the RyR1–R614C
mutant channels were more sensitive to caffeine and halothane, similar to results from in vitro
contracture tests [87]. Recombinant RyR1–R614C also exhibited an increase in the sensitivity
to CICR similar to defects observed in muscle strips and microsomes isolated from MH patients
and MH pigs. Later experiments showed that 15 different MH, CCD, or MH/CCD RyR1
mutations showed increased sensitivity to caffeine and halothane when expressed in HEK-293
[106]. Using the same methodology, a mutation in the C-terminal hot spot (I4898T) exhibited
no response to caffeine and had severely reduced 3H-ryanodine binding [69]. Co-expression
of the I4898T mutation with wild type RyR1 partially rescued these deficiencies. Responses
to caffeine were reduced when compared to wild type RyR1 expressing cells, but enhanced
when compared to I4898T expressing cells. These results led the authors to conclude that the
I4898T mutation led to a severe gain-of-function effect [69]. This enhanced activity was
thought to promote a constitutive “leak” of Ca2+ from the SR. The reduced 3H-ryanodine
binding was proposed to result from the mutation disrupting the 3H-ryanodine binding site.

Experiments on RyR1 expressed in HEK-293 cells allow rapid and relatively straightforward
analyses of receptor function, but HEK-293 cells fail to recapitulate the muscle environment.
As such, this system does not allow RyR1 to be activated by DHPR activity or regulated by
other muscle-specific factors. Expression of wild type and mutated RyR1 in dyspedic (RyR1
knockout) myotubes that can be activated by endogenous DHPR recapitulates EC coupling
[4,83]. Voltage clamp allows activation of DHPR and simultaneous intracellular Ca2+

measurements can be used to study MH and CCD mutations in a near-physiological setting.
Numerous RyR1 mutations have been examined using this system, and in most cases, the
results corroborated prior studies conducted in HEK-293 cells [26]. That is, most MH and CCD
mutations led to a gain-of-function effect that promoted “leaky” RyR1 [3,26,27,119]. In MH,
this leak is uncovered when volatile anesthetics are administered, while in CCD cases, chronic
leak is thought to lead to a reduction in SR store content and result in muscle weakness [68].

A careful examination of CCD mutations in dyspedic myotubes revealed a graded severity of
mutations on voltage-activated Ca2+ release. N-terminal mutations typically reduced the
amount of Ca2+ released in response to depolarization. This was coupled with an increase in
the basal Ca2+ levels and a reduction in the SR content, consistent with leaky channels [3]. The
effects of the C-terminal I4898T mutations were, however, quite different. Myotubes
expressing this mutant showed severely deficient Ca2+ release in response to depolarization,
but normal resting Ca2+ and SR store content [4]. These results are consistent with a mutation
that reduces Ca2+ conductance. I4898 is located in the proposed pore region of RyR1, indicating
that a reduction in permeation is behind the I4898T CCD mutation. The combined results of
these studies led Avila and Dirksen to propose that CCD mutations could be grouped into two
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classes: leak-inducing mutations and mutations that uncouple RyR from DHPR activation (Fig.
2) [26]. In the case of CCD, either mechanism could explain the muscle weakness observed in
patients with the disease.

A crystal structure was recently solved for the N-terminus (residues 1–210) of rabbit RyR1
representing the first high resolution (∼2.5 A) structure for any region of RyR [1]. This structure
contains part of the MH susceptibility region 1 of RyR1, and 11 known RyR1 mutations were
mapped onto this structure. Further structural analysis demonstrated that three of the mutations
(C36R, R164C, and R178C) did not measurably disrupt the folding of the N-terminal domain.
These results suggest that the mutations disrupt function through alterations in intramolecular
interactions instead of disrupting the structure immediately surrounding the mutations [1]. This
is in line with the observations that mutations in divergent regions of RyR1 lead to similar
channel dysfunction.

Cardiac RyR channelopathies
Defects in SR Ca2+ release in cardiac myocytes are also the source of human disease [92].
Inheritable arrhythmogenic disorders brought on by emotional or physical stress have been
linked to mutations in RyR2 and its luminal binding partner calsequestrin2 [61,92]. The
hallmark of these diseases is PVT evident in electrocardiograms (ECGs) of patients in the
absence of any known structural heart defects [17,64]. Patients diagnosed with CPVT exhibit
bidirectional VTs during exercise or stress and are at risk for syncope and sudden cardiac death
[64]. Early diagnosis is critical since many CPVT mutation carriers die with the first episode
at a young age and current therapeutic strategies involve β-blocker treatment to blunt the effects
of catecholamines [17].

A genetic locus for CPVT was identified in chromosome 1q42–q43. Priori et al. identified four
separate missense mutations in the gene for RyR2 in this region in DNA from CPVT patients
[92]. More than 70 RyR2 mutations have since been identified and, similar to MH and CCD
mutations, are spread throughout the entire amino acid sequence of human RyR2
(http://www.fsm.it/cardmoc) (Fig. 1). The finding that mutations in the gene for calsequestrin2
are also associated with CPVT further demonstrates that altered SR Ca2+ cycling is the root
cause of the arrhythmias [61]. Cytosolic Ca2+ levels are tightly regulated to allow the rapid
initiation and termination of muscle contraction during a heartbeat [11]. The cardiac action
potential initiates VGCC opening to allow Ca2+ to enter the cell during systole. This Ca2+

rapidly activates RyR2 to flood the cytosol with Ca2+ and allow contraction. At the termination
of the AP, Ca2+ is removed from the cytosol by plasmalemmal sodium calcium exchanger
(NCX) and sarcolemmal calcium pump [11].

Under normal circumstances, β-adrenergic stimulation has positive ionotropic, chronotropic,
and lusistropic effects [11]. This allows a rapid increase in contractility, heart rate, and
sarcomere relaxation required during times of stress and is a major component of the
sympathetic “fight-or-flight” response. Signaling events downstream of β-adrenergic receptors
(β-AR) after norepinephrine binding facilitate this efficient upregulation. Activation of β-AR
on cardiac myocytes stimulates the production of cAMP and subsequent activation of PKA.
PKA phosphorylates numerous substrates involved in EC coupling including Cav1.2 [23],
RyR2 [113], and phospholamban [59]. The combined effect of these modifications is to
increase the magnitude and the rate of decline of the Ca2+ transient [15]. This allows the SR
to be effectively refilled during shorter diastolic periods brought on by increased AP frequency.
This normally efficient upregulation in response to catecholamines is disrupted in CPVT. The
basis of this disruption is thought to be the aberrant Ca2+ release from the SR during diastole
[17]. Similar to digitalis intoxication, this elevation in cytosolic Ca2+ is thought to activate
NCX to promote electrogenic influx of three Na+ and efflux of one Ca2+ that can result in
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delayed afterdepolarizations (DADs), which can trigger ventricular tachycardia and sudden
cardiac death [38,72].

The β-adrenergic cascade is downregulated and desensitized in HF [13]. When cardiac function
begins to diminish, there is a compensatory increase in circulating catecholamines. This is
initially protective, but becomes maladaptive over time. A major consequence of this prolonged
adrenergic signaling is a remodeling of the RyR2 macromolecular complex. RyR2 becomes
PKA hyperphosphorylated in HF [75]. The PKA hyperphosphorylation is exacerbated by the
loss of PP1 and PP2A phosphatases and PDE4D3 phosphodiesterase from the RyR2 complex
[75,94]. Most importantly, the stabilizing subunit FKBP12.6 (calstabin2) is also depleted from
the complex, which leads to leaky RyR2 channels [75]. Hyperphosphorylated, FKBP12.6-
deficient RyR2 channels exhibit subconductance states and increased activity in the presence
of diastolic levels of Ca2+ [75].

Divergent models to explain the molecular basis of CPVT
A major remodeling of the RyR2 macromolecular complex occurs during HF due to chronic
PKA hyperphosphorylation causing dissociation of FKBP12.6 from the RyR2 complex [75].
It was subsequently found that mice with FKBP12.6 deletions (FKBP12.6−/− mice) exhibited
ventricular arrhythmias and sudden cardiac death in response to exercise and catecholamine
administration, therefore exhibiting similarities to human CPVT patents [110]. Catecholamine-
treated FKBP12.6−/− cardiac myocytes also exhibited DADs during APs evoked at 12 Hz.
Cardiac microsomes isolated from exercised FKBP12.6−/− contained RyR2 that exhibited
increased sensitivity to 150 nM cytosolic Ca2+ and subconductance states (a hallmark of FKBP-
depleted channels [12,75]). Similar effects were observed in lipid bilayer studies with CPVT-
mutated RyR2, as PKA treatment of three different CPVT-mutated RyR2 resulted in increased
Po at diastolic Ca2+ levels and the appearance of subconductance states, indicating destabilized
channels [110]. These results suggested that the common link between HF and CPVT was
leaky RyR2 resulting from a loss of FKBP12.6. Consistent with this, all of the CPVT-mutated
RyR2 tested exhibited reduced FKBP12.6 binding (Fig. 3a) [110]. Furthermore, repairing this
interaction with a small molecule or overexpression of FKBP12.6 repaired the defective
channels and exercise-induced arrhythmias [47,110]. The potential role of RyR2
hyperphosphorylation and FKBP12.6 depletion in the progression of HF and CPVT has come
under much scrutiny. Some studies support the general hypothesis [40,121], but other studies
have not recapitulated the main findings [41,50,114]. Much of this confusion likely derives
from divergent experimental conditions that are employed by the different groups examining
the problem.

Alternative mechanisms for the molecular basis for CPVT have also been proposed using
recombinant RyR2 expressed in heterologous systems and more recently with the use of
transgenic mice. Unlike the case with dyspedic myotubes, no muscle-specific null backgrounds
exist for reconstitution experiments. Recombinant techniques have been employed that allow
expression of mutated RyR2 in HEK-293 cells and atrial tumor HL-1 cells [41,53]. Cellular
based assays, single channel recordings, and 3H-ryanodine binding assays are typically used
for functional studies. The majority of studies indicate that CPVT mutations induce gain-of-
function changes in RyR2 function.

Chen and colleagues performed the first such studies using CPVT-mutated recombinant RyR2
[53]. They expressed murine RyR2 harboring the R4496C mutation (equivalent to human
R4497C) in HEK-293 cells and found that the mutated RyR2 exhibited an increase in basal
activity. Specifically, an increase in 3H-ryanodine binding and single channel Po was observed
in R4496C samples. HEK-293 cells expressing the mutant receptor were also more likely to
undergo spontaneous Ca2+ oscillations and were more sensitive to caffeine stimulation than
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cells expressing the wild type receptor. The effects of β-AR activation were not tested in these
studies, but the authors proposed a mechanism for CPVT whereby an increase in SR store
content induced by adrenergic activity would cause spontaneous release of Ca2+ via mutated
RyR2 (Fig. 3b) [53]. Further studies by the same group refined the hypothesis and proposed
that a reduced threshold for store-overload-induced Ca2+ release (SOICR) is the source of
arrhythmias in CPVT [51].

Enhanced RyR2 activity in the face of elevated SR Ca2+ is a well-known phenomenon observed
in response to numerous pathological stimuli including digitalis intoxication, elevated
extracellular Ca2+, and ischemia/reperfusion [63]. An increase in myocyte sensitivity to SOICR
is thought to occur as a result of altered luminal regulation of mutated RyR2 in CPVT [52].
The finding that mutations in calsequestrin can also lead to CPVT has supported the idea that
altered SR luminal Ca2+ is an important determinant of CPVT. A loss of function in CSQ2
reduces SR Ca2+ buffering resulting in elevated SR Ca2+ [21]. Further increases in SR Ca2+

induced by adrenergic upregulation of SERCA would lead to luminal activation of RyR2 at
resting diastolic cytosolic Ca2+ and arrhythmias.

The sensitivity of mutated RyR2 to various activating agents was also tested after heterologous
expression in HL-1 cells [41]. These conditions more closely mimicked the disease state in the
sense that the mutated RyR2 was expressed in cells that contained endogenous, nonmutated
human RyR2. These studies allowed the added advantage that RyR2 could be studied in
cardiomyocyte-derived cells. George et al. found that the cells expressing the mutated RyR2
did not exhibit the increased activity at rest that had been observed in HEK-293 cells. Cells
expressing the mutated receptors were, however, more responsive to caffeine, 4CmC, and the
cAMP-mobilizing agents isoproterenol and forskolin (Fig. 3c). The authors also reported a
disruption in the RyR2–FKBP12.6 interactions in response to isoproterenol or forskolin, but
the wild type and mutant receptors were indistinguishable in this respect [41]. In subsequent
experiments examining interdomain RyR2 interactions, the same group proposed that CPVT
mutations increased the propensity of RyR2 to undergo Ca2+-induced conformational changes
[43].

Matsusaki's group has explored the possibility of another mechanism involving altered
interdomain interactions in CPVT and HF [85,120]. They proposed that mutations causing
CPVT induce an “unzipping” of interdomain interactions between the n-terminal (1–600) and
central (2,000–2,500) domains that destabilizes the receptor at low cytosolic [Ca2+] (Fig. 3d)
[85]. They based their hypothesis on the observation that regions in the N-terminal and central
domains of RyR2 may interact and that a disruption of these domains occurs during channel
activation. A similar scheme has been proposed for RyR1 interdomain interactions during
activation [117]. Of note, many CPVT-associated RyR2 mutations are located in these two
domains. A synthetic peptide corresponding to residues (G2460–P2495) that bound to the
zipper domain in the N-terminus of RyR2 increased Ca2+ leak from cardiac microsomes [85].
Based on these results, Matsuzaki and colleagues have proposed that compounds that restore
defective interdomain interactions may protect against pathological Ca2+ leak observed in HF
[118].

Transgenic approaches to study RyR channelopathies
Major advances in our understanding of RyR channelopathies have been provided by the
generation of MH/CCD and CPVT mouse models. Numerous transgenic mice harboring RyR
mutations have been generated in recent years in an attempt to create animal models that
recapitulate human RyR channelopathies. These mouse models have helped address some
questions about molecular mechanisms, but discrepancies still remain.
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The first transgenic mouse model harboring a disease-related mutation in RyR1 was created
by Susan Hamilton and colleagues in 2006 where they examined mice engineered to express
the Y522S MH mutation [20]. Mice homozygous for Y522S exhibited severe developmental
abnormalities and died between E17 and P1, but humans with MH are typically heterozygous
for RyR1 mutations. Heterozygous Y522S mice faithfully recapitulated many aspects of human
MH. MH episodes, characterized by overcontraction and elevated core temperatures, were
precipitated by isofluorane or stress with heat. In vitro contracture tests also demonstrated an
increased sensitivity to caffeine and isofluorane. At the cellular level, heterozygous Y522S
myotubes exhibited a hyperpolarizing shift in voltage-induced Ca2+ release experiments
similar to prior experiments using recombinant expression systems. These experiments further
demonstrated the “leaky” quality of RyR1 harboring Y522S. Unlike earlier experiments,
however, Ca2+ stores were unaffected by the mutation in the mouse model [20]. A reduction
in SR Ca2+ would be expected from a chronic leak associated with mutated RyR1. A likely
explanation for this discrepancy is that some other compensatory process is evoked in the
transgenic mice to maintain SR Ca2+ store content. These experiments highlight the importance
of verifying transfection results with in vivo models. Subsequent studies using the RyR1-
Y522S heterozygous mice have yielded novel insights into the susceptibility of these mice to
heat stroke and also to the contribution to skeletal EC coupling of retrograde regulation of
DHPR by Ca2+ released from RyR1 [2,29].

As described above, RyR1 14895T mutations and other mutations in the C-terminus of RyR1
likely exert their effects via uncoupling EC coupling rather than by increasing SR Ca2+ leak.
MacClennan and colleagues generated a transgenic mouse harboring the RyR1-14895T
mutation to help determine whether this mutant is indeed uncoupled from DHPR in vivo
[124]. Similar to the RyR1-Y522S mice, animals homozygous for the 14895T mutation exhibit
severe developmental defects and die before birth further emphasizing the important role RyR1
plays in embryonic development. However, humans heterozygous for I4895T exhibit a severe
form of CCD. A more recent study demonstrated that the heterozygous mice did in fact display
a progressive myopathy that was more similar to the human condition [125]. As the mice aged,
abnormalities in skeletal muscle structure and function became apparent. Similar to human
CCD, muscles exhibited cores and some of the mice developed severe muscle deficiencies
including complete hind limb paralysis [125].

Similar transgenic approaches have also been applied to CPVT-associated mutations in RyR2.
Four different transgenic models have been generated in recent years to examine the in vivo
effects of the R4496C, R176Q, P2328S, and R2474S RyR2 mutants [16,45,57,65].
Comparisons among these three mutant mice allow the opportunity to examine mechanisms
behind arrhythmogenic mutations in three divergent regions of RyR2. Priori's group generated
the first RyR2 transgenic model in 2005 to test the effects of the R4496C mutation [16]. These
mice largely recapitulated the main aspects of human CPVT. Mice heterozygous for R4496C
exhibited a tendency towards bidirectional VT upon epinephrine or caffeine injections while
resting ECGs were normal. Later experiments demonstrated that myocytes isolated from the
mutant mice also exhibited DADs in response to isoproterenol [67]. Unlike the studies on whole
animals, myocytes from R4496C heterozygotes exhibit some signs of dysfunction including
DADs in the absence of adrenergic upregulation. These results highlight the notion that the
channels exhibit abnormal activity at rest. Similar observations were made in myocytes from
mice engineered to express the R176Q or R2474S RyR2 mutations [57,65].

The R176Q mutation may be associated with the inherited cardiomyopathy arrhythmogenic
right ventricular dysplasia (ARVD). This mutation is analogous to the R163C RyR1 mutation
associated with MH. ARVD patients typically exhibit progressive ventricular replacement with
fibrofatty deposits in addition to CPVT. ARVD patients with RyR2 mutations tend to have
mild ARVD symptoms and are classified as ARVD2, although ARVD diagnosis of patients
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with RyR2 mutations is controversial given the lack of severe ARVD symptoms [91].
Nevertheless, these patients are at risk for bidirectional VTs and sudden cardiac death. Patients
with R176Q mutations also carry a second mutation of T2504M [105]. Both of these mutations
exhibit increased activity in vitro [104], but the generation of the R176Q mice allowed the
determination of the contribution of this mutation to human disease. Hearts from mice
heterozygous for R176Q were structurally normal. Catecholamines triggered ventricular
tachycardias and isoproterenol elicited oscillatory Ca2+ signals in myocytes from these mice
[57].

Additional studies with the R4496 mice have indicated that Ca2+ handling in the Purkinje fibers
may be a source of cardiac arrhythmias [18]. Purkinje fibers and isolated Purkinje cells exhibit
triggered and spontaneous Ca2+ release events. The physiological role of these signals is not
fully understood, but they may be involved in triggering action potentials. The arrhythmogenic
activity of the R4496C mutation was found to originate in the Purkinje fibers in detailed optical
mapping studies with voltage-sensitive dyes on Langendorff-perfused hearts [18]. Epinephrine
and caffeine-induced bidirectional VTs in the ECGs from of these mice were also changed to
monophasic VTs upon Purkinje fiber chemical ablation. This study introduced the idea that
the deadly arrhythmias triggered in CPVT patients may not originate in ventricles.

Transgenic mice expressing the P2328S mutation were generated to examine the effects of
mutating a site in the central domain of RyR2. Mice homozygous for the mutation were viable,
which allowed comparisons to be made with heterozygous animals [45]. Myocytes isolated
from the homozygous mice exhibited the most severe alterations in Ca2+ handling. Hearts
isolated from homozygous mice were also more prone to arrhythmias in Langendorff studies,
indicating a gene dosage effect of the P2328S mutation.

Mice engineered to express the R2474S mutation exhibited ventricular tachycardia upon
exercise and catecholamine treatment (Fig. 4) [65]. Cells isolated from these mice also
exhibited aberrant Ca2+ waves, action potentials, and transient inward currents upon treatment
with isopro-teranol. Isoproterenol treatment also elicited an increase in the diastolic Ca2+ spark
frequency. Ca2+ sparks represent the spontaneous activity small clusters of RyR2 under resting
conditions. An increase in spark frequency is indicative of an increase in diastolic Ca2+ leak.
Similar to human disease, these effects were apparent in mice heterozygous for the mutation.
The majority of mice homozygous for R2474S mutation died before birth with only 3.5% of
the animals being born, while the heterozygous mice were born at the Mendelian ratio.

Some CPVT patients also exhibit neurological dysfunctions including epileptic seizures [64,
89]. Consistent with this observation, generalized tonic–clonic seizures were identified in the
heterozygous R2474S mice [65]. Seizure activity was mapped to hippocampal regions in
telemetry recordings, and brain slices isolated from R2474S heterozygotes exhibited increased
spontaneous, ryanodine-sensitive Ca2+ signals. Of note, these defects were observed in the
absence of catecholamine treatment. This is unlike the cardiac phenotype, which was only
induced by exercise and catecholamines. One possible reason for this is that neurons are more
prone to abnormal RyR2 dysfunction at rest than are cardiac myocytes. Another possibility is
that there could be an increase in resting cAMP signaling in hippocampal regions that render
the R2474S channels leaky.

Blocking RyR leak as a therapeutic approach
A common feature of RyR channelopathies is that most disease-causing mutations in RyR
cause the channel to be active or leaky at low cytosolic Ca2+ levels. Dantrolene may be
protective in MH episodes by inhibiting RyR function, although the exact mechanism of
dantolene is unknown [60]. A protective effect of flecainide in CPVT has been proposed based
on its ability to block leak from RyR2 in CSQ2-deficient mice [109]. Besides MH, CCD, and
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CPVT, RyR leak may also play a role in HF and some forms of muscular dystrophy and epilepsy
[8,65]. The design and development of novel therapeutics that fix RyR leak should be a major
goal of future research to treat these diseases.

Results linking the loss of FKBP isoforms from RyR complexes with increased Ca2+ leak from
RyR have led to the development of small molecules that restore FKBP/RyR interactions.
JTV519 (a 1,4-benzothiazepine derivative) improved cardiac function in a canine HF model
[120]. A possible mechanism for these protective effects was provided by evidence that JTV519
enhanced FKBP12.6 binding to RyR2, even when the receptor was hyperphosphorylated
[111]. The functional consequence of this rescued binding was a reduced single channel open
probability of RyR2 at low [Ca2+] in bilayers. Importantly, JTV519 also rescued FKBP12.6
binding to RyR2 harboring CPVT mutations [66]. In addition, JTV519 prevented pacing-
induced arrhythmias in mice with a haploinsufficiency of calstabin2 (calstabin2+/−), but was
without effect in mice homozygous for calstabin2 deletion (calstabin2−/−) [111].

Even though JTV519 has therapeutic potential for its ability to stabilize RyR2 function, it also
blocks Na+, K+, and Ca2+ channels present in cardiac myocytes [56]. RyR2-specific molecules
are required to rescue the RyR2 gain-of-function present in HF without altering other aspects
of cardiac electrophysiology. The synthesis of a novel, orally bioavailable, benzothiazapine
(S107) that meets this requirement has recently been described [9,65]. S107 stabilizes RyR–
calstabin interactions, but unlike JTV519, exhibits no activity when tested against hundreds of
GPCRs, ion channels, or enzymes [9]. Importantly, S107 was protective in the R2474S mouse
model of CPVT since mice pretreated with S107 failed to develop exercise and catecholamine-
induced arrhythmias (Fig. 4) [65]. Furthermore, myocytes isolated from R2474S mice
pretreated with S107 exhibited fewer of these aberrant Ca2+ release events further underscoring
the protective effects of this compound.

These results support a model whereby JTV519 and S107 exert therapeutic effects through
stabilizing RyR2–calstabin2 interactions that become disrupted by excessive PKA
phosphorylation of S2808. It should be noted, however, that other groups have suggested
alternative mechanisms of action for JTV519 [48,120]. Specifically, it has been proposed that
JTV519 can exert inhibitory effects on RyR2 function by limiting SOICR [48] or by stabilizing
interdomain interactions [120]. The impact that S107 may or may not have on these parameters
has not been tested, but the compound has been shown to promote RyR–calstabin interactions
in the face of excessive PKA phosphorylation [9,65] or nitrosylation [8,33].

S107 was also effective in blocking Ca2+ leak and dysfunction in neuronal and skeletal muscles.
For example, S107 was able to rescue the developmental and neurological effects observed in
the R247S mice [65]. R2474S homozygous mice were born at a higher rate when the drug was
administered to the dams prenatally. Furthermore, S107 was effective at blunting the seizure
activity evident in these mice. RyR isoforms are present throughout the brain, but the
physiological role of RyR function in learning, memory, and neurological dysfunction is
largely unknown. Results from studies of R2474S mice suggest that fixing Ca2+ leak from RyR
may represent a novel treatment strategy for some form of epilepsy. It remains to be determined
if Ca2+ leak is evident in other neurodegenerative diseases, but an upregulation of RyR2 has
been proposed as a pathological feature in mouse models of Alzheimer's disease [19].
Preventing Ca2+ leak may also hold promise as a treatment for skeletal muscle weakness found
in HF and muscular dystrophy [8,9]. Similar to RyR2, RyR1 in skeletal muscle is PKA
hyperphosphorylated, calstabin-depleted, and leaky in HF [93,108]. S107 successfully reduced
muscle fatigue in mice after strenuous exercise indicating Ca2+ leak as a source of muscle
weakness [9]. Similarly, muscle weakness was blunted by S107 in a mouse model of muscular
dystrophy [8]. This was associated with a reduction in Ca2+ spark activity indicating that SR
leak inhibition was the mechanism behind the therapeutic effects of S107.
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An additional therapeutic approach was uncovered in studies examining calsequestrin2-
mediated CPVT where increased Ca2+ leak was observed in myocytes isolated from mice
expressing a calsequestrin2 mutation [109]. This leak is thought to result from increased
Ca2+ stores caused by the loss of calsequestrin SR Ca2+ buffering resulting in an increase in
RyR2 activity. Flecainide was found to block this Ca2+ leak at the cellular level and prevent
CPVT symptoms in mice with the calsequestrin mutation. Importantly, flecainide was also
effective at preventing CPVT episodes in human subjects, one of whom carried a calsequestrin
mutation and the other carried a RyR2 mutation. Both were symptomatic even with β-blockade
and Ca2+ channel blockers, demonstrating the utility in treating CPVT by targeting the
underlying molecular cause of the disease [109].

Future outlook
Much work has been done in an attempt to elucidate the molecular mechanisms underlying the
RyR channelopathies since the first disease-causing RyR mutations were discovered in 1991
[39,44]. A wealth of experimental evidence has suggested that many facets of MH, CCD, and
CPVT can be accounted for by an increase in SR Ca2+ leak from mutated RyR. Much work
remains to be done in terms of defining the exact molecular basis for this leak. Continued efforts
will address how alterations in channel activity lead to cellular and ultimately whole organ
dysfunction. A complete understanding of the molecular underpinnings of RyR
channelopathies will facilitate the generation of novel therapeutics designed to block leak from
RyR. Additional structure–function studies and transgenic approaches are also needed to help
solve some of the remaining mysteries concerning RyR regulation by cytosolic and luminal
Ca2+, gating and permeation, and modulation by protein binding partners and kinases.
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Fig. 1.
Disease-related mutations in human RyR1 and RyR2 are clustered in three mutational “hot
spots.” a The tetrameric structure of RyR Ca2+ release channels with the membrane topology
superimposed on one of the subunits. b The distribution of over 200 malignant hyperthermia
and central core disease-causing mutations in human RyR1 and over 70 catecholaminergic
polymorphic ventricular tachycardia-associated mutations in human RyR2
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Fig. 2.
Two different effects of central core disease-related mutations on skeletal muscle excitation–
contraction coupling. a A cartoon depicting the effects of a leaky RyR1 mutation. This class
of mutations exhibits an increased sensitivity to activation by membrane depolarization,
Ca2+, caffeine, and halothane. b A cartoon depicting the effects of an uncoupled mutation.
Mutations of this class lead to nonfunctional channels and increased sarcoplasmic reticulum
Ca2+ store content
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Fig. 3.
Four different proposed mechanisms to explain how RyR2 mutations lead to catecholaminergic
polymorphic ventricular tachycardia (CPVT). a CPVT mutations are more sensitive to PKA
hyperphosphorylation, which leads to depletion of the channel stabilizing protein, calstabin2
(FKBP12.6), and sarcoplasmic reticulum (SR) Ca2+ leak. b CPVT mutations lead to an increase
in sensitivity to store-overload-induced Ca2+ release that is exacerbated by the increased SR
store content triggered by stressful situations. c CPVT mutations lead to increased RyR2
sensitivity to activating agents such as caffeine, 4-CmC, or cAMP-mobilizing agents. d CPVT
mutations lead to an unzippering of intramolecular interactions, which leads to increased
diastolic SR Ca2+ leak
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Fig. 4.
Fixing sarcoplasmic reticulum (SR) Ca2+ leak by targeting RyR2–calstabin2 interactions. The
traces in (a), (b), and (c) are representative telemetric electrocardiogram (ECG) recordings
from wild type, R2474S heterozygous (R2474S+/−) mice, and R2474S+/− mice that were treated
with S107. Mice were subjected to a stress protocol consisting of a treadmill exercise followed
by epinephrine injections. Wild type mice did not exhibit irregular ECGs under these
conditions, while a majority of R2474S+/− mice exhibited severe ventricular tachycardias and
sudden cardiac death (single asterisk, bidirectional VT; double asterisk, polymorphic VT).
Treatment with S107 largely prevented these effects as shown by the regular ECG. Below the
traces are cartoons depicting the condition of the RyR–calstabin2 complex under each
experimental condition. Data were from Lehnart et al. [65] and reprinted with permission from
the American Society of Clinical Investigation
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