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ABSTRACT

Dynamical changes of RNA secondary structures play an important role in the function of many regulatory RNAs. Such kinetic
effects, especially in time-variable and externally triggered systems, are usually investigated by means of extensive and
expensive simulations of large sets of individual folding trajectories. Here we describe the theoretical foundations of a generic
approach that not only allows the direct computation of approximate population densities but also reduces the efforts required
to analyze the folding energy landscapes to a one-time preprocessing step. The basic idea is to consider the kinetics on
individual landscapes and to model external triggers and environmental changes as small but discrete changes in the landscapes.
A ‘‘barmap’’ links macrostates of temporally adjacent landscapes and defines the transfer of population densities from one
‘‘snapshot’’ to the next. Implemented in the BarMap software, this approach makes it feasible to study folding processes at the
level of basins, saddle points, and barriers for many nonstationary scenarios, including temperature changes, cotranscriptional
folding, refolding in consequence to degradation, and mechanically constrained kinetics, as in the case of the translocation of
a polymer through a pore.
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INTRODUCTION

Dynamic changes of protein structure play an important
role in their cellular functions. These include, in particular,
the process of folding itself, but also the structural response
to oligomerization, chemical modification, ligand binding,
and changes in ambient temperature or pH. The investi-
gation of these phenomena plays a central role in protein
science in both theory and experiment. Large-scale molec-
ular dynamics (MD) simulations of (re)folding trajectories
constitute the major computational approach in this area
(Rapaport 2004).

Detailed case studies have demonstrated that nature also
exploits the potential of RNA sequences to form multiple
alternative metastable structures. These play a role, in par-
ticular, in regulating gene expression at the level of the

mRNA. One widespread mechanism is the attenuation of
transcription found in many bacterial operons related to
the biosynthesis of amino acids (Henkin and Yanofsky
2002; Gollnick et al. 2005). Another impressive example is
the control of plasmid R1 maintenance in Escherichia coli
(for review, see Gerdes and Wagner 2007). RNA thermom-
eters (Narberhaus et al. 2006) are temperature-responsive
structural elements located in the 59-untranslated region of
bacterial heat shock and virulence genes. Mechanistically,
RNA thermometers regulate the transcription of their
respective genes by undergoing temperature-induced struc-
ture changes, a widely used regulatory strategy in nature
(Klinkert and Narberhaus 2009). It has been shown re-
peatedly, furthermore, that alternative conformations of
the same RNA sequence can perform completely different
functions (Baumstark et al. 1997; Perrotta and Been 1998;
Schultes and Bartel 2000).

A thorough analysis of the dynamics of RNA folding and
refolding is thus a necessary prerequisite for a detailed un-
derstanding of the functionality of many RNA molecules.
In contrast to protein folding, the secondary structures of
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nucleic acids provide a level of description that is sufficient
to understand the thermodynamics and kinetics of RNA
folding (Thirumalai et al. 2001)—at least in a useful
approximation. Initially, kinetic folding was used as an
attempt to improve RNA structure prediction (Martinez
1984; Mironov et al. 1985; Abrahams et al. 1990; Gultyaev
1991; Tacker et al. 1994). More recently, the focus has
shifted toward understanding the conformational changes
and the associated folding pathways themselves (for a recent
review, see Flamm and Hofacker 2008).

Most kinetic folding algorithms for RNA are some form
of discretized Monte Carlo simulations of folding trajecto-
ries. The direct analysis of the folding energy landscape
presents a viable alternative (Flamm et al. 2002), due to the
fact that the lower part of an energy landscape can be
accessed efficiently by dynamic programming (Wuchty
et al. 1998; Clote 2005). Here, one first constructs a compact
representation of the energy landscape in the form of a
hierarchical structure termed barrier tree. Recently, coarse-
grained landscapes have also been used in conjunction with
stochastic sampling algorithms (Tang et al. 2008).

Barrier trees and related tree structures have been
developed independently for different classes of disordered
systems, including spin glasses (Klotz and Kobe 1994),
potential energy surfaces in protein folding (Becker and
Karplus 1997; Garstecki et al. 1999), molecular clusters
(Wales et al. 1998; Doye et al. 1999), and RNA secondary
structures (Flamm et al. 2000). Assuming that the basins of
individual local minima are in quasi-equilibrium, the rates
between all local minima can be calculated during barrier
tree construction, providing an approximated master equa-
tion that can be solved explicitly (Wolfinger et al. 2004).
This observation provides the starting point for the present
contribution.

Often, one is most interested in the refolding of an RNA
in response to an external signal. Such a ‘‘signal’’ can be
the binding of a ligand, a nucleolytic
cleavage, the elongation of the RNA
during transcription, a change of the
environmental temperature, or some
form of mechanical stress. We show here
that all of these scenarios can be treated
within a single coherent framework,
namely, as (a series of) perturbations of
the energy landscape on which the fold-
ing process operates. This observation
will allow us to develop generic tools
that allow the efficient evaluation of the
refolding kinetics by connecting the
coarse-grained tree representations of
perturbed landscapes in a suitable way.
Before we proceed to three illustrative
applications, we will develop the asso-
ciated theory in detail in the following
section.

THEORY

Energy landscapes for RNA folding

The energy landscape of an RNA molecule is, for our
purposes, defined on the set Xs of all secondary structures
that can be formed by the sequence s in such a way that base
pairs obey the usual base-pairing rules. As usual, we
disregard pseudoknots. It is well known that the size of the
set Xs grows exponentially with the chain length n (see, e.g.,
Hofacker et al. 1998, and the references therein). The Turner
energy rules (Mathews et al. 1999) allow us to compute the
energy f(x) for each given secondary structure x 2 Xs.

This set of discrete conformations is arranged as a graph
by defining a ‘‘move set’’ M, i.e., by specifying which pairs
of secondary structures can be interconverted in a single
step (see, e.g., Reidys and Stadler 2002, and the references
therein). Figure 1 gives a simple example. In Flamm et al.
(2000), two move sets are considered for RNA: the simpler
case allows only the opening or closing of a single base pair,
the more complex approach allows the sliding on one end-
point of a pair to a new pairing partner. In both cases,
neighboring structures differ by adding and/or removing
a single base pair; hence, the size D of the neighborhood of
a conformation is at most quadratic in sequence length.
This small size of the neighborhoods relative to the huge set
of all conformations is crucial for the computational
feasibility of our approach.

We remark in passing that lattice models of protein
folding have the same formal properties (Wolfinger et al.
2006). The entire machinery described here for RNA folding
kinetics can thus be applied also to this class of models.

The set of conformations X, the energy function f(x), and
the move set M together define the energy landscape (X,f,
M) of our molecule. Conceptually, this energy landscape is
closely related to potential energy surfaces (Mezey 1987;

FIGURE 1. Move sets for simulations of RNA folding kinetics at secondary structure level.
Adjacent conformations differ by insertion or deletion of a single base pair, arranging the
secondary structures in an undirected graph.
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Heidrich et al. 1991), which describe the system at the level
of spatial coordinates of individual atoms.

Level sets and barrier trees

A cycle or level set at energy level h can be defined as
a maximal connected set C 4 X such that f(x) # h for all
structures x 2 C. Intuitively, one can interpret the level sets
as basins of attraction. When the energy level h is increased,
level sets grow, level sets merge, and new level sets emerge.
More formally, let Ah and Bh9 be two level sets at levels
h $ h9. Then, either Bh9 � Ah or Ah \ Bh9 = 6 0. This
hierarchical structure is naturally represented by a tree.
The leaves of this tree are the local minima of the
landscape, i.e., those configurations x that do not have
neighbors with lower energy. With each leaf/local mini-
mum x̂ and each energy level h we can thus associate the
connected level set Xh[x]. For consistency, we set Xh x½ �= 6 0
if f(x) > h. The level sets of two local minima x̂ and ŷ thus
merge at the level h if Xh x̂½ �= Xh ŷ½ � and Xh9 x½ � \ Xh9 y½ �= 6 0
for all h9 < h. The interior nodes of the barrier tree
correspond to these ‘‘merging points.’’ In the following,
we write B(X,f,M) for the barrier tree of the landscape
(X,f,M). Figure 2 shows a simple example. For further
formal details we refer to Flamm et al. (2002).

Given an energy-sorted listing of the L lowest energy
configurations of the landscape, the barrier tree can be
computed by a flooding algorithm (Flamm et al. 2002). To
identify the local minima, the algorithm has to check the
neighbors of each configuration in the list, resulting in
a time and space complexity of O(L 3 D) and O(nL),
respectively, where D = O(n2) is the number of neighbors
according to the move set. In the case of RNA secondary
structures, our model at hand, the energy sorted list can in
turn be computed in O n3 + nL + L ln Lð Þ time and O(n2 +
nL) space using RNAsubopt (Wuchty et al. 1998). L has to
be chosen large enough so that all merging points between
the level sets of low-lying minima can be found, i.e., the
barrier tree becomes connected. In practice, the computa-
tion of the barrier tree is limited by available memory, but
remains feasible for RNAs up to about 100 nt with
moderate computational resources.

Macrostates

Let P be a partition of X. The classes of P can be seen as a
coarse-graining of the configuration space. For our pur-
poses, it will be of particular interest to consider partitions
that are consistent with the energy function in the following
sense: If Q 2 P then Qh : = {x 2 Q | f(x) # h} is either empty
or a connected set. It follows that every level-set is the union
of such ‘‘lower parts’’ of macrostates. In the nondegenerate
case, furthermore, each consistent macrostate has a unique
local minimum x̂Q that may serve as its representative.

For example, we can associate the conformation x 2 X
with the local minimum g(x) that is reached from x by
gradient descent. Again, in nondegenerate landscapes, g is
well defined and the collection

Pg = g�1 ẑð Þjẑ is a local optimum
� �

; ð1Þ

of the gradient basins of local optima forms a partition
of X. In degenerate landscapes we can break ties, e.g.,
stochastically (for further details, see Flamm et al. 2002).
Clearly, Pg is consistent with the energy function, and
hence, also with the barrier tree. The local minima of the
energy landscape thus act as representatives of the macro-
states in this case.

Kinetics on barrier trees

This construction allows us to associate with each local
minimum not only its ‘‘basin’’ in the barrier tree but also
a macrostate that is consistent with the energy function,
and hence, with the barrier tree. In particular, we use here
the gradient basins Pg defined in the previous paragraph.

The dynamics of biopolymer folding, in our discrete
picture, is given as a Markov process on X with transition
rates of the form

pxy}
exp � f xð Þ� f yð Þ

RT

� �
if x 2My

0 otherwise

(
; ð2Þ

where My is the neighborhood of y, i.e., the set of
conformations that can be generated from y by applying
a move m 2 M.

As demonstrated in Wolfinger et al. (2004), one can
approximate this dynamics by a dynamics on the set of
macrostates provided one can argue that the process is
approximately equilibrated within each class of P. A
slightly cruder, but computationally much more efficient
approximation entails an Arrhenius ansatz using the barrier
tree to estimate the activation energies. For any two local
minima x̂ 6¼ ŷ we define their transition state energy f ½x̂;ŷ�
as the energy level at which their associated macrostates
merge in the barrier tree, i.e.,

f x̂;ŷ½ �= min hj g�1 x̂ð Þ
� �

h
\ g�1 ŷð Þ
� �

h
6¼ 6 0

n o
: ð3Þ

FIGURE 2. Schematic representation of an energy landscape and its
associated barrier tree. Local minima are labeled with numbers (1–5),
saddle points with lowercase letters (a–d). The global minimum is
marked with an asterisk.
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Note that this expression coincides with the more ‘‘usual’’
definition of the barrier height as the minimum of the maxi-
mal height of paths connecting x̂ and ŷ (see, e.g., Nemoto
1988). The advantage of Equation 3 is that it emphasizes that
the saddle height f x̂;ŷ½ � can be computed as the merging of
cycles within a flooding algorithm (Flamm et al. 2000) instead
of the (algorithmically infeasible) optimization over all paths.

Transition rates between macrostates, represented here
by the local minima that define them, are then given by the
Arrhenius law

px̂;ŷ = A exp � f x̂; ŷ½ � � f ŷð Þ
RT

� 	
; ð4Þ

where A is a normalization constant. For further details we
refer to Wolfinger et al. (2004).

Barmaps

Given a landscape (X,f,M) we now may ask how the
folding behavior changes if we perturb the landscape. Such
perturbations can take a wide variety of forms:

1. (X,M) remains the same, only the energy function is
perturbed, f / g. This is the case, e.g., when the
temperature or ionic strength of the system is changed.

2. (X,f) remains the same, but the move set changes
M!M9. This case is of interest when one is interested
in the sensitivity of folding kinetics to changes in the
underlying mechanistic models, e.g., to assess the impact
of shift moves (Wuchty et al. 1998)

3. X,f, andM change systematically. Examples are cotran-
scriptional folding or for experimental manipulations
such as pulling an RNA molecule through a pore.

Our goal is to consider these types of changes in a coherent
way in the framework of barrier trees. This will allow us to
approximate the folding dynamics in time-variable land-
scapes of various types. Since we model the dynamics at
the level of macrostates, we need to investigate how the
perturbation of the landscape translates into changes of
the barrier trees and their associated macrostates. In
other words, we need to construct a map b : P! P9 from
the macrostates of (X,f,M) to the macrostates of
(X9,f 9,M9).

From a mathematical point of view, we first of all need
a map j : X ! X9: x 1 x9 that specifies how the perturba-
tion affects an individual conformation x before it ‘‘relaxes’’
in the modified landscapes. In the first two cases, this map
is trivial: It coincides with the identity map, { : x 1 x, since
the set of conformations does not change.

In the case of cotranscriptional folding it is also quite
simple: When the next nucleotide is appended to a growing
chain, it initially does not interact with the already folded
‘‘head’’ of the molecules, so that x9 is x with an unpaired
base appended.

The situation is a bit more complex in scenarios such as
translocation of macromolecules through pores, or other
mechanical constraints. In the pore case, suppose the RNA
moves through the pore from 39 to 59, and k is the position
directly 59 of the pore. Then, the RNA structure is
composed of two independently folding parts x[1. . .k]
and x k + ‘+ 1 . . . n½ �, while the interval k + 1; k + ‘½ � is
located within the pore, and hence, inaccessible to base
pairing. In the next step, the 59 part is x[1. . .k � 1]; if k was
paired, the base pair ( j,k) now has been opened because
nucleotide k is now covered by the pore. The other part is
x k + ‘ . . . n½ �, where the first position k + ‘ emerges un-
paired from the pore. Note that in the pore case, the
gradient descent operator g also needs to be restricted to
producing independent structures on both sides of the
pore. For simplicity, assume a constant speed of trans-
location rather than explicitly modeling a pulling force; in
the latter case we would have to include the distortion of
the energy landscape caused by the pulling force (see, e.g.,
Gerland et al. 2004).

In the landscape (X9,f9,M9) we have again well-defined
gradient basins by means of the steepest descent operator
g9 on this landscape. The concatenation g9[j(z)] thus maps
every local minimum of (X,f,M) to a local minimum of the
perturbed (X9,f9,M9) by first reinterpreting z in the new
context and then relaxing it to the local minimum of the
associated basin. It therefore implies the desired mapping
b that maps macrostates of (X,f,M) to the macrostates of
(X9,f9,M9). In other words, b maps the leaves of the barrier
tree B(X,f,M) to the leaves of the barrier tree B(X9,f 9,M9).
We thus refer to b as the barrier tree map, or barmap for
short, Figure 3.

Note that, in general, the barmap is neither injective nor
surjective: There may be local minima in (X9,f 9,M9) that
are not the image of any local minimum of (X,f,M), while
multiple local minima of (X,f,M) may be merged into
a single minimum of (X9,f9,M9).

FIGURE 3. Schematic of the barmap between two consecutive
landscapes. Three types of events may occur: (1) two (here, the two
left-most minima) local minima in Bk�1 merge into one; (2) a new
minimum (marked by *) appears in Bk; and (3) one-to-one
correspondence between minima (as for the right-most minimum
here).
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Kinetics on time-variable landscapes

The formalism developed in the previous subsections can
be exploited to approximate RNA (re)folding kinetics on
time-variable landscapes. The idea is to first determine
a sequence of barrier trees fBkg together with barmaps
bk : Bk�1 ! Bk. These data have to be determined only
once. We are then free to choose a sequence {Tk} of time
points at which the system proceeds from Bk to Bk+1. This
allows us to explore the effects of variations in the speed of
transcription, the rate temperature changes, or the pulling
force in a manner that is independent of the computation-
ally expensive analysis of the energy landscapes.

Denote by pðx̂;0Þ the initial condition, i.e., the popula-
tion densities in macrostate x̂ on barrier tree B1 at time 0.
The population density on B1 just
before the transition to B1 is p x̂;T1ð Þ.
The initial condition on the next barrier
tree Bk+1 is obtained by collecting for
each macrostate ŷ the population den-
sities of all those macrostates x̂ of the
previous barrier tree Bk that map to ŷ
under the barmap bk. In symbols:

p ŷ;Tkð Þ= +
x̂:bk x̂ð Þ=ŷ

p x̂;Tkð Þ: ð5Þ

Within the time interval [Tk,Tk+1] we
simply have to solve the master equa-
tion

_p x̂ð Þ = +
ŷ

px̂;ŷp ŷð Þ; ð6Þ

with px̂;ŷ =�+ẑpẑ;x̂ and the initial con-
ditions described above. Note that the
transition matrix P = ðpx̂;ŷÞ is by as-
sumption independent of time for each
fixed barrier tree. Thus, the expensive
part of solving the Master equation,
namely the diagonalization of P, is also
independent of the time intervals, and
thus has to be performed only once for
each barrier tree. The computational
effort for the diagonalization grows
as O(N3), where N is the number of
macrostates. For our applications, N is
typically around 1000, allowing diago-
nalization within a couple of seconds.
After these preparatory computations
have been performed, the population
dynamics for a given schedule {Tk} can
be evaluated with a few matrix and
vector multiplications. This sets the stage
for an in-depth analysis of the interplay
of folding dynamics and changes in

the energy landscapes without substantial computational
costs.

RESULTS

The BarMap software

The BarMap software is implemented as a combination of
C programs and Perl scripts that form a pipeline for
simulating folding time-dependent energy landscapes. In
the first step of the pipeline, all low-energy structures of
a landscape are computed using RNAsubopt from the
Vienna RNA package. Subsequently, they are analyzed by

FIGURE 4. Hysteresis effects in an thermosensitive RNA. In this example, the temperature
cycles 10 times from 10 to 59°C, as shown at top. The second panel shows a nearly adiabatic
temperature change (1015 time units per cycle), such that the system is always near equi-
librium. Panels 3 to 5 show increasingly faster temperature cycles, with 105, 104, and 103 time
units per cycle. The RNA has different optimal conformations at 10°C (solid black) and 59°C
(dashed black), respectively. At high temperatures, furthermore, the minimum energy
structure is nearly degenerate, so that an alternative structure (dotted gray) is populated in
panels 2 and 3. For the very fast temperature cycle (bottom), the RNA is trapped in the low-
temperature structure. Here, the only structural change is the opening of a GU:GU stack at
high temperatures (gray area in structure drawing).
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the barriers program (Flamm et al. 2000). This is done
separately for each landscape in the time series and yields
both a barrier tree and a matrix of effective transition rates.
The bar_map Perl program then computes the barmap b

between consecutive barrier trees. Folding dynamics on
each landscape are computed by the treekin program
(Wolfinger et al. 2004). The final population on the
landscape at time step k � 1 is mapped to the the initial
population on the landscape at time step k using the
barmap bk. A helper Perl script, barmap_simulator, is
available that automatically generates the necessary treekin
command lines. In order to plot folding dynamics as shown
in Figures 4 and 5 the treekin trajectory for the time
intervals in which the landscapes is fixed are stitched
together using the barmaps bk, k $ 1. This is accomplished
by the final bmjoin script. An accompanying visualization
tool, BarMapViz (Heine et al. 2006) can be used to create
movies of barrier tree sequences, facilitating the analysis of
the landscape features that are responsible for particular
kinetic effects.

Source code for the barriers and treekin programs, as
well as the bar_map, barmap_simulator, and bmjoin Perl
programs, is available from http://www.tbi.univie.ac.at/
RNA/Barriers/.

Application 1: A RNA thermometer

Figure 4 shows the refolding dynamics of an artificial RNA
thermometer when cycling between a high and low temper-
ature regime. The sequence was designed using the RNA
switch designer described by Flamm et al. (2001), taking into
account the sequence and structure constraints listed in
Waldminghaus et al. (2008). This study demonstrated that
in silico design with subsequent in vivo fine-tuning can
produce temperature-controlled RNA elements with effi-
ciencies comparable to their natural counterparts. For very
slow temperature cycles (top), the molecule behaves adia-
batically, effectively reaching thermodynamic equilibrium
at each time step. The dynamics is therefore determined
entirely by the barrier trees and the connecting barmaps.
For intermediate cycling frequencies (104�105 time units per
cycle), the system prefers the high-temperature structure.
The relaxation time increases with cycling frequency. At
even faster cycles, the system is trapped close to the (low
temperature) starting conformation, since it does not have
sufficient time to refold before the temperature drops again.

Application 2: Cotranscriptional folding

Under cellular conditions, RNA molecules start to fold
before transcription is completed. This phenomenon is
exploited by many bacteria to regulate the expression of
amino acid biosynthesis genes (Yanofsky 2000; Vitreschak
et al. 2004; Merino et al. 2008). This RNA-based regulatory
strategy by premature termination of transcription, often
called transcription attenuation (Henkin and Yanofsky
2002), relies on the selective formation of either of two
mutually exclusive RNA secondary structures (the anti-
terminator and the terminator) in the nascent transcript.
The terminator structure causes premature termination of
transcription.

We investigated the cotranscriptional folding dynamics
of the leader RNA of the phenylalanine tRNA synthetase
operon from E. coli (Fayat et al. 1983) under different
transcription speeds, see Figure 5. For slow transcription,
when the full-length chain is produced after z105 arbitrary
time units, the anti-terminator structure is formed (Fig. 5,
top left panel). In contrast, under fast transcription con-
ditions (transcription completed already after z104 arbi-
trary time units), the terminator structure is formed (Fig. 5,
bottom left panel). Since transcription attenuation oper-
ates far from the thermodynamic equilibrium, the kinetic
competition between two small stem–loop structures (see
blow-up panels on the right) decides whether the full-
length leader RNA will eventually end up in the termina-
tor or the anti-terminator structure. This competition
early in the folding process is highly sensitive to the speed
of transcription. Note, that for very long folding times
(z1011) both cotranscriptional folding scenarios con-
verge, as expected, to the thermodynamic equilibrium,

FIGURE 5. Cotranscriptional folding of the E. coli leader RNA of the
tRNAphe synthetase operon for two different transcription speeds. For
slow transcription (top) the completely transcribed chain shows a
nearly zero density for the terminator structure (solid black line), and
transcription of the full-length operon proceeds. For fast transcrip-
tion, most of the fully elongated molecules form the terminator
structure (dashed line). Thermodynamic equilibrium is reached only
on very long (>1010) time scales.

RNA folding on dynamic landscapes
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which is dominated by the more stable
terminator structure.

In vivo, elongation speed is not con-
stant, but influenced by site-specific
pausing of the RNA polymerase and
interactions of the nascent RNA with
proteins (Pan and Sosnick 2006). The
effect of pause sites can easily be in-
cluded in our approach. One simply
needs to specify an appropriate elonga-
tion speed profile, i.e., an explicit list of
time-points {Tk} for the transitions
from one landscape to the next.

Application 3: Refolding during
pore translocation

The transport of biopolymers through
narrow pores is a fundamental process
in life that is often coupled to the
dynamics of biopolymer structure for-
mation, e.g., the base-pair unfolding and
folding dynamics while an mRNA passes
through the ribosome during transla-
tion. Translocation of polymers is hin-
dered by an entropic barrier, since the
narrow confinement of the pore effec-
tively separates the biopolymer into two
independent sections, resulting in a reduction of the chain
entropy and, hence, an increase of the free energy of the
chain (Muthukumar 2007).

For structured nucleic acids, further kinetic barriers arise,
since the molecule has to locally unfold while passing through
the pore Bundschuh and Gerland 2005; McCauley et al.
2009). In recent years, the single-molecule techniques of
driving biopolymers through nano-pores using electric fields
have been used to explore experimentally the structural and
dynamic properties of nucleic acids (Vercoutere et al. 2001;
Sauer-Budge et al. 2003; Mathé et al. 2004; Dudko et al. 2007).

We model the effect of the pore by allowing only
secondary structures that are unpaired within the pore
and contain no base pairs crossing from one side of the
pore to the other. Figure 6 shows the resulting translocation
dynamics for an artificial RNA sequence. In this example
we use a slow translocation rate that allows the base-pairing
pattern on both sides of the pore to almost equilibrate.

DISCUSSION

We have introduced here a very generic approach to
investigate in detail the dynamic aspects of RNA folding
in scenarios that involve external stimuli and/or changes of
environment. By separating changes in the energy land-
scapes from the dynamics on these landscapes it becomes
possible to avoid the extensive simulation of individual

trajectories altogether. The examples described in the pre-
vious section highlight the major advantage of the BarMap
approach: Each energy landscape and its barrier tree and all
of the barmaps between adjacent landscapes need to be
computed only once. The transition rate matrices between
macrostates within a landscape also have to be computed
and diagonalized only once. The systematic exploration of
the effects of different rates of change in the environment
can thus be conducted very efficiently without the need to
recompute any landscape-specific data. Time series of
population densities, in fact, can be obtained using a few
simple matrix and vector multiplications. The BarMap
approach is thus particularly suitable to study the subtle
kinetic effect that arises from the intricate interplay of
different time scales.

MATERIALS AND METHODS

RNA folding

All structure predictions were performed with the Vienna RNA
package (Hofacker et al. 1994) version 1.8.3, using the Turner
energy parameters as described in Mathews et al. (1999).

Visualization of barrier tree series

In order to gain a thorough understanding of the effects of
changes in the landscape, one needs to comprehend how these

FIGURE 6. Translocation of the artificial RNA sequence UUUUAGCCUCUUUGAGGUCGC
CAUGCGAUUUUUUUU through a pore with a length of 5 nt. The RNA enters the pore with
its 39 end. As more and more of the minimum free energy (MFE) structure (black) is occluded
by the pore, the RNA refolds into alternative structures (dotted and dashed). At the mid point,
the most likely structure is the open chain (solid gray). Note how the probability of the MFE
almost reaches 100% at t � 290 when the structure is fully formed but alternative structures are
inhibited by the pore.
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changes affect the corresponding barrier trees. To this end, we
have developed the BarMapVis tool to create an animation of a
sequence of barrier trees and the leaf mappings between adjacent
trees (Heine et al. 2006). In brief, BarMapVis is based on the
foresight layout with tolerance algorithm (Diehl and Görg 2002),
a very general attempt to solve any offline dynamic graph drawing
problem. First, a directed acyclic supergraph G* is constructed
that contains all barrier trees as subgraphs and reflects the
topological properties of all energy landscapes. The supergraph
G* is then laid out in the plane using a modified version of dot
(Gansner et al. 1993). Finally, the layout of the subgraphs is
determined by using the layout of the supergraph as a template
following static drawing aesthetic criteria in a way that approx-
imately preserves the mental map (Misue et al. 1995) between
consecutive barrier trees.

Animations showing the sequence of barrier trees generated by
BarMapVis for each of the three examples from the Results section
can be found in the web supplement.

SUPPLEMENTAL MATERIAL

Machine readable files of the input sequences, barrier trees, and
BarMapVis movies can be downloaded from http://www.tbi.univie.
ac.at/papers/SUPPLEMENTS/BarMap/. The barmap software can
be downloaded from the barriers website http://www.tbi.univie.ac.
at/RNA/Barriers/.
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