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Abstract
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations
under certain conditions and several unsatisfactory explanations for this phenomenon have been
proposed. These “autonomous oscillations” have often appeared with periods that are nearly
integer divisors of the calculated doubling time of the culture.

We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that
we call clustering. We develop some novel ordinary differential equation models of the cell cycle.
For these models, and for random and stochastic perturbations, we give both rigorous proofs and
simulations showing that both positive and negative growth rate feedback within the cell cycle are
possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety
of models and for a broad selection of parameter values. These results suggest that the clustering
phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer
number of clusters, clustering would lead to periodic-like behavior with periods that are nearly
integer divisors of the period of the cell cycle.

Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating
yeast cultures.
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1 The Yeast Cell Cycle and Experimental Observations
Klevecz [37], McKnight [48], and others have observed oscillations in the dissolved O2
levels of various strains of budding yeast under certain conditions. For instance in Figure 1
we show data from such an experiment for the yeast strain Cen.PK 113 [44,45,40]. It is seen
in this experiment that dissolved O2 levels oscillate between about 5% to 55%, with a period
of a little less than 4 hours. Since the doubling time (as calculated from the dilution rate) for
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this culture was 7.8 hours it is natural to suppose that the doubling time and O2 oscillations
are causally related.

Autonomous oscillations been the subject of speculation and analysis
[44,8,12,21,22,23,38,40,48,52]. Cultures exhibiting O2 oscillations, although planktonic, are
dense; the average distance between cells has been reported to be on the order of 1 cell
diameter [37]. Observations such as these suggest the involvement of quorum sensing.
Indeed, Klevecz and others have suggested that signaling is responsible for the O2
oscillations based on the observation that acetyaldehyde and H2S pulses reset the phase of
the oscillations [32,37]. Alternative explanations involving signaling have been proposed.
For instance [23] has suggested an elegant mechanism in which the periodic consumption of
metabolites can stabilize population synchrony.

Because the mitotic cell cycle of budding yeast plays an important role as a coordinate in the
ensuing analysis and theory we briefly describe some of the relevant facts and nomenclature.

Detailed reviews of the physiology and genetics of the budding yeast cell cycle abound
[4,19,20,30,35], to list only a few. The mitotic cell cycle entails the process of DNA
duplication, daughter cell growth and the subsequent cell division. The division processes in
budding yeast is asymmetric in the sense that it results in a distinguishable mother and
daughter cell. The daughter cell at division is typically smaller in volume than the mother
cell [50]. Only the mother cell carries an observable and permanent chitanous bud scar at the
site of daughter cell growth. The number of bud scars determines a yeast cell’s replicative
age, to be distinguished from its chronological age. The bud scar equivalence classes are
henceforth called generations. The emergence of a single bud, as opposed to multiple buds,
per division cycle is tightly regulated.

As depicted in Figure 2, the mitotic cell cycle is typically partitioned into four phases,
canonically enumerated in the sequence: G1, S, G2 and M. The DNA is replicated during
the S-phase and its temporal duration is the least variable [2,9,42,43]. The G1 phase duration
is observed to be the most variable. During the G1 phase environmental cues are integrated
and synthetic precursors are obtained. Volumetric growth of the mother-daughter pair is
observed to be monotone along the cell cycle in single cells [28,47,51], with growth and
division jointly regulated by an as yet incompletely understood genetic network [31]. A
complete causal description of the transition from G1 to S remains open [6,30]. This
transition closely coincides with the phenomena of bud emergence.

In this article we study the implications of the hypothesis that cells in the S-phase can effect
the growth rate of cells in a responsive phase (denoted as R) situated in the G1 phase. The
growth rate modulation can be either positive or negative. We show rigorously and
numerically in simple models that various forms of signaling among cells, with either
positive or negative feedback, robustly leads the population density to become multimodal
or clustered within the cell cycle.

We propose here that dissolved O2 oscillations in some strains could be due to a
phenomenon that we will call clustering. In general we will define clustering loosely as
significant groups of cells going through cell cycle milestones at approximately the same
time, i.e. there is a form of temporal synchronization. The clustering could cause
fluctuations in the O2 dilution levels by clusters passing in and out of high oxygen
metabolism phases of the cell cycle, i.e. G1 phase.

We will prove mathematically in idealized models that clustering occurs and that the number
of clusters formed depends on the widths |S| and |R| of the S-phase and the hypothesized
region R. Of key importance is the necessity that if clustering occurs, then there are an
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integer number of clusters. This can provide the basis for a periodic-looking behavior with a
period which is approximately an integer divisor of the cell-cycle length. Models for which
proofs are constructed include noisy or randomly perturbed models. We use simulations to
demonstrate that the same type of behavior occurs in more detailed models.

In prior work [44,45,40] we have shown through an analysis of the bud index and cell
density time-series (see Figure 1) that clustering occurs, and have proposed how the periodic
population phenomena could be exploited to enhance bioprocess.

In this paper we focus on models that assume that the cell cycles of different generations are
identical, or nearly so. Although this assumption is not justified in general yeast cultures,
there is some evidence for it in the cultures under study. In conditions where the oscillations
have been observed, the doubling time of the culture is extended significantly, by a factor of
about 4. It is known, and confirmed in [44,45,40], that when the cell cycle is extended, most
of the extension occurs in the G1 phase. Age dependent differences in cell cycle duration
have been observed and quantified [50], and are attributed to differences in G1 duration,
although this will require further quantization at the single cell level [47,51]. Regardless,
during autonomous oscillation the extending the doubling time effectively elongates the
cycles of all the generations to such an extent that the relative differences become
insignificant. The Age distribution provides further evidence that the assumption of equal
cell cycle length for different generations is approximately true in the cited experiments.

In addition to models with the assumptions of identical or nearly identical cell cycles we
also briefly treat models with relative differences across generations and cases where even
larger differences could still lead to clustering. In [44,45], we have explored a model with
stratified generations under various assumptions and using biologically relevant values for
all the parameters that can be determined. In all these models clustering emerges as a
common and robust phenomenon.

2 Models of Cell Cycle Dynamics and Clustering
2.1 A general model for the cell cycle of an individual cell

We will begin by defining a normalized logarithmic scale to represent the cell cycle.
Customarily, the cell cycle is delineated by volume milestones. For a given cell, indexed by
i, let υi(t) denote its volume. It is usually assumed that the volume growth of a cell in a
culture is proportional to its volume, i.e.

where the relative growth rate ci(t) may depend on many factors, such as available
resources, chemical composition of the culture substrate, etc [11,27,29,49]. We will allow
that the growth rate may also be influenced by the state of the cell itself, thus the cell may
react to environmental factors in differing ways at different stages of its cycle. The
environmental factors in turn may be influenced by the cells in the culture and their history.
Finally, the individual cells may have individual differences. Without any loss of generality,
we may include all of these factors in the rate ci(t).

Let Vb,i denote the volume of the cell at the beginning of it cell cycle and Vd,i its volume at
division. In order to have xi ∈ [0, 1) we make the change of variables:
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With this change birth has coordinate xi = 0 and division occurs at xi = 1. We have then that
xi satisfies

Next we may rescale time so that the average time span of a cell cycle in the culture is
normalized to 1, i.e. scale by a factor d̄(t) which is the average (over all cells) growth rate in
a culture. In making this change of time we obtain

If the variation between individual cells is not too great then the right hand side of this
equation is approximately 1. Next, we distinguish between those influences on the growth
rate that are common to all the cells in the culture and those due to individual differences.
The common features we allow to depend on the state, xi of the cell itself, as well as the
conglomerate history of the whole culture, which we denote by x̄. Denote the common part
of the growth rate as a and the individual part as gi. We can thus write the equation as:

(2.1)

The part of the growth rate due solely to individual differences in cells is contained in the
term gi. In many applications this term will be relatively small and “random” in the sense
that differences are due to details of the cell process that are far too minute and complex to
model. It contains both variations in the growth rate and differences in Vb,i and Vd,i. Thus we
may view (2.3) as a Random Differential Equation (RDE) [3]. A reasonable approximation
of this equation in some circumstances is to replace gi by a stochastic term:

(2.2)

where dWi represents an independent noise term. This Stochastic Differential Equation
(SDE) must be interpreted in the usual way as an Ito integral equation. For other possible
stochastic approximations see [1]. It is also reasonable under certain circumstances to
consider (2.1) and (2.2) as perturbations of an Ordinary Differential Equation (ODE)

(2.3)

This model allows for variation of the growth on state within the cell cycle and the overall
state of the system, but ignores differences between individual cells. We will consider
versions of this model in the rest of this section. In the next two sections we will consider
(2.1) and (2.2) as perturbations of (2.3).
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2.2 Model of the culture
First of all, we note that in a culture, cells are constantly dividing, dying and perhaps being
harvested. Thus the equations above must be applied to a changing set of cells, indexed by a
changing finite set of positive integers S(t) ⊂ ℕ. If the i-th cell dies or is harvested, then i is
dropped from S. When a cell divides, one of the new cells could continue being denoted by
i, with xi resetting to 0 and the other (daughter cell) would be identified by a new index. This
would be appropriate in budding yeast where the mother and daughter cells are
distinguishable. The conglomerate history x̄ would contain each xi over its respective
lifespan.

Now suppose that we are considering the unperturbed equation (2.3). Since in this model
there are no terms that differentiate the progression of different cells, when a cell divides its
two descendants will both start at xi = 0 and remain completely synchronized for the rest of
their lifespans. Thus tracking the evolution of both cells is redundant in this model and we
are inevitably led to consider a fixed set of cells. If the culture is in a steady or periodic state,
then there is also a probabilistic interpretation of this simplification; given a living cell at
time t, the expected number of cells descended from that cell at any later time t + n is exactly
1. Thus the original model with a changing index set S can be replaced by a fixed system,
each variable xi(t) representing the state of its expected descendant at time t. A PDE
justification of considering a fixed index set appears in the appendix.

With a fixed index set, this model is easily amenable to numerical investigation with
currently available computer speeds. For instance, one can easily investigate the behavior of
a conglomeration of 10,000 or more cells over several cell cycles on a desktop workstation.
Further, under some additional assumptions on the dependence of a and gi, we can
investigate properties of the solutions of (2.3) and (2.1) rigorously as we show below.

2.3 Modeling of the growth term a
The standard biological assumption on a is that it does not depend on xi i.e. it is independent
of the cell’s current state within the cycle. Rather it is assumed to depend mostly on the
nutrients available and other environmental factors. With these assumptions a = a(t, x̄).

As already described above, we hypothesize a more sophisticated form for a, in which the
location of cells in cell cycle may influence the growth rate of themselves and other cells,
i.e.

For example in budding yeast it has been hypothesized that cells in the S phase may
influence the growth of cells in the pre-budded G1 phase through some (unspecified)
signaling mechanism [7,17,24,36].

In our models the population of cells in the S-phase will be assumed to effect the growth of
cells in a preceding portion of the cell cycle which we denote by R = [r,s], i.e. a portion of
the G1-phase. As explained in the previous section and in the appendix will consider a fixed
finite population of N cells, each of them progressing via the following form of (2.3)

(2.4)
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When a cell in the model reaches division at x = 1 it returns to the beginning of the cycle, x
= 0. The phase space for each individual cell is thus the unit circle and the phase space of the
entire culture is the N-torus. In this section we will consider two idealized (and
discontinuous) forms of positive and negative F that we call the advancing and blocking.
Our motivation for considering such models is that they are analytically tractable. Also,
biologically it is known that the introduction of certain compounds has been shown to arrest
or rapidly accelerate cell processes in budding yeast and other micro-organisms
[37,8,16,26]. Note that periodic blocking at division was considered by [41].

By the advancing model we will mean that if the fraction of cells in S exceeds some
threshold τ, then all cells in R are instantaneously advanced to the beginning of S, from
which they resume normal growth. This corresponds to a limit F → ∞ in (2.4) when #{cells
in S} ≥ τ and F = 0 when #{cells in S} < τ.

By the blocking model we mean that if the fraction of cells in S equals or exceeds some
threshold τ, then cells at s are blocked from proceeding into the S-phase, until the fraction of
cells in S drops below the threshold. This corresponds to choice F = −1 when xi = s and
#{cells in S} ≥ τ and F = 0 when #{cells in S} < τ. If more than τ cells have accumulated at
s, then all of those cells will enter S together when the fraction of cells drops below τ.

Note that the advancing and blocking models are defined in terms of their flow directly, thus
the solution flow is unique. Since the phase space is compact the flow is global.

2.4 Clustering
Under either the advancing or blocking models, it is clear that some cells may become
synchronized. Consider the advancing model; whenever the fraction of cells in S exceeds the
threshold τ, then all cells in R are instantaneously synchronized at s. There being no
mechanism in the model to subsequently differentiate them, they will remain synchronized
from then on. Similarly, for the blockling model, during a period when the threshold is
exceeded, all cells arriving at s will be thereafter synchronized. We will call a group of
synchronized cells a cluster. If the number of cells in a cluster is large enough to exceed the
threshold of the model, we call it a critical cluster.

Given an initial (discrete) distribution x̄(0) or  the evolution of such
distribution under either model will be called a trajectory starting at w(s) and denoted by φ(t,
w(s)). It is clear that different trajectories can merge.

A trajectory is called an equilibrium if it is stationary in the coordinate frame moving with
the speed 1. In other words, ϕ(t, w(s)) = w((x − t) mod 1) for all t ≥ 0. A periodic orbit is a
trajectory which is periodic in the moving frame. In such a case there exists T with ϕ(T + t,
w(x)) = ϕ(t, w((x))) for all t ∈ [0, T]; if T is the smallest number with this property, it is
called a period.

2.5 Advancing model
Denote by ⌊x⌋ the largest integer ≤ x and by ⌈x⌉ the smallest integer ≥ x.

Theorem 2.1—Consider the advancing model.

A. If the initial w(x) exceeds the threshold on all intervals of length |S|, except possibly
inside the interval R, then the trajectory converges to a periodic orbit.

B. Any initial w(x) that is below threshold on all intervals of length |S|, is an
equilibrium point.
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C. Every other initial condition converges to an equilibrium e with a finite number of
critical clusters, separated by voids of length at least |R| + |S|.

Proof: Let

(2.5)

The function q(t, x) is a form of local density of the discrete distribution of cells. Observe
that if q(0, x) < τ for all x then this is a fixed point of the dynamics. This corresponds to the
case B above.

The case A corresponds to the case when q(0, x) ≥ τ for all x, except for x ∈ R. At t = 0 all
cells in R are advanced to the point s. Since the q(0, x) ≥ τ for all x the cells arriving at r, the
start of the interval R, are immediately transferred to the point s. This continues indefinitely.
This trajectory is a periodic orbit in the moving frame.

Now we do the analysis of the case C. Let q(i, x), i = 0, 1,… be the mass function after i
passes though the cell cycle. We decompose the domain I = [0, 1] into intervals

 where q(i, x) ≥ τ for all  and q(i, x) < τ for all . Set

. We compare the intervals  from iteration to iteration. There are several

possibilities that can happen to  after a passage through a cell cycle:

1. The interval  will shorten by |R| and .

2. The intervals  may merge, if all intervals in between fall within distance |

R| i.e. ;

3. If an interval  follows the interval  by a distance closer then |R| + |S| i.e.

, then the interval , or a portion of that interval, will be
promoted across R. The resulting distance between the two new intervals will be
less then |S|. After each subsequent pass the distance between these two intervals
will shorten by |R| and in finite number of steps they will be within |R| of each other
and they will merge. The number of steps this takes is uniformly bounded above by

. This process may result in a split of an interval  into two intervals with
the total mass conserved in the transaction. Notice that even though temporarily the

number of intervals  may increase over the number , after k subsequent passes

through S the number of intervals  is less or equal to number of intervals .

4. The interval  may shorten, if the preceding interval  has critical mass in S and

therefore promotes part of the mass ahead of  across R. Since a mass ahead of 

is lost, . The difference between this case and case (3.) is that here

. Observe, that the transferred cells will not form a

new interval , since they do not have a sufficient mass.

In summary, the number of intervals  is greater or equal to the number of intervals  for
every i and the length of each intervals is a non-increasing function of i. Finally, it is easy to
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see that the only interval  that will not change under the advance operator, is a singleton

. Since the population is finite, after a finite number of passes through S, each Ij is
a singleton. If two such singletons follow each other closer then |R| + |S|, by the step 3.
above, they will merge in finite number of steps. Eventually all remaining singletons Ij are
followed by a empty void of length |R| + |S|.

Corollary 2.2—In the advancing model no more than ⌊(|R| + |S|)−1⌋ critical clusters can
persist.

Proof: By the previous Theorem each critical cluster has to be followed by gap of length at
least |R| + |S|.

2.6 Blocking model
Theorem 2.3—In the blocking model no more than ⌈|S|−1⌉ critical clusters can persist.

Proof: When two consecutive critical clusters pass through S, the second cluster must wait
at s until the first cluster has passed t. Thus the distance between them must then be at least |
S| and will remain at least |S| until the first cluster hits r. Then the first cluster may have to
wait to enter S, possibly decreasing the distance between the two clusters in question.

Assume that the number n of persistent clusters is constant along some trajectory. Then
either all these clusters are separated by a distance at least |S|, or there are n − 1 clusters
separated by a distance |S| and there is an additional cluster inside S whose distance to a
waiting cluster at s is smaller than |S|.

This minimal spacing implies that

The result then follows.

We have shown that a cluster cannot persistently follow a critical cluster closer than |S|
(except while the critical cluster is being blocked at s). Also, it is clear that as many as ⌈|
S|−1⌉ critical clusters may persist if the overall number N of cell satisfies:

Recall the definition of q(t, x) in (2.5).

Theorem 2.4—In the blocking model, if the cells are initially distributed so that the
density q(x, 0) everywhere exceeds twice the threshold, then exactly ⌈|S|−1⌉ clusters will
develop and persist.

Proof: Cells at s are initially stopped from entering S until the fraction of cells in S drops
below the threshold. Since d(|S| −t) = τ, this will occur at
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At this time the cells that have clustered at s number dt or d|S| − τ. Since d|S| is assumed to
be at least twice τ, the threshold is again exceeded as the cluster enters S. The threshold will
continue to be exceeded until this cluster leaves S. At this time a new cluster will have
formed at s with volume d|S| which is by assumption above τ. The second cluster is spaced
exactly distance |S| behind the first cluster. At third cluster, etc. will form in the same way
until the first cluster returns to s. At that time there is either a cluster in the interior of S or at
t. In the former case the first cluster will wait less than time |S| to enter S, ahead of when the
second cluster arrives. In the latter case it enters S immediately. This scenario will repeat
itself indefinitely and the number of critical clusters thus produced is an easy calculation.

3 Small Perturbations of the Advancing and Blocking Models
3.1 Small Perturbations

Next we consider small perturbations of the advancing and blocking models by which we
mean that the progression of each individual cell is independently perturbed by a small term
which is independent of the other cells.

(3.1)

where |ξi(xi, t)| ≤ 1 and ε is small. We will take as our definition of small that ε is smaller
than min(|S|, |R|)/6. The effect of the perturbation is to cause initially synchronized cells to
drift from each other, but by no more than 2ε or min(|S|, |R|)/3 within a single cell cycle.
Note that under these assumptions (3.1) can be considered as a random differential equation
with bounded noise. For general results about RDE with bounded noise see [25].

Note that this model can viewed as a relaxation of the assumption that cells are
indistinguishable. It also can be considered as incorporating random variations and noise.

With these perturbations, clusters will not remain precisely synchronized as in the
unperturbed models, but rather will spread out as the cells proceed through the cell cycle.
We now expand our definition of cluster to include any group of at least τ cells that are
within |S|/3 of each other in the cell cycle.

Below we will assume that the small perturbations act like noise in the ways we define
below. We say that perturbations satisfy the maximum principle if

and

for any t1 < t2 that are not separated by an activation or deactivation of blocking or
advancing. We will say that the perturbations are diffusive if:

• the perturbations satisfy the maximum principle.

• synchronized cells will immediately de-synchronize.
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3.2 Perturbed Blocking Model
Theorem 3.1—In the blocking model with small diffusive perturbations such that ε < |S|/6,
and an initial distribution of cells that satisfies q(0, x) > 2τ + 2ε for all x, the system will
form either ⌊|S|−1⌋, ⌈|S|−1⌉, or, ⌈|S|−1⌉ + 1 critical clusters within one cell-cycle period and
these clusters will persist indefinitely.

Proof: Denote d = min q(0, x). Cells at s are initially blocked from entering S until the
fraction of cells in S drops below the threshold. This will occur at time t0 no smaller than

At this time the cells that have clustered at s number at least t0d or (d|S| − τ)/(1 + ε). This
group of cells we will call cluster 1. By the assumptions, the threshold is again exceeded as
the cluster enters and crosses S. While crossing S the cluster will de-synchronize, but all the
cells will remain in S for at least t1 = |S|/(1 + ε) and no longer than |S|/(1 − ε). Thus while the
first cluster crosses S at least t1d or d|S|/(1 + ε) cell accumulate at s. This group we call the
second cluster and from the assumption q(0, x) > 2τ + 2ε it is critical. Its crossing time t2
will again be bounded below by |S|/(1 + ε) and above by |S|/(1 − ε) and so this process of
cluster formation will continue for as long as a density of cells at least d is arriving at s.

By a straight-forward calculation, the gap between any two adjacent clusters formed in this
process is bounded below by:

and obviously the gap is bounded above by |S|. If the first of two adjacent clusters travel at
the minimal speed 1 − ε while outside of S, all the cells in the first cluster must arrive again
at s no later than:

after cluster 2 leaves S. During the same time period the second of the adjacent clusters can
travel at a rate at most 1 + ε and thus can travel a distance of no more than

Therefore the entirety of the first cluster must reach s before any of the second cluster does
so. The gap at that time is at least

Next consider the relative motion between the cells that began in S and the cells in cluster 1.
Note that the initial gap will be at least |S|/2. Since ε < |S|/4, the last of the cells will reach s
before the first cluster returns.
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When cluster 2 leaves S, it is easily shown that the gap between cluster 1 and 2 is no wider
than

At the same time the gap between cluster 1 and 3 is no more than the gap between cluster 1
and 2 plus |S|. That is,

When cluster 3 reaches t, the gap between clusters 1 and 3 is no more than

By induction one can show that the first cluster can be no more that

ahead of the j-th cluster when the j cluster is at t. From this we can show that at least ⌊|S|−1⌋
clusters will form.

On the other hand, when cluster 2 leaves |S| the gap between clusters 1 and 2 must be at least

and cluster 1 must be at least

ahead of the j-cluster. It is clear then that j must be less than ⌈|S|−1⌉ + 1.

Now to show that the clusters persist. Clearly, while cluster 1 is passing through the cycle
the first time, there is always a critical cluster in S, at least until the cells that began in S
again reach S. Note that the cells which were inside S when the first cluster was released
from s are critical in number. We will call this group of cells the tail. When the tail begins to
arrive back at S, its leading edge can be no more than

ahead of cluster 1. At that moment there will either be (1) a critical in the interior of S, or,
(2) there are critical clusters at both ends of S. Let us consider case (2) first. In this case the
cluster at the beginning of S will be critical and as it enters S the cells from tail will be
blocked at s. Since the original width of the tail is less than |S|/2, its width when it reaches S
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will be less than 2|S|/3 and it will all reach S before the cluster ahead of it leaves S. Now two
things can happen, both of which continue the process, either all or part of cluster 1 reaches
S while the tail is blocked there, or it will be blocked by the tail. In the former situation part
or all of cluster 1 will merge with the tail and be blocked and in the later the entirely of
cluster will be blocked by the tail. Either way cluster 1 is blocked and will be inside S when
cluster 2 arrives back. Now in case (1) all or part of the tail will reach S and be blocked
while the previous cluster clears S. It will merge with other cells blocked at S and they will
be a critical cluster when they are released. Thus when cluster 1 arrives at S, the last cluster
including part or all of the tail will still be in S. Again in this case cluster 1 is blocked before
reentering S and will be inside S when cluster 2 arrives. Now in either case cluster 1 is not
only blocked, but resynchronized as it is blocked. The same happens for the subsequent
clusters and the process continues.

3.3 Perturbed Advancing Model
First we note the lack of rigorous results for this model. We are not able to prove anything
similar to Theorem 3.1. This lack of results, however is suggestive that the advancing model
does not form clusters as naturally as does the blocking model.

For this model we can make the following observation: In the advancing model with small
random perturbations and |R| = |S|, an initial single critical cluster will have “forward
leakage.” Wherever a cluster begins in the cell cycle, when its edge reaches s it will have
positive width. As some of the cells enter S the threshold will be exceeded, and the rest of
the cells will be promoted to s. The cluster will then proceed around the cell cycle. When its
edge reaches S again, its width will be larger and the leading edge flatter than during the
previous cycle. Thus the front edge will reach deeper into S before the advance takes place.
Thus the front edge of the cluster will grow wider and wider on each pass until some of the
cells are able to pass through S completely before advance occurs. At this point these cells
have essentially escaped from the cluster.

Note that the cells which leak forward may eventually slow down and drop back into the
cluster, or, if they continue at a faster rate than the cluster will eventually be caught in the
next cluster (or into the original cluster if it is the only one.) This implies that there may be
steady states which have persistent clustering, but the cells in the clusters may not actually
be synchronized in the strict sense.

4 Linear feedback models and simulations
4.1 Graduated but unstratified model

Next we consider more realistic models. Rather than strict advancing and blocking we
consider the possibility that the number of cells in S either act to slow down or speed up cell
growth in the preceding region R. The population of cells in the S-phase is hypothesized to
effect the growth of cells in a preceding phase R = [r, s] via a continuous function. This
influence will be assumed to be a function of the number of cells in the S phase. Thus we
have the following equations of motion:

(4.1)

Note that this form is quite general since we might consider any functional dependence F
and R could be large or small.
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We report simulations of this model where we will assume F to be linear function F(x) = ax,
with a < 0 for the negative feedback model and a > 0 for the positive model. For example a

nonlinear model would be obtained if F was a sigmoidal Hill function . In the
negative case in the limit of Hill coefficient n → ∞ we obtain a strict blocking model
described in section 2.

In the simulations we also incorporate a small diffusive term (white noise) with variation σ.
The program tracked the trajectories of 5000 individual cells, initially uniformly distributed,
through 20 unperturbed cell cycles (20 units of time in equation 4.1). The simulation used an
Euler method to integrate the SDE. In each of Figure 3–Figure 6 we show (a) a histogram of
the final distribution of cells within the cell cycle and (b) a time-series of the fraction of cells
inside S over the final two periods.

The figures clearly show clustering for all the specified parameter values.

We observe the following things from the simulations:

• The negative feedback produces more clusters than positive.

• The number of clusters formed is inversely proportional to the width of S or |R| + |
S|.

• Positive feedback causes sharper clustering, i.e. the clusters appear to be
completely separated.

• Too much noise can destroy the clustering effect. The amount of noise needed to do
so was smaller for larger numbers of clusters.

The first two of these observations are consistent with the results concerning the idealized
advancing and blocking models. The third observation is somewhat in contrast to the lack of
rigorous results in section 3.3. The stochastically perturbed positive feedback model is seen
to form clusters just as readily and even more markedly than the negative model. These
simulations with more realistic models reinforce the hypothesis that clustering is a robust
phenomenon in cell cycle dynamics with any form of feedback.

4.2 Stratified Model
When yeast cells divide, one is the mother and the other the daughter. The mother carries a
scar from the bud and the daughter does not. The number of daughters a cell has had can be
determined by counting the bud scars. We will refer to a cell’s generation as the number of
daughters it has produced, starting the count from 0 for the daughters themselves in the first
cell cycle.

It is known that after division the mother’s volume is slightly larger than that of a daughter.
Further, the later generations have slightly shorter times to budding and slightly shorter cell
cycle times.

Leslie proposed a general stratified population model that takes into account the differences
in generations that we adapt to yeast in [46]. As before, we will simplify the model by
considering logarithmic coordinates, normalized by the cell cycle length of the zero-th
generation. In these coordinates the cell cycle of the 0 generation is the unit interval I0 = [0,
1]. We will denote the S phase and R phases of the 0 generation by R = [r0, s0] and S = [s0,
t0]. The successive generations in these coordinates are represented by the intervals Ik = [0,
Dk] with Rk = [rk, sk] and Sk = [sk, tk].
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Note first that if Dk = 1, Rk = R0 and Sk = S0 for all k ≥ 1, then this model reduces to the
simplified model of the previous sections. Next we note that if these conditions
approximately hold then the above analysis can be applied in the same way as the small
random perturbations.

If there are marked differences in the parameters between generations, then we still might be
able to repeat a rigorous analysis. For example, suppose that Dk = 2/3 for all k > 0. Then in
the idealized models we could have 3 clusters in the 0-th generation and 2 clusters in the
higher generations. In this scenario, at division parents would be synchronized with a cluster
of daughters that was previously 1/3 of a cycle ahead of them. As another example, suppose
that the ratio above is 3/4, then the system could support 4 daughter clusters and 3 parent
clusters. In the same way, rational ratios of cell cycles could produce a variety of clustering
combinations.

In real systems, first of all, ratios close to the above idealized “resonances” could still lead to
clustering. Secondly, we may suppose that only the first few generations matter since higher
generations are represented in numbers that decay approximately geometrically.
Biologically, the successive generations beyond the second have not been found to exhibit
marked differences anyway.

5 Discussion
The main conclusion we wish to emphasize is that clustering seems to be a very robust
phenomenon; it occurs in all the models studied and for a large spectrum of parameter
values. This later point is quite important since the actual systems in question are so
complex that many of the parameter values are difficult to accurately determine.

The observed synchronous behavior here is not driven by the cell cycle itself, but by
feedback mechanisms acting on the cell cycle. However, the clusters must necessarily be an
integer in number and so the oscillations produced by clustering would naturally appear with
a period that is an integer fraction of the cell cycle period.

We observe two phenomena that possibly make negative feedback a more reasonable
explanation of yeast cell-cycle synchrony. First, negative feedback allows for large numbers
of clusters as in some experiments. Second, negative feedback is seen to initiate clustering
more naturally, which we observe in analysis of the idealized models. However, either
positive or negative feedback are possible agents of clustering and conclusive evidence of
either cause would need extensive biological modeling confirmed by experiment. Currently
there is a strong interest in modeling the details of the cell cycle.

Given the robustness of clustering, we suspect that it occurs in many other biological
systems with cell cycles. Specifically it could play a role in many types of microbiological
systems with cell cycles and some type of signaling, including bacteria [10,13,16,33,34]

A PDE models of the cell cycle
In this appendix we turn our attention briefly to partial differential equation approximations
of the models. The PDE models derived are presented to give some context to the ODE,
RDE and SDE models that we consider in the rest of the paper. Also, there is some history
of such models in the literature.

Boczko et al. Page 14

J Biol Dyn. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A.1 General PDE model
Let U (t, x) denote the distribution of cells within the cell cycle as represented by x ∈ [0, 1),
i.e.

where S(t) ⊂ S is the index set of cells that are living at time t and N might be taken as the
average number of active cells. As is customary, we may approximate the point distribution
by a more regular distribution u(t, x).

If there is no death or harvesting, then formally a distribution u(t, x) evolves locally under
(2.2) by the Fokker-Planck equation, which takes the form:

(A.1)

In this notation [u] denotes a functional dependence on u and possibly its history, for
example via an integral operator. Note that this derivation is not standard since the cells in
the distribution are not independent from each other, but coupled through the term a and the
resulting equation is inherently nonlinear. Thus for rigour, equation (A.1) requires further
justification.

If the culture is well mixed and harvesting is via removal of bulk material, as in a bio-
reactor, then all cells are equally likely to be harvested, regardless of state and the effect of
harvesting on the density will be proportional to u(t, x). Similarly, if death of a cell is
equally likely at any stage of the cell cycle then the harvesting and death can be incorporated
into the Fokker-Planck equation as a term −ku on the right hand side, i.e.:

(A.2)

To take cell division into account in the PDE model, we need to require the boundary
conditions:

(A.3)

Finally, in a PDE model we may represent a as an integral operator:

A.2 Periodic or Near Steady State
Next we suppose that the culture is growing in a bioreactor near a steady state or a periodic
state so that the cell division is approximately balanced by harvesting. Suppose also that
dependence of a on all variables besides x is small, or, that the dependence on t is averaged
over one period, and that γ is small. Then equation (A.2) may be approximated by:
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(A.4)

If we make the change of variables:

then an easy calculation shows that z(t, x) satisfies:

(A.5)

Further, the balance between growth and harvesting implies . This implies that
the boundary conditions on z are

(A.6)

The ordinary differential equation that generates (A.5) is simply:

on [0, 1). If we reincorporate the other influences on the growth rate then the unperturbed
and pertubed equations become:

(A.7)

and

(A.8)

Note that (A.5) with (A.6) is a conservative equation in the sense that ∫ z dx is preserved,
thus in the ODE (A.7) and RDE (A.8) the total number of cells considered should not
change. It is thus reasonable to take S to be a fixed set {1,2,…, N} and let xi(t) to be defined
for all t ∈ [0, T]. To accommodate division we may reset xi(t) to 0 each time it reaches 1.

A.3 Notes the PDE models and related work
The importance of the cell cycle has been recognized in hematopoiesis [14,15], as well as
yeast growth [18], where PDE models similar to (A.4) are considered with a assumed
constant. Thirty years ago Rotenberg [41] described the PDE model (A.4) for yeast growth,
but with constant coefficients and an externally applied periodic blocking at cell division.
He demonstrated numerically that clustering occurs in the model. Surprisingly, this article

Boczko et al. Page 16

J Biol Dyn. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



has received few citations and little attention. A trivial, but important step, common to our
work and that of Rotenberg, is normalization of the cell cycle. This provides a standard
domain on which to consider both ODE and PDE models.

In related recent work [52] Zhu et. al. have considered population balance models coupled
with a substrate balance equation, where a = a(s) with s the effective substrate
concentration. In [22] a = a(s, x) is admitted, but the focus is on a survey of possible
numerical methods, not analysis of the model, and clustering solutions are not discussed.
Note that the models considered in the current manuscript implicitly incorporate the
substrate balance equation (and also the density of any other signaling compounds) into the
term a via [u].
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Figure 1.
Percent Dissolved O2 (green), bud index (blue) and cell density (red). The bud index
(percentage of cells with buds) and cell density are both synchronized with the oscillation in
the level of dissolved O2. Moreover, time periods of sharp increases in bud index percentage
show that a cluster of cell (consisting of almost 50% of the cells) is passing into S phase
together. The doubling time of this culture is 7.8 hours. Two oscillations per 7.8 hour period
also is consistent with two clusters of cells.
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Figure 2.
Phases of the yeast cell cycle. DNA is replicated in the synthetic or S-phase. DNA synthesis
is preceded by the G1 phase, in which environmental cues are integrated and precursors are
acquired. Our model explores the implications of the existence of a responsive R-phase,
situated within the G1-phase, during which cells are can respond to signals by increasing or
decreasing their growth rate. The M phase ends in cell division.
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Figure 3.
Simulations of the graduated model with positive feedback. Here R = [.1, .2], S = [.2, .3], σ
= .02 and the linear factor was 5. (a) Histogram of the final distribution of cells within the
cell cycles. (b) Time-series of the final two time frames. One unit of time corresponds to one
unperturbed cell cycle.

Boczko et al. Page 22

J Biol Dyn. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Simulations of the graduated model with negative feedback. Here R = [.1, .2], S = [.2, .3], σ
= .02 and the linear inhibition factor was −5. (a) Histogram of the final distribution of cells.
(b) Time-series of the final two time frames.
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Figure 5.
Simulations of the graduated model with positive feedback. Here R = [.15, .2], S = [.2, .25],
σ = .01 and the linear factor was 10. (a) Histogram of the final distribution of cells. (b)
Time-series of the final two time frames.
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Figure 6.
Simulations of the graduated model with negative. Here R = [.15, .2], S = [.2, .25], σ = .01
and the linear factor was −10. (a) Histogram of the final distribution of cells. (b) Time-series
of the final two time frames.
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