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Summary
Physical activity elicits physiological responses in skeletal muscle that result in a number of health
benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle
contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while
chronic exercise training induces alterations in the expression of metabolic genes, such as those
involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein
levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these
important metabolic and transcriptional events in skeletal muscle. In this review, we briefly
summarize the current literature describing the molecular signals underlying skeletal muscle
responses to acute and chronic exercise. The search for possible exercise/contraction-stimulated
signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is
ongoing. Further research is needed because full elucidation of exercise-mediated signaling pathways
would represent a significant step toward the development of new pharmacological targets for the
treatment of metabolic diseases such as type 2 diabetes.
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INTRODUCTION
Throughout the world, diabetes afflicts over 180 million people, and epidemiological estimates
from the World Health Organization project that this number will reach 366 million (4.4% of
the world population) by 2030. Thus, diabetes is rapidly being recognized as a public health
threat that is rising to epidemic proportions. While the rate of diabetes is on the increase, it has
long been recognized that physical activity has important health benefits for people with type
2 diabetes. In the acute state, exercise positively moderates glucose homeostasis by enhancing
glucose transport and insulin action in contracting skeletal muscle, the major tissue responsible
for total body glucose disposal (1). Chronic physical activity (i.e. exercise training) increases
glucose transporter 4 (GLUT4) protein levels, mitochondrial enzyme content, and alters fiber
type in skeletal muscle (2,3), thus providing an additional mechanism for exercise-mediated
improvements in insulin sensitivity. Collectively, these effects help to explain the strong
epidemiological evidence that regular physical activity prevents or delays the onset of type 2
diabetes (4,5).
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Despite the physiological importance of exercise in regulating skeletal muscle metabolism, the
molecular mechanisms that underlie these important phenomena are only partly understood.
Elucidating exercise-stimulated and insulin-independent signals that mediate glucose transport
have already led to the identification of new targets for the treatment of diabetes (e.g., AMP-
activated protein kinase (AMPK)). Determining the comprehensive mechanism will
undoubtedly provide more targets for treatment, as well as provide fundamental knowledge of
this complex physiological process. In this manuscript, we will briefly review the current
literature on this important area of exercise and diabetes research.

ACUTE EFFECTS OF EXERCISE: REGULATION OF SKELETAL MUSCLE
GLUCOSE TRANSPORT

Insulin and exercise are the two most physiologically relevant stimulators of skeletal muscle
glucose transport (6,7). In individuals with type 2 diabetes, the insulin-dependent regulation
of skeletal muscle glucose transport is impaired. Importantly, insulin independent mechanisms,
including exercise/contraction-mediated mechanisms for regulating glucose uptake remain
intact (8,9). Both insulin and exercise/muscle contraction increase skeletal muscle glucose
uptake by translocation of glucose transporters from an intracellular location to the plasma
membrane and t-tubules. GLUT4 is the predominant glucose transporter isoform expressed in
skeletal muscle. Our laboratory and others have worked to elucidate the signaling mechanisms
leading to exercise-stimulated GLUT4 translocation (6,7). Early studies have demonstrated
that there are distinct proximal signaling mechanisms responsible for the stimulation of GLUT4
translocation and glucose transport by insulin and exercise. Insulin signaling involves the rapid
phosphorylation of the insulin receptor, insulin receptor substrate-1/2 (IRS-1/2) on tyrosine
residues, and the activation of phosphatidylinositol 3-kinase (PI3-K) (10,11). In contrast,
exercise and muscle contraction have no effect on insulin receptor and IRS-1 phosphorylation
or on PI3-K activity (11,12), and muscle-specific knockout of the insulin receptor does not
impair contraction-stimulated glucose transport (13). Clearly, these data demonstrate that the
initiating signals that lead to GLUT4 translocation by insulin and exercise in skeletal muscle
are distinct.

Muscle contraction is a multifactorial process involving changes in cellular energy status (i.e.
increased AMP:ATP), increases in intracellular Ca2+ levels, activation of protein kinase C
(PKC), and so forth. Not surprisingly, this has led many investigators to speculate that these
processes activate one or more intracellular signaling pathways that coordinately act to increase
plasma membrane GLUT4 transporters and glucose uptake in response to physical activity. In
the following sections, we will discuss the signaling proteins that have been implicated in this
complex process, including AMPK, LKB1, Ca2+/calmodulin-dependent protein kinases
(CaMKs), PKCs, and AS160 (Fig. 1).

AMP-activated Protein Kinase
The AMPK and its primary upstream kinase, LKB1, are the most widely studied proteins
implicated in muscle glucose transport in response to changes in the cellular energy status.
AMPK is a heterotrimeric protein that is activated by a complex mechanism involving an
increase in the AMP:ATP ratio and allosteric modification and phosphorylation by one or more
upstream kinases, including LKB1 (14,15). Studies using the AMP-analog, 5-
aminoimidazole-4-carboxamide ribonucleoside (AICAR), have demonstrated that activation
of AMPK is positively correlated with an increase in muscle glucose uptake (16). However,
data obtained from mouse models of attenuated AMPK activity demonstrate that inhibition of
AMPK has little or no effect on contraction-induced glucose uptake (17–19). Furthermore,
muscle-specific ablation of LKB1 only partially inhibits contraction-stimulated glucose
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transport (20,21). Collectively, these data suggest that various signals are involved in the
regulation of contraction-stimulated glucose transport in skeletal muscle.

Ca2+/Calmodulin-dependent Protein Kinases
Increases in intracellular Ca2+ levels are a fundamental part of muscle contraction, and recent
studies have implicated Ca2+/calmodulin signaling and Ca2+/calmodulin-dependent protein
kinases as critical molecules underlying Ca2+ - and contraction-stimulated skeletal muscle
glucose transport. Incubation of rat epitrochlearis muscles with the Ca2+/calmodulin
competitive inhibitor, KN-93, decreases skeletal muscle glucose transport in response to
contraction and to stimulation with the sarcoplasmic reticulum Ca2+ store releasing agent,
caffeine (22). In the same study, KN-93 significantly inhibited contraction-induced CaMKII
phosphorylation in the absence of AMPK inhibition, suggesting that CaMKs regulate glucose
uptake independent of AMPK signaling. These results are consistent with a recent study from
our lab, demonstrating that CaMK kinase α-dependent signaling can stimulate muscle glucose
uptake without changes in AMPK activity (23). In contrast, a recent study using isolated mouse
muscles has shown that inhibition of CaMK signaling with KN-93 or the CaMK kinase
inhibitor, STO-609, inhibits contraction-induced skeletal muscle glucose uptake via an AMPK-
dependent signaling pathway (24). Thus, the role of AMPK in the regulation of Ca2+/
calmodulin-mediated increases in skeletal muscle glucose uptake is still being debated.

Protein Kinase C
PKC is another molecule which is activated by muscle contraction and has been implicated in
the regulation of contraction-stimulated muscle glucose transport (25,26). In mammalian cells,
12 different PKC isoforms have been identified and classified into three subfamilies based on
amino acid similarity and mode of activation (27). The conventional PKCs (cPKCs, α, β1, β2,
and γ isoforms) are dependent on Ca2+ and diacyl-glycerol for activation, the novel PKCs
(nPKCs, δ, ε, θ, and η isoforms) are dependent on only diacylglycerol for activation, and the
atypical PKCs (aPKCs, ζ and λ isoforms) are activated independently of both Ca2+ and
diacylglycerol. Pharmacological inhibition of cPKCs and nPKCs blunts contraction-stimulated
skeletal muscle glucose uptake in skeletal muscle (25,26), suggesting that PKCs are important
in this process. However, recent studies assessing isoform-specific PKC activation have failed
to demonstrate an increase in cPKC or nPKC activity by exercise/contraction (28–30). This
controversy might be explained by a certain degree of nonspecificity of the pharmacological
compounds. In contrast to the findings on cPKCs and nPKCs, our laboratory and others have
recently shown that aPKCs are activated by exercise (29,31,32). In addition, in 3T3-L1
adipocytes and L6 myotubes, overexpression of wild type and constitutively active aPKCs
stimulates or potentiates the effects of insulin on glucose transport, while kinase-inactive
aPKCs inhibit the effect of insulin on glucose transport (33–35). Other data in support of a role
for aPKCs in the regulation of glucose transport comes from a study where PKCζ and λ were
hypothesized to be downstream of AMPK (31). This study, performed in L6 myotubes and
isolated rat muscles, suggests that the effects of AMPK on glucose transport are mediated
through the sequential activation of the extracellular signal-regulated kinase (ERK), proline-
rich tyrosine kinase-2, phospholipase D, and aPKCs (31). These results are not entirely
consistent with our previous data which show insulin- and contraction-stimulated glucose
transport to be independent of ERK signaling (36,37). In future studies, it will be important to
further elucidate a putative AMPK-aPKC interaction.

Akt Substrate of 160 kDa (AS160)
The Akt substrate of 160 kDa (AS160) is a recently discovered protein that regulates insulin-
stimulated GLUT4 translocation in 3T3-L1 adipocytes (38), L6 myotubes (39), and rat skeletal
muscle (40). It is phosphorylated on six different phospho-Akt-substrate (PAS) sites in
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response to both insulin and contraction in skeletal muscle (40–42). Recent evidence from our
lab has shown that AMPK phosphorylates AS160 (PAS) in response to AICAR and contraction
in skeletal muscle (41), and that mutation of four PAS sites significantly inhibits both insulin
and contraction-induced glucose uptake (43). In addition, exciting new data from our lab
demonstrates that mutation of the calmodulin-binding domain on AS160 significantly inhibits
contraction- but not insulin-stimulated glucose uptake (44). Thus, both phosphorylation and
calmodulin-binding on AS160 appear to play a role in the regulation of contraction-stimulated
glucose uptake. Collectively, these results suggest that AS160 may serve as a point of
convergence for both insulin- and contraction-dependent signaling in the regulation of glucose
uptake.

Other Putative Mediators of Skeletal Muscle Glucose Uptake
Investigators have speculated on the possible involvement of other signals in the regulation of
contraction-stimulated skeletal muscle glucose transport, including bradykinin, reactive
oxygen species, and nitric oxide. Although, there is currently no evidence in support of a role
for bradykinin in muscle glucose transport (45), several studies have provided data supporting
a role for reactive oxygen species (46) and nitric oxide (47–50). However, further investigations
have suggested that nitric oxide stimulates glucose transport via a mechanism distinct from
contraction and insulin-dependent signaling pathways (48,49,51).

ADAPTATIONS OF SKELETAL MUSCLE TO EXERCISE TRAINING
Regular physical activity leads to a number of adaptations in skeletal muscle that allow the
muscle to more efficiently utilize substrates for ATP production and thus become more resistant
to fatigue. In the following sections, we will summarize the current literature on three major
adaptations to exercise training: 1) muscle fiber type transformations as defined by the
expression of specific contractile proteins (myosin heavy chain isoforms), 2) increases in
mitochondrial activity and content, and 3) increases in GLUT4 protein expression.

Muscle fiber types have traditionally been classified according to their expression of myosin
heavy chain isoforms as fast twitch fibers (type IIb, IIx, and IIa) and slow twitch fibers (type
I). Type IIb and type IIx fibers mainly depend on glycolytic, and type IIa and type I fibers on
oxidative pathways for ATP production (52–54). There is an association between fiber type
and mitochondrial content, with type IIb fibers tending to have the lowest and type I fibers the
highest abundance of mitochondria. Endurance exercise has been shown to induce an increase
in mitochondrial content and activity within the same fiber type but also a change in myosin
heavy chain isoform expression, thus provoking a fiber type transformation from type IIb to
IIx and IIa, and in rare cases also to type I muscle fibers (54). It is important to understand that
mitochondrial biogenesis and fiber type transformation can occur independent from each other,
suggesting distinct signaling mechanisms for both types of adaptive responses. In addition to
increases in slow muscle fiber types and mitochondria, GLUT4 protein expression also
increases in response to exercise training, facilitating glucose uptake into the trained muscle
(6). GLUT4 protein is expressed to the highest level in slow, oxidative fiber types (55). Thus,
muscle fiber type, mitochondrial content, and the abundance of GLUT4 are associated within
the muscle cell but appear to be regulated independently. Interestingly, individuals with insulin
resistance or type 2 diabetes have a distinct muscle phenotype with decreased slow, oxidative
muscle fibers (56,57), and decreased GLUT4 expression within the slow muscle fibers (58).
Skeletal muscle mitochondrial dysfunction has also been linked with insulin resistance and
type 2 diabetes (59), although more studies are needed to directly connect mitochondrial
deficits with impaired muscle glucose metabolism. Taken together, these findings imply that
the discussed aspects of muscle fiber plasticity play an important role in the pathogenesis of
diabetes, and that the benefits of exercise training for people with diabetes may stem from the
aforementioned training-induced skeletal muscle adaptations. In the following sections, we
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will give a brief overview of the signaling molecules which are considered to play a key role
in muscle fiber type transformation, mitochondrial biogenesis, and increased GLUT4
expression in response to exercise training (Fig. 2).

AMPK
The AMPK has been implicated in the regulation of muscle fiber type (60–62), mitochondrial
biogenesis (63), and GLUT4 biogenesis in skeletal muscle (64), making AMPK a key protein
of interest in the study of exercise-mediated muscle adaptations. In young rats, administration
of the AMPK activator, AICAR, for 14 days (1 mg/g body wt, subcutaneous) significantly
increased the number of type IIx fibers in extensor digitorum longus (61). In addition, recent
work from our lab using AMPKγ1 (R70Q) transgenic mice, a mouse model of constitutively
active AMPK activity (65), demonstrated that chronic elevations in AMPK activity resulted
in significant increases in the ratio of type IIa/x fibers in triceps muscles (62). Collectively,
these results suggest a role for AMPK in exercise-induced muscle fiber type transformation.
However, exercise training of AMPKα2 (D157A) transgenic mice, mice with chronic
inhibition AMPKα2 activity (17), only showed a partial impairment in the exercise-induced
increase in type IIa/x fibers (62). Thus, in addition to AMPK signaling, other pathways must
be involved in training-induced muscle fiber type transformations.

Activation of AMPK with the AMP-analog AICAR or the creatine analog, β-
guanidinopropionic acid, increases the activity and content of mitochondrial proteins (63,66,
67), and this effect is abolished in AMPKα2 kinase dead (67) and knockout mice (68).
Consistent with these findings, transgenic mice with increased AMPK activity show increases
in mitochondrial markers (62). Furthermore, chronic AICAR injections induce peroxisome-
proliferator-activated receptor-γ coactivator 1α (PGC-1α) RNA expression in rat skeletal
muscle (61,69), suggesting a possible link between AMPK activation and PGC-1α signaling.
Surprisingly, in response to exercise training, AMPKα2 knockout and AMPKα2 kinase
inactive mice show no defect in mitochondrial increases (62,68). Thus, despite its capacity to
induce mitochondrial biogenesis, AMPK is not essential for exercise training-induced
increases in mitochondria.

Additional studies using AICAR demonstrated that chronic activation of AMPK (5 days)
increased muscle GLUT4 expression ~50–200% (64), suggesting that AMPK may regulate
muscle GLUT4 biogenesis. However in two recent studies, AMPKγ1 (R70Q) transgenic mice
that exhibit chronic increases in AMPK activity, did not have increased muscle GLUT4 mRNA
and protein expression (62,65). Thus, the involvement of AMPK in AICAR- or exercise-
stimulated increases in GLUT4 protein levels is currently controversial.

Peroxisome-proliferator-activated Receptor-γ Coactivator 1α
PGC-1α is a potent transcriptional coactivator that interacts with a variety of transcription
factors (e.g. MEF2, ERRα, NRF-1, NRF-2) to regulate glucose and fatty acid metabolism,
mitochondrial biogenesis, and muscle fiber type transformation from type II to type I fibers
(70–74). Both short-term exercise and endurance training stimulate PGC-1α expression in
myocytes (75), and this is thought to occur via a positive feedback mechanism involving
increased expression of MEF2. In addition, in studies using in vivo gene transfection, mutations
of the PGC-1α promoter at MEF2 binding sites or a cAMP response element (CRE) show that
contraction-induced PGC-1α promoter activity in skeletal muscle is dependent on its MEF2
and CRE sequence elements (76). Research over the last several years has attempted to identify
upstream signaling molecules involved in the activation of PGC-1α including AMPK, the
Ca2+/calmodulin-dependent protein phosphatase calcineurin, CaMKs, and p38 mitogen
activated protein kinase (p38 MAPK) (69,73,77,78). In a recent study, AMPK was shown to
induce increases in the binding of PGC-1α to its promoter, via direct phosphorylation of
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PGC-1α on amino acids Thr177 and Ser538 (79). Thus, a number of signaling pathways activate
the transcriptional coactivator PGC-1α to regulate muscle fiber types, mitochondria, and
glucose metabolism. This suggests a pivotal role of PGC-1α in skeletal muscle adaptations to
exercise.

Calcineurin
The Ca2+/calmodulin-dependent protein phosphatase, calcineurin, is known as the master
regulator of fast to slow twitch fiber type changes (80–82). In transgenic mice expressing a
constitutively active form of calcineurin, there is a substantial increase in the number of slow
twitch type I muscle fibers (83). Conversely, inhibition of calcineurin activity by treatment
with cyclosporin (5 mg/kg, daily for 6 weeks) promotes slow-to-fast fiber type transformation
(80). In C2C12 myocytes, calcineurin significantly increases the ability of PGC-1α to activate
slow fiber promoters, suggesting a cooperation between the calcineurin pathway and PGC-1α
(73).

Reports on the role of calcineurin in mitochondrial biogenesis have been controversial (84).
Transgenic mice expressing constitutively active calcineurin show increased PGC-1
expression (85), and in cultured cardiac myocytes, constitutively active calcineurin upregulates
a large number of genes involved in mitochondrial energy metabolism (86). Furthermore,
transplant patients maintained on the calcineurin inhibitor cyclosporin A develop a loss of
skeletal muscle oxidative capacity (87). Despite these data suggesting an important role of
calcineurin in mitochondrial biogenesis, other studies have shown that the phosphatase cannot
fully account for exercise training-induced adaptations in skeletal muscle. Cyclosporin
treatment (500 ng/ml for 14 days) does not prevent the upregulation of mitochondrial markers
in Ca2+ ionophore-treated myotubes (88)or in trained rats (20 mg/kg for 7 days (89) or 50 mg/
kg for 10 days (90)).

A role for Ca2+-dependent signaling in skeletal muscle GLUT4 expression first emerged from
experiments in L6 cells using the sarcoplasmic reticulum Ca2+ mobilizing agent, caffeine
(91). In this study, intermittent caffeine treatment (5 mM, 3 h/day, 5 days) induced increases
in cytosolic Ca2+ levels, and significantly increased GLUT4 protein levels (~50%), suggesting
that Ca2+ signaling regulates muscle GLUT4 expression. In addition, transgenic mice
overexpressing a constitutively active form of calcineurin have increased skeletal muscle
GLUT4 protein, suggesting that calcineurin can induce GLUT4 biogenesis (85). However,
cyclosporin treatment of rats (20 mg/kg, daily for 4 weeks) did not impair exercise training-
induced increases in GLUT4 protein and mRNA expression despite complete inhibition of
calcineurin (92). Thus, a physiological role of calcineurin in GLUT4 upregulation following
exercise training is still being debated.

Ca2+/Calmodulin-dependent Protein Kinases
Similar to the findings from constitutively active calcineurin transgenic mice, transgenic mice
expressing a constitutively active form of CaMKIV exhibit an abundance of slow twitch type
I muscle fibers (77). However, the physiological relevance of these findings is questionable,
since recent findings have established that CaMKIV protein is not expressed in mouse skeletal
muscle (93). Future studies will be needed to investigate the potential relevance of other CaMK
family members in skeletal muscle fiber type adaptations to exercise.

A role for CaMKs in muscle mitochondrial biogenesis first emerged from studies in L6 cells
(a rat muscle cell culture model) using the Ca2+ ionophores, A-23187 (94) and ionomycin
(95), and the sarcoplasmic reticulum Ca2+ mobilizing agent, caffeine (95,96). These studies
demonstrated that intermittent or sustained increases in cytosolic Ca2+ levels significantly
increased mitochondrial enzymes, including COX-I, δ-aminole-vulinate (ALAS), citrate
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synthase, and cytochrome c, and that treatment with the Ca 2+/calmodulin competitive
inhibitor, KN-93 (10 µM) completely blocked caffeine-induced increases in ALAS, COXI,
cytochrome c, and citrate synthase protein expression. In addition, transgenic mice expressing
a constitutively active form of CaMKIV exhibited significant increases in muscle
mitochondrial mass, along with increases in cytochrome b, CPT-1, and PGC-1 expression
(77). However, whole body CaMKIV knockout mice do not exhibit impaired muscle
mitochondrial biogenesis in response to contractile activity, and, as mentioned earlier,
CaMKIV protein is actually not detectable in mouse skeletal muscle (93). Thus, the potential
significance of the findings in CaMKIV transgenic mice lies in a possible homology with other
members of the CaMK family that are expressed in skeletal muscle.

As described earlier, increased cytosolic Ca2+ levels by caffeine treatment induce the
expression of GLUT4 protein (91). In addition, pretreatment of cells with the Ca2+/calmodulin
competitive inhibitor, KN-93, completely prevents the caffeine-induced increase in GLUT4
protein. These findings implicate an important role of CaMKs in elevated GLUT4 protein
expression following increases in intracellular Ca2+.

p38 MAPK
The p38 mitogen activated protein kinase (p38 MAPK) is activated by various stimuli including
contraction, insulin, environmental stress, and proinflammatory cytokines (97–99). p38 MAPK
has been suggested to play a functional role in myogenic cell differentiation (100), and our lab
and others have shown increased p38 MAPK activation following various muscle contraction
or running exercise protocols in rodents and humans (101,102). Studies in C2C12 myocytes
show p38 MAPK as an activator of the PGC-1α promoter, and this activation is mediated by
the transcription factor ATF2 (78). In transgenic mice, muscle specific activation of p38 MAPK
leads to enhanced PGC-1α gene expression and increased mitochondrial proteins (78). An acute
bout of exercise in mice (3 h of voluntary wheel running) or rats (2 h of swimming) increases
p38 MAPK and ATF2 phosphorylation, leading to PGC-1α activation (78,103). Since studies
have so far focused on acute effects, it will be an interesting area of future research to determine
the role of p38 MAPK in exercise training-induced adaptations in skeletal muscle.

SUMMARY
Exercise is of critical importance for people with insulin resistance or diabetes. Our current
understanding is that one of the many benefits of an acute bout of exercise is an insulin-
independent increase in the glucose uptake capacities of skeletal muscle. Important chronic
adaptations to exercise training are the increase of mitochondria and thus oxidative capacities
in skeletal muscle, the transformation of muscle fiber types, and the increase in GLUT4 protein
expression.

Contractile activity and insulin are the most potent and physiologically relevant stimuli of
glucose transport in skeletal muscle. While significant progress has been made in elucidating
the insulin signaling pathway leading to GLUT4 translocation, identification of the signals
mediating contraction-stimulated glucose transport has proved challenging. A growing body
of data suggests that multiple signaling cascades mediate the metabolic effects of contraction.
While the proximal signals leading to contraction- and insulin-stimulated glucose transport are
clearly distinct, emerging studies have shown a reconnection or convergence of these signals
at AS160.

Exercise training induces an increase of oxidative capacity, fiber type changes, and elevated
GLUT4 protein levels in skeletal muscle; adaptations which are of critical importance to lower
free fatty acids, improve glucose uptake, and decrease the risk of insulin resistance and diabetes.
Again, multiple signaling pathways appear to act synergistically to mediate adaptive responses
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to exercise training. In particular, AMPK and calcineurin have evolved as major candidates
for mediating exercise-training adaptations. PGC-1α may be a point of convergence for both
pathways. While considerable progress has been made in decoding molecular mechanisms
around these molecules, more research will be needed to test their physiological role in skeletal
muscle adaptations to exercise training.
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Figure 1.
Proposed model for the signaling pathways mediating insulin and contraction-induced skeletal
muscle glucose transport. Insulin and contraction-mediated glucose transport occurs by
translocation of glucose transporter 4 (GLUT4) from intracellular locations to the plasma
membrane. Insulin binding leads to phosphorylation of the insulin receptor with subsequent
activation of insulin receptor substrate 1/2 (IRS-1/2) and phosphatidylinositol 3-kinase (PI3-
kinase). Downstream of PI3-kinase the protein kinases, Akt, which then regulates activation
of Akt Substrate of 160 kD (AS160), and atypical protein kinase C (aPKC), have been identified
to mediate insulin stimulated GLUT4 translocation. Contraction stimulated glucose uptake is
mediated by multiple signaling pathways including aPKC, Ca2+/calmodulin-dependent protein
kinase II (CaMKII), Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), LKB1, and
AMP-activated protein kinase (AMPK).
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Figure 2.
Proposed model for the signaling pathways mediating fiber type transformation, mitochondrial
biogenesis, and GLUT4 protein expression with skeletal muscle adaptations to endurance
training. Exercise training leads to skeletal muscle fiber type transformation, mitochondrial
biogenesis, and increased glucose transporter 4 (GLUT4) protein expression, and multiple
signaling pathways have been suggested to be involved in these adaptations. Changes in the
cellular energy status (AMP:ATP) stimulate AMP-activated protein kinase in the presence of
the AMPK kinase, LKB1. AMPK may be involved in fiber type transformation, mitochondrial
biogenesis, and GLUT4 biogenesis through increasing peroxisome-proliferator-activated
receptor-γ coactivator 1α (PGC-1α) expression and probably also independent of PGC-1α.
Exercise training-induced increases in PGC-1α are potentiated by a positive feedback loop
through myocyte-enhancing factor 2 (MEF2) and are involved in fiber type transformation,
mitochondrial biogenesis, and increased GLUT4 expression. Increases in intracellular Ca2+

levels lead to activation of the Ca2+/calmodulin-dependent phosphatase, calcineurin, as well
as Ca2+/calmodulin-dependent protein kinases (CaMKs). While calcineurin is involved in a
number of skeletal muscle adaptations, acting primarily through PGC-1α, a role of CaMKs has
so far pointed toward increasing GLUT4 protein expression. Contraction-induced activation
of p38 mitogen activated protein kinase (p38 MAPK) increases PGC-1α expression through
activating transcription factor 2 (ATF2) and may therefore also be involved in skeletal muscle
adaptations to exercise training.
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