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Abstract
Principal points are cluster means for theoretical distributions. A discriminant methodology based
on principal points is introduced. The principal point classification method is useful in clinical trials
where the goal is to distinguish and differentiate between different treatment effects. Particularly, in
psychiatric studies where placebo response rates can be very high, the principal point classification
is illustrated to distinguish specific drug responders from non-specific placebo responders.
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1. Introduction
In typical applications of discriminant analysis, there is training data from two or more groups
and the goal is to define a discriminant function to classify new observations to the correct
groups. The goal of this paper is a bit different from the classical discriminant analysis problem.
Consider a clinical trial with an active drug arm and a placebo arm. The problem of interest is
to determine which subjects in the active drug arm are responding primarily to a non-specific
(placebo) effect rather than the specific effect of the drug. Because we know which subjects
receive the active drug or the placebo, there is no ambiguity as to which treatment group the
subjects belong. However, if a drug-treated subject responds, we do not know to what degree
the subject responded due to the specific (drug) effect and to non-specific (placebo) effects of
the treatment. If a placebo treated subject responds, then we know it must be due to the non-
specific effects of the treatment. Outside of clinical experiments in everyday treatment, patients
typically receive the active drug for treatment, not a placebo. Interest lies in classifying drug
treated patients who respond primarily due to specific (drug) effects or to non-specific
(placebo) effects, or perhaps a combination of these two effects.

The problem of distinguishing a placebo response from a drug response in psychiatric illnesses
has been of high interest for clinical research and practice for many years (e.g., see 1; 2). There

© 2009 Elsevier B.V. All rights reserved.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Stat Plan Inference. Author manuscript; available in PMC 2011 February 1.

Published in final edited form as:
J Stat Plan Inference. 2010 February 1; 140(2): 539–550. doi:10.1016/j.jspi.2009.07.030.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is a need to apply modern statistical methods to address this important problem. One approach
to the specific/non-specific treatment effects problem is to assume that the population consists
of distinct latent subgroups of specific responders and non-specific responders. For
longitudinal studies, a growth mixture model can be postulated (3; 4; 5). However, if subjects
can experience both specific and non-specific effects ranging continuously from very weak to
very strong, then modeling the outcomes as a growth mixture could erroneously lead
investigators to believe real sub-populations exist. In this paper, an alternative strategy is
implemented by determining an optimal partition of the underlying distribution. The
partitioning method is based on determining optimal cluster centers, called principal points
(6), for theoretical distributions.

In the classical normal theory discriminant analysis, observations are assigned to the different
groups based on their proximity to the group means. In longitudinal studies, the outcomes of
interest are curves over time. Focusing only on the mean curve ignores the fact that groups
often contain a variety of distinct curve shapes. For instance, in longitudinal clinical studies,
there may exist different types of outcome profile shapes over time corresponding to different
types of response to treatment. The principal point classification method developed in this
paper assigns observations based on proximity to principal points which can be regarded as a
generalization of the mean from one to several points. In addition, if we know the outcome
distributions differ for different groups (e.g., different treatment arms in a clinical trial), the
principal point classification method developed below can identify prototypical outcome
profiles that can distinguish these differences.

In Section 2 we define principal points and discuss methods of estimating principal points. The
principal point classification method is described in Section 3. Results of a simulation
experiment comparing principal point classification with normal theory discriminant analysis
are provided in Section 4. Principal points for linear mixed effect models are described in
Section 5. The principal point classification method is used to distinguish two drug therapies
for depression (fluoxetine and imipramine) in Section 6. Additionally, outcome profiles from
specific and non-specific effects are distinguished using the principal point classification
methodology in this section as well. Finally, the paper is concluded in Section 7.

2. Principal Points
A classic statistical problem is to determine an optimal partition of a continuous distribution
(7; 8; 9; 10). In signal processing, this problem is referred to vector quantization (e.g., 11). In an
optimal stratification of a distribution into k strata, the means of the k strata are called the k
principal points of the distribution (6).

Let X denote a continuous random vector and consider k points ξ1, … , ξk to be used to represent
the distribution of X. We can define a k-point approximation Y to X as

Y is a self-consistent approximation to X if E[X|Y] = Y a.s. (12) in which case the points ξ1, … ,
ξk are called k self-consistent points of X (13). Distributions, particularly multivariate
distributions, may have more than one set of k self-consistent points (14). If E║X – Y ║2 ≤
E║X – Y *║2 for any other k-point approximation Y * to X, then the points ξ1, … , ξk are called
k-principal points of X. (13) showed that a set of k principal points of a distribution must be
self-consistent points.

For k = 1, the single principal point corresponds to the mean of the distribution. For k > 1, the
k principal points provide a k-point generalization of the mean from one to several points. For
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a N(μ, σ2) distribution, the k = 2 principal points are  (6); for k > 2 the principal points
must be found numerically. Univariate distributions with log-concave densities have a unique
set of k self-consistent points for each k and this unique self-consistent approximation must
correspond to the k principal points (15; 16; 17).

2.1. Estimation of Principal Points
Given a set of observations from a distribution, nonparametric estimators of k principal points
can be obtained by using the cluster means from running the k-means algorithm (e.g. 26; 27;
28). Under general circumstances, the cluster means from the k-means algorithm are strongly
consistent estimators of the principal points (29) and asymptotically normally distributed (30).
More efficient methods of estimating principal points can be obtained by utilizing distributional
assumptions (e.g., 13; 18). For instance, maximum likelihood estimators of k = 2 principal points

of a univariate normal distribution are .

For larger values of k and for multidimensional distributions, analytical formulas for principal
points do not exist. (23) describes a parametric k-means algorithm that provides a
computationally intensive but easy to utilize method of determining maximum likelihood
estimators of k principal points, similar to the algorithm of (24) from the vector quantization
literature using a known distribution. Suppose the data x1, … , xn comes from a distribution
with density f(x; θ). For the parametric k-means algorithm, first obtain a maximum likelihood
estimate θ ̂ of θ. Next, run the k-means algorithm on a very large data set simulated from f
(x;θ ̂). (23) showed that the cluster means obtained by running the k-means algorithm on the
large simulated data set are (approximately) maximum likelihood estimators of the k principal
points of f(·; θ) distribution.

3. Principal Point Classification
In this section we describe a classification method based on principal points. Suppose a
population consists of H sub-populations and the goal is to determine a discriminant function
to classify observations to one of H sub-populations based on a measured outcome vector x.
Let πh denote a prior probability corresponding to the proportion of the population belonging
to the hth sub-population. Then the classification regions associated with any optimal
classification rule are defined as follows: classify an observation x to sub-population h if

where fh and fl are the densities for sub-populations h and l parameterized by vectors θh and
θl respectively.

When the sub-populations are assumed to be normal, the optimal classification rule
corresponds to the well-known quadratic discriminant function. For example, suppose the
population consist of H normal sub-populations N(μh, Ψh), h = 1, … , H. Then a new observation
x is classified to population h if

(1)

Thus, in the classic discriminant setup, an observation is classified according to which sub-
population mean the point is closest in terms of a squared Mahalanobis distance
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, scaled by the square-root of the determinant of the covariance matrix
and the prior probability.

Recalling that the k principal points represent a generalization of the population mean from
one to several points, the basic idea for the principal point classification is to classify an
observation based on which principal point it is closest. The method is parametric in the sense
that we assume we know the probability distribution for each sub-population. Let fh(x; θh)
denote the probability density for the hth sub-population and let πh denote the prior probability
for the hth sub-population. The density for the entire population is the finite mixture density
given by

(2)

Given training data xh,1, … , xh,nh, from the hth sub-population, h = 1, … , H, the following
steps describe the principal point classification method:

Principal Point Classification
1. Using the training data, determine the maximum likelihood estimates θ ̂h for each sub-

population.

2. Parametric k-means Algorithm. Simulate a very large sample size N >> (n1 + ··· +
nH) from the finite mixture distribution

as follows: set Nh to πhN rounded to the closest integer and simulate sample of size
Nh from fh(·;θ ̂h), h = 1, … , H. Pool all the simulated data together and run the k-means
algorithm on the simulated data using a value of k ≥ H. Let ξ̂j, j = 1, …, k, denote the
cluster means from the k-means algorithm. Then the ξ̂j are (approximate) maximum
likelihood estimators of the principal points of the mixture distribution (2). In the
application in Section 6.2, we use a simulation sample size of N equal to 2 million.
The prior probabilities πh for the sub-populations may be known in which case they
do not need to be estimated. In other cases when appropriate, the prior probabilities
can be estimated using the proportion of the overall sample size that belongs to the
hth sub-population: π^h = nh/(n1 + ··· + nH.

3. Principal Point Assignment. In this step we assign each of the k principal points from
step (2) to one of the sub-populations. For the ith simulated data point from the hth
sub-population in step 2, define an indicator variable dhi(j) = 1 if this ith data point is
closest to the jth estimated principal point ξ̂j (in terms of a Euclidean distance) and
set dhi(j) = 0 otherwise. Let

(3)

Thus, wth(j) counts the number of simulated data points from sub-population h that
are closest the the jth principal point. Now, the assignment rule is:
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(4)

4. Classification Step. For an unclassified data point x, determine which estimated
principal point x is closest, say ξ̂j. Then classify x to sub-population h if ξ̂j is assigned
to sub-population h based on step 3.

Note that H denotes the number of distinct classes in the finite mixture defining the population
(2) whereas k is the number of principal points used to approximate the finite mixture
distribution. In order to obtain a good approximation to the underlying finite mixture
distribution, we recommend using k > H.

4. A Simulation Illustration
This section reports on a small simulation study conducted to illustrate the classification
method described in Section 3. Data sets were simulated from populations consisting of two
(H = 2) bivariate normal sub-populations with equal prior probabilities π1 =π2 = 1/2. The mean
of the first population was fixed at the origin. Successive means for the second sub-population
of the form c(1, 1)′ for a sequence of values for c = 1, 1.25, 1.5, 2, 3. As c grows larger, the
two sub-populations move apart. Sample sizes of n = 50, 100, and 200 were used in the
simulation. Also, the number k of principal points used in the principal point classification
were k = 2, 10 and 25. For each of these parameter settings, 100 data sets were simulated. The
quadratic discriminant function was estimated as well as the principal point discriminant
function for k = 2, 10 and 25. The parametric k-means algorithm was implemented by
simulating 100,000 data points from each sub-population. Once the discriminant functions
were estimated, 500 test data points were generated from each sub-population and then
classified. Therefore, the discriminant functions were tested on data generated independently
of the data used to estimate the classification functions.

Figure 1 and Figure 2 show the results from one of the simulations. For this particular
simulation, the covariance matrices for the sub-populations centered at the origin and the sub-
population centered away from the origin are

respectively. In this parameterization, the second sub-population represents a shift from the
origin along with a 45° degree rotation. Figure 1 shows contours of equal density for the 2 sub-
populations when the mean of the second sub-population is (1, 1)’. The k = 25 principal points
estimated from the parametric k-means algorithm are also plotted. The rate of misclassification
was computed for each discriminant procedure as the percentage of test points that were
incorrectly classified. Figure 2 summarizes the misclassification rates for sample size n = 100.
Similar plots are generated for sample sizes 50 and 200. The x-axis corresponds to c which
controls the distance between the two sub-populations. As c grows larger, the two sub-
populations move apart, overlap less and consequently, the misclassification rate drops. The
solid line represents the misclassification rate for the quadratic discriminant function. For k =
2, the principal point classification approximates the quadratic classification if the sub-
populations are spherical (i.e. the eigenvalues of the covariance matrices are all equal).
Surprisingly, the misclassification rate for the k = 2 principal point classification performs
about as well as the quadratic classification even though the two sub-populations are non-
spherical. The k = 10 and 25 principal point discriminant functions perform similarly to each
other. When the two populations overlap considerably, the k = 10 and 25 principal point
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discriminant functions have about a 5% lower misclassification rate than the quadratic
discriminant function (25% versus 30%).

In the different simulation runs, the k = 25 principal point classification consistently performed
about as well or better than the other classification rules. A simulation similar to that described
above except that the prior probability in the first sub-population was increased to 2/3 from
1/2, was also run. In this case, the quadratic and principal point classifications methods all
perform nearly the same except when the two sub-populations overlapped considerably in
which case the k = 2 principal point classification had a higher misclassification rate. A
simulation was run for spherical clusters in which case the k = 2 principal point discriminant
function performed almost identically to the quadratic discriminant function and both of these
performed marginally better than the k = 25 principal point discriminant function.

5. Principal Points Classification for Linear Mixed Effect Models
The primary motivation for this paper is to classify data from longitudinal studies where data
points correspond to curves over time. Consider the standard linear mixed effects model for a
longitudinal outcome yi for the ith individual observed over a period of time:

(5)

where β ∈ ℜq is a vector of fixed effects, bi is a vector of random effects assumed to have
mean zero and covariance matrix G, εi is a mean zero vector of random errors with covariance
matrix σ2 I assumed to be independent of bi. Si and Zi are design matrices. In this section, we
shall assume the random effects and the random error are all normally distributed. We shall
also constrain our attention to the case when there are no baseline covariates in which case we
can assume Si = Zi. Details for incorporating covariates can found in (25).

Determining principal points for the linear mixed effect model fit to longitudinal data will
identify prototypical outcome profile curves. However, this requires de-convolving the random
effects from the error εi in the model (5). In the case of classifying longitudinal observations
to one of H sub-populations, let π1, … , πH denote the prior probabilities as before and let

(6)

denote the linear mixed effect model for the hth sub-population, where bi ~ N(0, Gh) and
 Because the longitudinal profiles are determined by their regression

coefficients, the principal point classification method requires estimating the principal points
of the finite mixture coefficient distribution

(7)

where N(·; βh, G h) denotes the multivariate normal density with mean βh and covariance matrix
Gh. After fitting a standard linear mixed effects model to the data for each sub-population and
obtaining estimators β̂h and Ĝh, h = 1, …, H, the parametric k-means algorithm can easily be
applied as described in Section 3: we simulate a very large sample of size N from (7) using
maximum likelihood estimates in place of the βh and Gh and then run the k-means algorithm
on the simulated data. This will yield approximate maximum likelihood estimators of the
principal points of the joint linear mixed effect model for the H sub-populations (25).
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The principal point classification rule for linear mixed effect models follows the first 3 steps
in the principal point classification rule defined in Section 3. The only distinction arises from
the fact that in the linear mixed effect models, the random effect regression coefficients are
not directly observed and therefore the distance between a principal point ξj and the random
regression coefficients of a new observation yi can not be measured. Instead, for each sub-
population h we have a conditional distribution of (βh+bi) given yi that can be computed using
well-known results for the multivariate normal distribution:

(8)

For a set of k principal points for the q-dimensional coefficient distribution (7), let Dj denote
the subset of  closest to the jth principal point j = 1, … , k. Using (8), we define dhi(j) as an
indicator function that (βh + bi) is closest to the jth principal point and estimate it using:

(9)

where w is the integration variable. Because d̂hi(j) is the conditional expectation of a zero-one
indicator variable, we will regard (9) as a posterior probability for yi from the hth sub-
population to be associated with the jth principal point. This probability can be computed for
each sub-population h = 1, … , H, and each principal point j = 1, … ,k. The weights (3) are
computed as before with d̂hi(j) in place of dhi(j). From the set {1,2, … ,k}, let Ph denote the set
of principal points associated with sub-population h using (4). Then P1 ∪· ··∪ PH = {1, 2, … ,
k}. A new observation yi will then be classified to sub-population h if

(10)

6. Mixed Effects Classification Examples
In clinical practice, typically there will not be ambiguity about which treatment a subject is
receiving. Hence, the motivation of using a principal point classification is not to classify
subjects according to the treatment they received. Instead, the purpose here is to determine if
there are outcome profiles that distinguish the different treatments. In a typical analysis of
treatment efficacy from a longitudinal clinical trial, a formal test is performed to determine if
the mean outcome profiles differ between the treatments. If a statistically significant difference
is found between the mean outcome profiles for two or more treatments, the principal point
classification can be used to identify the types of profiles that distinguish different treatments.

In this section, we use data from a 3-armed depression clinical trial. The three arms were
placebo, imipramine, and fluoxetine (doses varying according to a schedule). Subjects were
evaluated at baseline (time zero) and at six additional (approximately) weekly visits. The
response of interest is the Hamilton Depression score (HAM-D) where lower scores correspond
to lower levels of depression. A linear mixed effects model using quadratic polynomials on
time was fit to each arm of the study separately. Before applying the principal point
classification, the regression coefficient distribution was linearly transformed to an orthogonal
polynomial basis. (22) provides the following reasons for using orthogonal polynomials when
clustering curves: (a) The standard k-means algorithm assigns observations to clusters based
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on a minimal Euclidean distance; because the outcome profiles are curves, the L2 distance
between curves corresponds to the usual Euclidean distance between regression coefficients.
(b) Differences in cluster results that occur due to the choice of basis functions used to estimate
the curves are minimized when using orthogonal basis functions. (c) When fitting a quadratic
model using orthogonal polynomials, the coefficient of the linear polynomial corresponds to
the average quadratic slope of the parabola, which is an overall measure of improvement
throughout the trial (19). We shall refer to the coefficient of the linear polynomial as the average
slope (of the parabola) in this paper. The parametric k-means algorithm was then applied to
the joint coefficient distribution (7) using a simulated data set of one million for each arm of
the study. The posterior probabilities (9) were computing using 10,000 simulated data points.
Equal prior probabilities were set for each arm of the trial. Variability in the intercepts of the
parabolas mostly corresponds to baseline differences in HAM-D among subjects. The intercept
terms from the quadratic models were not used in the parametric k-means algorithm for
estimating the principal points for two reasons: (i) the shapes of the curves do not depend on
the intercepts and (ii) after transforming to orthogonal polynomials, the variability in the
intercept term greatly dominates variability in the linear and quadratic coefficient terms which
prevents the k-means algorithm from discovering distinct and clinically meaningful curve
shapes (20; 21). The next two subsections provide results comparing the imipramine vs. the
fluoxetine arm and the fluoxetine vs. the placebo arm of the study.

The principal point classifications will be contrasted with responder/non-responder
classifications made by clinicians. In this study, a clinicians global impression (CGI) was
recorded for each subject. The CGI is a 1–7 scale where 1 = very much improved, 2 = much
improved, 3 = minimally improved, 4 = not improved, 5 = minimally worse, 6 = much worse,
7 = very much worse. Subjects were classified as responders if their CGI at the end of the study
is a 1 or a 2.

6.1. Imipramine versus Fluoxetine
In this section, we apply the principal point classification for linear mixed effects model to
distinguish between the outcome profiles of imipramine (n = 185) and fluoxetine (n = 196)
treated subjects. The results presented here are from applying the parametric k-means algorithm
using k = 10 clusters.

The results of fitting a quadratic mixed effects model separately for the fluoxetine and
imipramine arms yielded the following fixed effect parabolas:

The estimated random effect covariance matrices Ĝ for the fluoxetine and imipramine arms
are:

respectively. The error variances for the fluoxetine and imipramine arms were estimated to be
σ ̂ = 3.432 and 3.842 respectively. There is little difference between the estimated fixed effect
coefficients and the error variance for the arms. However, the variances in the linear and
quadratic random effect terms in the fluoxetine arm are about twice as big as the variances in
the imipramine arms. A likelihood ratio test comparing the random effect covariance matrices
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and error variances was conducted: the chi-square test statistic for this test is χ2 = 14.11 on 7
d.f., which yields a p-value of p = 0.0492. Thus, the fluoxetine and imipramine distributions
overlap considerably with only a mild statistical significance of the difference between their
random effect covariance matrices. Consequently, the misclassification rates are very high:
0.44 for the quadratic discriminant classification and 0.47 for the principal point classification
using k = 10 (a similar rate is obtained using k = 25).

Although the two classification methods have very high misclassification rates, results from
the principal point classification can be used to to identify differences in how the fluoxetine
and imipramine treatments manifest themselves in the outcome profiles. The center panel in
Figure 3 shows the estimated k = 10 principal points for the joint fluoxetine and imipramine
arms in the coefficient subspace of the average slope and the concavity. The surrounding panels
show the principal point profile curves corresponding to the points in the center panel. The 10
principal points induce a partition of the regression coefficient space. From the parametric k-
means simulation, we can compute the proportion of the coefficient distribution associated
with each principal point. These results are presented in Table 1 below:

From Table 1 we see that of the one million coefficients simulated for the fluoxetine
distribution, 5.04% of them are closest to the first principal point (labeled 1) in Figure 3.
Similarly, 6.45% of the simulated imipramine coefficients were closest to the first principal
point. Thus, the proportion of fluoxetine and imipramine treated subjects associated with
principal point profile #1 are roughly equal. From Table 1, we can see large differences in
proportions between fluoxetine and imipramine for principal point profile curves #5 and #8,
and #9. Based on these proportions, principal point profiles #5 and #9 are associated with
fluoxetine treated subjects. It is interesting to note that these two profiles are the only ones that
are not concave up. Principal point #5 is the prototypical specific (“pure drug”) responder: very
little initial improvement, followed by a steadily decrease of depression severity, presumably,
due to the specific effect of the drug. Table 2 below shows a breakdown by responder/non-
responder status (based on CGI).

From Table 2 we see that the principal point classification clearly identifies principal point
profiles #1, 2, 3, 4, and 6 as responder profiles that occur in roughly equal frequencies in both
the fluoxetine and imipramine treatment arms. Principal point profile #9 is a non-responder
fluoxetine treatment profile. Profiles #8 and #10 are also non-responder profiles with more
imipramine treated subjects in them – these two profiles each show an immediate improvement
at baseline followed by a deterioration in mood as the trial progresses that can be attributed to
either an initial response to non-specific treatment effects and/or an immediate but short-lasting
imipramine drug response. Unlike profiles #8 and #10, non-responder profile curve #9 does
not show a strong initial improvement indicating that subjects associated with profile #9 do
not experience a significant initial non-specific effect. Nonetheless, profile #9 has a negative
average slope and an approximate zero concavity indicating an overall rate of steady
improvement throughout the trial but the degree of improvement by the trial’s end was not
strong enough to warrant a classification of responder. Subjects associated with profile #7
straddle the boundary between responder and non-responder status. From Table 2, we see that
profile #5 is characteristic of a fluoxetine treated subject and is primarily associated with
responders.

In longitudinal studies, standard testing procedures are typically used to test if there are
differences between treatments with respect to their mean outcome profiles. Here we have used
the principal point classification to focus on where and how outcome profiles differ between
two treatments. In the next section we show how principal points classification can be used to
identify outcome profiles corresponding to specific and non-specific antidepressant treatment
effects.
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6.2. Identifying Placebo Responders Among Drug Treated Subjects
In this subsection, we focus attention on the fluoxetine and placebo (n = 162) arms of the study
in order to determine which fluoxetine treated subjects responded due to the specific effect of
the drug and which responded due to nonspecific placebo effects. Principal points were
estimated for the joint placebo/fluoxetine mixture distribution using the parametric k-means
algorithm as described in Section 5. A set of k posterior probabilities using (9) were computed
for each subject indicating how closely associated a subject is to the different principal points.
In this section we use a large value of k = 50 for illustration.

Next, a classification boundary between CGI rated responders and non-responders was
determined using a logistic regression: the binary variable responder/non-responder was
modeled as functions of the average slope, concavity (obtained using the best linear unbiased
predicted (BLUP) values). The concavity coefficient was not statistically significant in any of
the logistic regression models; the squared average slope coefficient was not significant either;
and the interaction terms between the average slope and concavity in all models were also not
significant. Therefore, only the average slope coefficient was used as a predictor which results
in a vertical classification line in the coefficient space. This represents another advantage of
using orthogonal polynomials to model the outcome profiles. The classification lines based on
the fluoxetine only sample and on the placebo only sample differed very little, as was to be
expected, since researchers were rating patients’ improvement based only on observed
symptoms severity and were blind to treatment assignment. Therefore the data was pooled to
estimate a single classification line between responders and non-responders (common for both
treatment arms). Figure 4 shows a plot of the k = 50 estimated principal points for the joint
fluoxetine and placebo arms of the study. The vertical line in the figure is the responder/non-
responder classification boundary determined by the logistic regression. The principal points
to the right of this line are labeled “N” for non-responder.

It is interesting to note that two of the non-responder principal points in Figure 4 correspond
to fluoxetine treated subjects only – these are the two points indicated with a double-circle in
Figure 4. 12 subjects were classified to these two points and all 12 of these subjects were
fluoxetine treated non-responders. These two points illustrate that there are drug treated non-
responders that are distinct from placebo treated non-responders. On close examination, all but
one of the 12 subjects turned out to have dropped out of the study for reasons of side effects,
or alternatively, because they started to feel better and stopped coming for treatment. Therefore,
it is possible that these profiles are characteristic of subjects who respond to the specific drug
effect, but discontinue treatment, likely, due to side effects.

The next problem is to determine which “responder” principal points (to the left of the
classification line on Figure 4) correspond to response to specific (drug) effect and which
correspond to non-specific (placebo) treatment effects. The idea is to identify the principal
points that are most associated with placebo treated responders. In the placebo arm of the study,
38.9% (63/162) of the subjects were rated as responders based on CGI. This high placebo
response rate is typical in antidepressant studies (e.g., see 31). Due to the randomization and
the double-blind design of the study, it stands to reason that if the potential outcomes of drug
treated subjects, had they been treated with a placebo, could be observed, then we would see
a similar placebo response rate.

Consider only the k1 principal points (k1 < k = 50) that are associated with responders (i.e. on
the left of the discrimination line on Figure 4). Order these principal points according the
proportion of the placebo treatment arm that are classified to them – these proportions can be
estimated using the large simulation sample from the parametric k-means algorithm used to
estimate the principal points. Let j1, j2, … , jk1 correspond to the principal points for this
ordering from the largest to the smallest proportion. Let pf (j) denote the proportion of the
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fluoxetine treated distribution classified to the jth principal point (which again can be estimated
using the parametric k-means simulation sample). We then select l* ≤ k1 such that the sum of
the pf (j) classified to the first l* of j1, j2, … , jk1 principal points is equal to the proportion of
responders in the placebo arm, here 38.9%. Formally, we choose l* such that

The first l* of the “responder” principal points j1, j2, … , jk1 are now associated with the outcome
from a non-specific effect (i.e. placebo response), whereas the remaining principal points are
associated with outcomes for subjects who experience at least some specific effect of the
fluoxetine treatment (i.e. drug response).

The principal points labeled “P” in Figure 4 are the points identified as placebo responder
points using this criterion. These eleven points represent 37.8% of the fluoxetine distribution
which is very close to the placebo response rate of 38.9% seen in the placebo arm. Using such
a large number of principal points (k = 50) allows close approximation the actual percentage
of placebo treated responders. The points labeled “D” are the remaining responder principal
points that correspond to subjects who respond and experience a specific drug effect not seen
in the placebo arm of the study. That is, subjects classified to the “D” principal points are
primarily responders that have very little overlap with the placebo treated distribution. These
subjects may experience a beneficial placebo effect, but because they lay outside the placebo
treated distribution, their response could not have been a result of placebo effect alone. This
procedure then identifies the roughly 40% of drug treated subjects that resemble placebo treated
responders.

Figure 5 shows the estimated profiles for responders among fluoxetine treated subjects
classified as responding to specific drug effects (left panel) and those responding to non-
specific placebo effects (right panel) using the above classification. The drug responder profiles
correspond to subjects associated to principal points labeled “D” in Figure 4 while the placebo
responder parabolas in the right panel correspond to subjects associated to principal points
labeled “P” in Figure 4. The placebo responder profiles in the right panel show an immediate
improvement from baseline (week 0) followed by a steady consistent improvement that begins
to level off around week 4. Most of the drug responder profiles in the left panel of Figure 5
also show an immediate improvement at baseline but the rate of improvement is stronger than
for subjects classified as placebo responders as evidenced by the steeper decline in the
parabolas. This is indicative of a strong drug effect or a combination drug/placebo effect. Some
of the parabolas in the left panel of Figure 5 start off relatively flat and are concave down.
These subjects do not experience an immediate improvement at baseline as to be expected with
a placebo effect, but once the drug has a chance to take effect, a steady improvement is seen
later in the trial.

In the next section we look at the utility of the classification boundaries, defined based on the
3-arms depression study discussed so far (training data), for studying specific and non-specific
treatment effects in a different study (test data).

6.3. Test Data
In this subsection, we treat the data in the previous subsection as training data and we use the
estimated principal point classification to classify subjects from a test data set. The test data
set is from a study with similar design, where subjects were randomized to either fluoxetine
(20 mg fixed dose, in a contrast with the flexible dose used in the training data study) or a
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placebo for six weeks. The fixed effect average slope for the test data is β̂1 = −7.913 which is
considerably larger than the estimated average slope β̂1 = −10.998 from the training data set.
Additionally, only 46.0% of the fluoxetine treated subjects in the test data set were rated as
responders based on the CGI compared to 64.3% in the training data set.

Subjects were classified as responders/non-responders based on the cutoff value of the average
slope determined by the logistic regression from the training data. The agreement rate of
responder/non-responder classifications using the logistic cutoff and the CGI criteria is 85.71%
(compared to 88.78% in the training data).

The k = 50 principal point estimates shown in Figure 4 were also used to classify the fluoxetine
treated subjects (n = 315) as either responders to specific effects of the treatment (drug
responders), responders to non-specific effects (placebo responders) or non-responders. Based
on the principal point classification, 14.9% of the fluoxetine treated subjects in the test data
set were rated as drug responders and 27.0% were rated a placebo responders.

A question of interest in clinical practice is whether or not a subject can be classified as a drug
or placebo responder early in treatment. To shed light on this question, we re-classified subjects
in the test data set using the principal point classification, except that the random regression
coefficient for use in the classification were estimated only from the outcomes at baseline and
the first three weeks. 86% of subjects had the same classification (drug responder vs. not a
drug responder) when the classifications used data from only the first 3 weeks and when using
data from all 6 weeks of treatment.

The baseline HAM-D score is also predictive of being a drug responder. Defining a binary
variable equal to 1 if a subject is classified as a drug responder and 0 if not a drug responder,
a logistic regression was used to assess the effect of baseline depression severity (HAM-D) on
the odds for response to specific drug effect. The logistic regression slope coefficient was
estimated to be 0.1405 with standard error 0.0403 which is highly significant (p = 0.0005).
Thus, there is almost a 6-fold increase in the odds of being a drug-responder for every 10 point
increase in baseline depression severity as measured by the HAM-D. (Similar results are
obtained using the training data.)

It is unclear why the test data set had so fewer responders than the training data set. One
difference could be due to the fixed dose versus the varying dose. Another difference is in
baseline HAM-D scores – the training data had a mean baseline score of 24.27 with standard
deviation 4.165 versus a mean of 22.52 and standard deviation 3.844 for the test data set. Thus,
subjects in the training data set had a significantly higher baseline depression severity (t =
4.764) than in the test data set, and yet there was a higher response rate in the training data set.
According to the results presented above, subjects with higher baseline depression severity are
more likely to respond to the specific effects of the drug.

7. Conclusion
In this paper, we have introduced a discriminant function defined in terms of principal points.
However, the main purpose of the principal point classification illustrated here is to
differentiate outcome profiles for different treatments in longitudinal studies. That is, the
principal point classification can identify regions in the curve coefficient space where different
treatments coincide and where they differ. This approach has allowed us to address the
longstanding problem of differentiating a specific drug response from a non-specific placebo
response which is endemic to studies of psychiatric illness.

Tarpey and Petkova Page 12

J Stat Plan Inference. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
We are grateful to Donald Klein, MD, John Stewart and Patrick McGrath, MD, for generously spending time with us
to discuss the existing theories about placebo effects in the treatment of psychiatric illnesses. We thank Erin Tewksbury
and Liping Deng for assistance with the data analysis and programming. The authors would like to thank the Eli Lilly
Company for providing the data used in this paper. The authors are grateful to the reviewers for their thoughtful
comments on this manuscript. This work was supported by NIMH grant R01 MH68401.

References
1. Quitkin FM, Rabkin JD, Markowitz JM, Stewart JW, Mc-Grath PJ, Harrison W. Use of pattern analysis

to identify true drug response. Archives of General Psychiatry 1987;44:259–264. [PubMed: 3548638]
2. Ross DC, Quitkin FM, Klein DF. A typological model for estimation of drug and placebo effects in

depression. Journal of Clinical Psyhopharmacology 2002;22:414–418.
3. Muthén B, Shedden K. Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm”.

Biometrics 1999;55:463–469. [PubMed: 11318201]
4. James G, Sugar C. Clustering for sparsely sampled functional data. Journal of the American Statistical

Association 2003;98:397–408.
5. Elliot, Michael R.; Gallo, Joseph J.; Ten Have, Thomas R.; Bogner, Hillary R.; Katz, Ira R. Using a

Bayesian latent growth curve model to identify trajectories of positive affect and negative events
following myocardial infarction. Biostatistics 2005;6:119143.

6. Flury, Bernard. Principal Points. Biometrika 1990;77:33–41.
7. Cox DR. A Note on Grouping”. Journal of the American Statistical Association 1957;52:543–547.
8. Connor R. Grouping for Testing Trends in Categorical Data. Journal of the American Statistical

Association 1972;67:601–604.
9. Dalenius T. The Problem of Optimum Stratification. Skandinavisk Aktuarietidskrift 1950;33:203–213.
10. Dalenius T, Gurney M. The Problem of Optimum Stratification II. Skandinavisk Aktuarietidskrift

1951;34:133–148.
11. Graf, L.; Luschgy, H. Foundations of Quantization for Probability Distributions. Springer: Berlin;

2000.
12. Tarpey T, Flury B. Self-Consistency: A Fundamental Concept in Statistics. Statistical Science

1996;11:229–243.
13. Flury B. Estimation of Principal Points. Applied Statistics 1993;42:139–151.
14. Tarpey T. Self-Consistent Patterns for Symmetric Multivariate Distributions. Journal of Classification

1998;15:57–79.
15. Truskin A. Sufficient conditions for uniqueness of a locally optimal quantizer. IEEE Transactions in

Information Theory 1982;28:187–198.
16. Kieffer J. Exponential Rate of Convergence for Lloyd’s Method I. IEEE Transactions in Information

Theory 1982;28:205–210.
17. Tarpey T. Two Principal Points of Symmetric. Strongly Unimodal Distributions, Statistics and

Probability Letters 1994;20:253–257.
18. Tarpey T. Estimating Principal Points of Univariate Distributions. Journal of Applied Statistics

1997;24:499–512.
19. Tarpey T. Estimating the Average Slope. Journal of Applied Statistics 2003;30:389–395.
20. Tarpey T, Kinateder KJ. Clustering Functional Data. Journal of Classification 2003;20:93–114.
21. Tarpey T, Petkova E, Ogden RT. Profiling Placebo Responders by Self-Consistent Partitions of

Functional Data. Journal of the American Statistical Association 2003;98:850–858.
22. Tarpey T. Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering

Curves. The American Statistician 2007;61:34–40. [PubMed: 17369873]
23. Tarpey T. A Parametric k-Means Algorithm. Computational Statistics 2007;22:71–89. [PubMed:

17917692]
24. Linde Y, Buzo A, Gray R. An algorithm for vector quantizer design. IEEE Transcations on

Communications 1980;28:84–95.

Tarpey and Petkova Page 13

J Stat Plan Inference. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Tarpey T. Eva Petkova, Yimeng Lu and Usha Govindarajulu, Optimal Partitioning for Linear Mixed
Effects Models: Applications to Identifying Placebo Responders”. submitted for publication.

26. MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations.
Proceedings 5th Berkeley Symposium on Mathematics, Statistics and Probability 1967;3:281–297.

27. Hartigan, JA. Clustering Algorithms. New York: Wiley; 1975.
28. Hartigan JA, Wong MA. A K-means clustering algorithm. Applied Statistics 1979;28:100–108.
29. Pollard D. Strong consistency of K-means clustering. Annals of Statistics 1981;9:135–140.
30. Pollard D. A Central Limit Theorem for k-Means Clustering. Annals of Probability 1982;10:919–

926.
31. Womack T, Potthoff J, Udell C. Placebo Response in Clinical Trials. Applied Clinical Trials

2001;10:32–37.

Tarpey and Petkova Page 14

J Stat Plan Inference. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Contours of equal density for the 2 sub-populations used in the simulation. The points
correspond to the k = 25 estimated principal points. The open points are associated with sub-
population 1 and the solid points are associated with sub-population 2
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Figure 2.
Misclassification rates comparing the normal theory quadratic discriminant function to the
principal point classification method using values of k = 2, 10, and 25 principal points for
classification.
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Figure 3.
Center panel: k = 10 principal points for the combined fluoxetine and imipramine arms, plotted
in the coefficient subspace of the linear (average slope) and quadratic polynomials. The
surrounding panels show the corresponding principal point quadratic profile curves associated
with each point in the center panel.
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Figure 4.
k = 50 estimated principal points for the joint fluoxetine and placebo arms in the coefficient
subspace of the average slope and concavity. The principal points have been labeled: D=Drug
(specific) Responder, P= Placebo (non-specific) Responder, and N=Non-responder.
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Figure 5.
Response parabolas for fluoxetine treated responders. The parabolas in the left panel
correspond to subjects classified as drug responders and the parabolas in the right panel
correspond to subjects classified as placebo responders.
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Table 1

Proportions of the fluoxetine and imipramine random regression coefficient distributions associated with each
of the k = 10 principal points shown in Figure 3.

PP Fluoxetine Imipramine

1 0.0504 0.0645

2 0.1018 0.0996

3 0.1063 0.0998

4 0.1400 0.1746

5 0.1297 0.0408

6 0.0994 0.1241

7 0.1417 0.1582

8 0.0734 0.1405

9 0.1181 0.0368

10 0.0391 0.0611
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Table 2

CGI Responder/Non-responder counts for fluoxetine and imipramine treated subjects associated with each
principal point category.

Fluoxetine Imipramine

PP Responder Non-Responder Responder Non-Responder

1 5 0 5 0

2 15 0 14 0

3 34 0 31 0

4 30 1 30 4

5 16 8 1 0

6 13 3 16 2

7 12 15 13 29

8 1 10 4 21

9 0 31 2 4

10 0 2 0 8
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