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Abstract
We develop a framework for simulating a realistic, evolving social network (a city) into which a
disease is introduced. We compare our results to prevaccine era measles data for England and Wales,
and find that they capture the quantitative and qualitative features of epidemics in populations
spanning two orders of magnitude. Our results provide unique insight into how and why the social
topology of the contact network influences the propagation of the disease through the population.
We argue that network simulation is suitable for concurrently probing contact network dynamics and
disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study
of less well-documented diseases.
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Introduction
A question of fundamental importance to epidemiology is determining which characteristics
of a population are most salient in dictating the manner in which a disease will spread through
that population. That is, what is it about the demographics and connectivity of an underlying
contact network that creates the most prominent features of the landscape in which the disease
travels, and moreover how do changes to that landscape affect the dynamic behavior of the
disease? An extensive body of work has explored this question, demonstrating, for example,
that a global demographic such as population size can have profound effects on epidemic
occurrence, leading to large, regular epidemics with few fadeouts (periods during which no
one is infected) in populations above a certain threshold size, while populations whose size is
below this threshold experience only small, chaotic epidemics [1]. The large amount of work
on childhood diseases such as measles has shown that dynamic trends in the underlying social
structure--for example, the change in aggregation among schoolchildren with the onset and
end of the school term--create dynamic trends in epidemic profiles (epidemics tend to occur
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when children aggregate [1-3]). In addition, an increase in birthrate can cause a shift in epidemic
periodicity from biennial to annual in populations above a certain threshold [1,2].

To date much of the mathematical modeling explaining epidemiological data has employed
fully mixed compartmental models [1,2,4,5]. In the simplest of these models—the basic SIR
model—the population is understood to consist of individuals who are either susceptible (S),
infected/ infectious (I), or recovered/immune (R). The population is assumed to mix fully, and
interactions are governed by coupled differential equations such that the rate of change in the
number of susceptible individuals is proportional to -βSI, where β is the contact rate, and
individuals recover at a rate γ per unit time, such that the rate of change in the number of
infected individuals is proportional to βSI-γI (see, for example, the supplement in [3]). This
basic SIR model is quite successful in reproducing and explaining the real-world behaviors of
large and even some intermediate-sized populations for which the assumption of full mixing
is a good approximation. In fact, a handful of the model's more complex variants capture some
of the nuances of more complicated populations for which full mixing is not a fair assumption
[6,7]. However, as useful as fully mixed compartmental models are for large populations, their
utility tends to be drastically reduced as population size decreases and as population structure
(e.g. heterogeneity in connectivity) increases, since the assumption of full mixing fails to hold
and the mathematics needed to describe the heterogeneities in mixing becomes intractable.
Compartmental models also tend to do poorly at describing the initial or final stages of an
outbreak, when few individuals are involved in transmission and stochastic person-to-person
effects play an important role.

New avenues in epidemic modeling involving individual-based in-silico simulation of the
propagation of disease address some of the shortcomings of compartmental modeling [8,9].
For example, stochastic, spatially-structured, individual-based simulations were used to model
highly-contagious, aerosol-transmitted diseases, such as influenza [10,11]. Transmission in
these models is based on co-location of individuals in schools, in workplaces, on public
transportation etc. Generally these models define mixing groups such as households, schools,
workplaces, neighborhoods and communities, and each mixing group is assumed to be (close
to) well-mixed. Network-based models, on the other hand, simulate disease propagation in
person-to-person contact networks, without adopting a well-mixed assumption, and therefore
enabling an analysis of the relationships between the topology of contact networks and disease
dynamics at multiple scales. The work of Newman on epidemic spreading in random networks
[12], for example, revealed that the probability of a major epidemic depends on the average
degree (connectivity) of the network. Pastor-Satorras and Vespignani showed that epidemics
are always possible in populations whose interpersonal contacts are power law-distributed
[13]. Realistic and highly-structured contact networks formed from real-world statistics for
population composition were constructed to model SARS transmission in Vancouver, Canada
[8] and to capture the movement of individuals between locations in a city [14].

Most individual-based and contact network models (including those mentioned previously) are
demographically static representations; i.e. the implicit assumption is that demographic
changes such as births, deaths and marriages will not affect the structure of the mixing groups
or contact network, or will affect it at a rate much slower than the rate of disease spread in the
network. The question therefore arises whether the dynamics of a disease on a demographically
dynamic contact network will differ from the dynamics of the disease on such a network's static
counterpart. We explore answers to this question by simulating realistic and detailed underlying
topologies that are built from relevant statistical data and that are allowed to evolve according
to rates collected from statistical (demographic) data for real societies. With this framework,
we can then observe directly, for any population size, how the dynamics of the topology is
influenced by demographic changes, and how, in turn, demographic dynamics affect the
dynamics of disease.
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Here, we simulate a contact/social network that is a conglomerate of family networks, work
networks, school and preschool networks, and individuals, and that grows and changes
according to salient real-world statistical rates. We track both the dynamics (demographic and
topological) of the population and the dynamics of a disease propagating through this
population. Simulations have been generated for measles, and we present a comparison of our
findings to data found in [1-3]. We demonstrate agreement both in long-term epidemic profiles
as well as in a multitude of epidemiological measures for a range of population sizes from
10,000 to ∼250,000 individuals. Furthermore, our results provide unique insight into how and
why the social topology of the contact network influences the propagation of the disease
through the population.

Simulating social networks and disease dynamics
In our simulations individuals are represented by vertices (nodes) and their most salient social
interactions (familial, working, and (pre)school) are indicated by edges. Each node is
characterized by the age and gender of the corresponding individual, and has edges to family
members, classmates (if it is of school age) or work colleagues (if it is an adult). The social
network grows and changes over time due to births, marriages, deaths, immigration, and to
individuals joining and leaving schools and workplaces. The rates of these events are estimated
from statistical data such as age distributions, birth rates, marriage rates, immigration and
unemployment rates, etc. The social network algorithms are interlinked with the disease
algorithm, and two dominant timescales are adopted in the simulations: a yearly timescale for
“slow” social processes—i.e. marriages, formation of work groups and (pre)school groups—
and a weekly timescale for “fast” or distributed social processes—i.e. births, deaths,
immigration-- and for (most) disease updates. While statistical data is abundant for node-
related quantities in social networks, it is almost non-existent in regard to social edges in large
social networks. It is therefore necessary to establish logical rules that are based on observation
and “reverse-engineering” of the social underpinnings of social institutions (e.g. families,
workplaces, (pre)schools) to account for how and why people are connected (in terms of having
“social edges” between them) in a population. In the following subsections we briefly describe
the major social network algorithms we employed in our population model as well as the disease
algorithms (tailored for childhood diseases, such as measles) included in our simulations.

Dominant social processes
Basic demographics and social processes: births, deaths, age distribution and
immigration—For a simulated population of size N, an initial age distribution is adapted from
the vital statistics of London [15] and New York City [16], which have been interpolated and
averaged in order to determine values for each age between 0 and 95 in an arbitrary population.
The age of each individual in the population is incremented yearly, and for simplicity, all
individuals age simultaneously. During each yearly time step, women (roughly half the total
population) between the ages of 15 and 45 are eligible to have children, and the number of
children born to women of each age i in this range is determined according to documented
fertility rates (a rate per 1000 women of age i) [15,16]. Each newborn is represented by a new
node, and this node is integrated into the contact network by connections to his/her mother,
father and siblings (if any). The week at which each baby will be added to the population is
randomly chosen, as are the women who will become new mothers. Similarly, the number of
people of age i who will die in the current year is determined according to the documented
death rate of people of age i [15,16]. Individuals are randomly selected for death (unless their
age exceeds 95, in which case they are automatically removed from the population), and the
week of their removal is randomly determined. After death the corresponding node and all of
its edges are deleted from the network.

Christensen et al. Page 3

Physica A. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To allow an average annual population growth rate of roughly 0.6%, with simultaneously
maintaining a stable age distribution, both close to what is observed in many large western
cities [15,16], immigration rates were adapted from [15,17], and were interpolated and
averaged in order to find a rate for each age between 0 and 95. The number of people of age
i who are added to (or subtracted from) the population at time (year) t is equal to the product
of the number of people of age i-1 at time t-1 and the immigration rate for age i: ni(t) =
rini–1(t – 1). Nodes corresponding to adult immigrants are connected to workplaces, in
accordance with the (un)employment rate, at the next updating of workplaces, while school-
aged immigrants are immediately added to school groups. It is required that individuals under
the age of 18 leave the population with a family group, and to the extent that it is possible to
satisfy the immigration-by-age distribution, entire family groups are moved out of the
population if any family member is randomly chosen as an emigrant. The week at which an
individual will enter or leave the population is randomly determined; however, if the individual
is moving with a family, his or her entire family group will move at the same time.

Marriages and family graphs—Family groups form the first of four broad classes of social
subnetwork within the larger simulated population. In these simulations, a family group must
contain at least one, and no more than two (one male and one female) adults, and any number
of children. To simulate marriage, approximately 54% of the population over the age of 18
will be paired with a person of the opposite gender at any given time[15,16]. Marriage is not
a necessary condition for childrearing in our simulations, as single women can have children.
Each individual in a family group is connected to every member of the immediate family (the
subgraph is fully-connected) and remains so until the child(ren) turn 18; at this point only the
mother and father will remain connected. Because it occurs very infrequently, children whose
parents die are not reassigned to new families. The average family size is 3-4.

Work graphs—Work groups comprise the second of the four broad classes of social
subnetwork within the larger simulated population. Individuals have the option to enter the
workforce at age 18, and must exit from the workforce at age 65. Each year, based on (un)
employment statistics [15,18] approximately 6.8% of current 18-year olds will remain
unemployed, and all others will enter the workforce. The initial number of workplaces is
approximately 1% of the total population size [15,18], and is allowed to grow over time.
Workplace sizes are power-law distributed between a minimum size of four workers and a
maximum size equal to 1% of the total workforce. Each initial workplace is a hub-and-spoke
graph—in essence, a boss and employees. Each new worker joins a randomly-selected, existing
workplace, or initiates a new workplace whose size will be in keeping with the power-law
distribution. As new workers are added to the workplaces, they are attached uniformly
randomly to a minimum of three and a maximum of all other workers in the workplace. For
computational efficiency, for childhood diseases, where clustered populations of adults do not
greatly affect the transmission of the disease, we update the work groups only once per year.

Preschool graphs—A large preschool network, consisting of children between the ages of
2 and 5, forms the third of the four social subnetworks within the larger population. To
implement the fact that preschool-aged children can have a variety of group settings, from
daycare centers to informal playgroups, children in this age group are randomly connected to
between 0 and 10,000 N2–5/N other children, where N2-5 is the number of children between
the ages of 2 and 5 and N is the total number of people in the population. This connection
scheme leads to preschool-aged children having degrees that are exponentially distributed
between 0 and 100, with a mean degree of k=41.

School graphs—School groups form the final, and in the case of measles, arguably the most
important class of social subnetwork within the larger simulated population. All children
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between the ages of 6 and 18 are included in the school subnetwork. This subnetwork consists
of fully-connected, age-specific classes of maximum size equal to 40, that are, in turn,
interconnected by additional edges. Until every child of a given age has been assigned to a
class, classes containing children of that age will continue to be formed, so long as all other
classes of that age have already been filled to capacity. The interclass edges represent
connections between children who attend different classes in the same school, or social ties
between children in different geographic regions of the city resulting from extracurricular
activities, such as soccer clubs and church groups. The interclass edges of each child are
selected randomly (from a truncated normal distribution) according to the following rule:
children between the ages of 6 and 13 (elementary/middle school age children) can have a
maximum of 0.5*(size of their class) connections to children in other classes in this age range;
children between the ages of 14 and 18 (high school age children) can have a maximum of
0.75*(size of their class) connections to other classes in this age range; all children have at
least .25*(size of their class) connections to other classes. This difference in school edge
distribution that occurs when children reach the age of 14 accounts both for the fact that they
join middle schools, and for the fact that their extracurricular interests often change in ways
that allow them to make more social contacts. We tested the aforementioned linking parameters
for robustness with respect to their impact on disease dynamics. So long as no school-aged
children are without intraclass links, and so long as no child in the 6-13 year age range has
more than 0.8*(size of his/her class) intraclass links, the disease dynamics are robust; therefore,
the parameters chosen for these simulations fall within the stable range.

Each year, 5% of school edges are severed from the beginning of April until the end of June,
and again from the beginning of September until the beginning of December, to represent a
lower transmission season during which children might spend more time outdoors, in less
proximity to one another. In addition, all school edges are severed from the beginning of July
through the end of August, to simulate summer vacation. Only from December through March,
when children are forced to be in enclosed spaces with one another due to colder weather, are
all the school edges in place. With this scheme of seasonal edge removal and reinstitution which
is also applied to the preschool subpopulation, we are able to approximate school-term forcing
[2,3].

We note that we have implemented hierarchical clustering rules for school-aged children that
do not explicitly address the idea of school groups. That is, in our model, classrooms are not
agglomerated into school groups. We have instead assumed that links between children in
different schools are indistinguishable from links between children in different classrooms,
and all interclass links are therefore established with the same probability. For measles, this
assumption is justified: the by-age transmission rate for the disease is so high between children
of age 6 or 7, that a susceptible child of this age need only be connected to two other infected
children of the same age group to have more than a 90% chance of acquiring the disease. Thus,
whether or not classrooms are grouped into school compartments, infection of children in one
classroom of 6 or 7-year olds has a high probability of spreading infection to other classrooms
of the same age group. The population model would likely need to include an added level of
clustering to properly capture the dynamics of diseases for which the by-age transmission rate
is more homogeneous for all children between the ages of 6 and 18. One could, for example,
group classrooms into schools and assume that the probability of connection between classes
in the same school is less than the probability of connection between classes in different
schools.

Disease processes
Initial immunity by age, loss of maternally-acquired immunity, spread and
recovery—The initial immunity profile (i.e. what portion of the population, by age, has initial
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immunity to the disease) should be tailored on a by-disease basis. The immunity profile (by
age) for measles was adapted from [4] and is a set of input parameters at time t=0. For developed
nations, the immunity profile for measles is linearly distributed from 0% to 90% between the
ages of 0 and 11; it is assumed that 99% of the population over the age of 11 is immune to the
disease [4]. The susceptibility of immigrants is assumed to be higher (3.5%) than it is in the
native population (1%) [17].

All newborns are assumed to be immune to the disease for (in the case of measles) up to six
months after the week of birth. The specific week during this six month period at which
maternally-acquired immunity will be lost is randomly chosen from a Gaussian distribution
with mean equal to 12 weeks and standard deviation equal to two weeks.

Disease can spread from an infected individual to a susceptible individual if there is an edge
(contact) between the two. The probability of infection is also dependent on an age-specific
transmission rate, β, that is obtained from a matrix, called the Who Aquires Infection From
Whom (WAIFW) matrix, whose (a,b) entry represents a contact between an infected individual
in age group a and a susceptible individual in age group b. Therefore, at each disease time step,
t, the probability pj that a susceptible individual in age group b will become infected by its
infectious neighbors depends on the age-specific transmission rates between its neighbors and
itself, such that pj(t) = 1 − eΣiβbai, where ai represents the age group of neighbor i and the sum
goes over all neighbors. The values in the matrix used for these simulations were derived from
[19], using their mixing matrix structure for measles. Infected individuals recover after two
weeks; recovered individuals are immune to the disease.

Maintaining epidemics: “sparking”—Particularly in the case of smaller populations,
fadeouts (periods during which no one is infected, and after which further epidemics would be
impossible without reintroduction of the disease) are frequent. To ensure that there is always
some chance of infection at each weekly update of the disease algorithm, we introduce a
sparking process, whereby a susceptible individual will become infectious without contact with
an already infected individual in the population. The implicit assumption is that the “spark”
has had contact with an infected individual from outside the native population, has become
infected, and has introduced the disease into the native population. The spark is chosen at
random from all current susceptibles in the population with probability P(t) ∼ ln(N(t)), where
N(t) is the total population size at time step t. The increase of the sparking probability with
population size is supported by the fact that epidemics will fade out for long time periods in
small populations unless the disease is reintroduced, and that disease becomes endemic as
population size increases. We have evaluated several functional forms and found that the slow
increase of a logarithmic function works best.

Results
Social network topology

As described above, we simulate a dynamic contact network, meaning that the individuals
comprising the underlying social population are represented by vertices (nodes) in a network,
their most salient social interactions (familial, work, and (pre)school) are indicated by edges;
and that the vertices and edges change over time with rates based on statistical data, such as
age distributions, birth rates, marriage rates, immigration rates, etc. The network is dynamic
in that (1) the number of nodes grows in time, (2) the age of each node changes yearly, and (3)
the nodes' social edges change in number and type over time. In addition, a disease algorithm
propagates a disease with specific transmission and recovery parameters through the evolving
social network.

Christensen et al. Page 6

Physica A. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In order to explore the social topology of our networks, we simulated multiple replicates
(between 50 and 100 replicates for each starting size) whose initial populations ranged from
10,000 nodes to ∼250,000 nodes. Each of these networks was allowed to evolve according to
the social algorithm (but without disease propagation) for 25 years, such that given a 0.6%
annual population growth rate, a 15% increase in population was experienced. At five year
increments, salient topological characteristics and distributions of each social network, as well
as of the work, family, and (pre)school subnetworks were recorded. Remarkably, regardless
of network size, we found that after a period of roughly 10 years, the statistical distributions
in the macroscopic topology of our networks stabilized, even though the topology continued
to change on an individual-based level. For this reason, all results on large-scale social topology
reported herein are formed from data that has been aggregated over multiple replicates and for
a series of years.

One of the most important topological quantities dictating the manner in which a disease will
spread from one individual (node) to others is the degree (k) – the number of edges adjacent
to a node—that each individual has. For our simulations, when the entire network is looked at
in terms of a cumulative degree distribution (the probability that a given individual will have
degree higher than degree K), regardless of the total population size, the degree distributions
for the full populations are quite similar (Figure 1a). All networks exhibit nodes with between
0 and 100 connections (some of these may be multiple connections to the same person), and
the majority of nodes in the network do not have degree much greater than ∼40, since the
probability of having K>40 is only about 20%. The shallow slope of the region between K=15
and K=35 is due predominantly to (pre)school connectivity and secondarily to work
connectivity. This shallow sloped region is followed by a steeper segment (between K=35 and
K=50) that becomes increasingly switch-like as population size grows. The behavior of the
distribution in this segment is a function of school connectivity. Specifically, the cumulative
school degree distribution is switch-like in appearance for populations, but decreases more
gradually for smaller populations (Figure 1b), and can be superimposed on the transition region
between 40<K<55 in the total cumulative degree distribution if the preschool subgraph is
excised from the network.

The difference in behavior between the school degree distribution of large populations and that
of small populations is a result of a combination of factors. Large populations have far more
classes than small populations, and these classes are also far more likely to be filled to capacity
(40 students). Therefore the average school-aged child will have more school links in a larger
population than will a comparably-aged child in a smaller population, both because of a larger

average class size, and a higher average inter-class degree (  and ,
respectively). The net effect of population size on school degree is to cause the school degree
distribution (non-cumulative) to become more and more sharply peaked around k=50, during
the season of highest connectivity (transmissivity); during seasons of lower, but non-zero
connectivity, the distribution shifts slightly to the left. The corresponding non-cumulative
school degree distribution resembles a delta-function (at k=50) for large populations (Figure
1c), but is more normally-distributed for small populations (Figure 1d).

As with the cumulative degree distribution, the average clustering coefficient of each of our
networks—a topological quantification of the degree of interconnectedness of the neighbors
of each node in the graph—is largely independent of network size. The average clustering
coefficient of populations ranging in size from 10,000 nodes to ∼250,000 nodes falls in a
narrow range between 0.52<C<0.61. The relatively large average clustering coefficient
indicates that most nodes in the network belong to tightly-knit social subgroups, in agreement
with real-world social networks [12]. This high clustering coefficient of the simulated social
networks has a direct impact on the facility with which disease will propagate through the
population.
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Comparison of simulated measles dynamics to observed dynamics
We validate our framework by extensive tests and comparisons between the output from the
simulations and comparable features or plots of real-world data for a well-studied disease—
measles. Measles is a highly-contagious, airborne Morbillivirus that is spread by respirating
viral particles from the nose or mouth of an infected individual, either through direct contact
or through aerosol transmission. Over 90% of people without immunity to measles who share
a living space with an infected individual will contract the disease. In most cases, the disease
in not fatal, and usually has a recovery time of about two weeks. An abundance of public health
data, particularly for towns and cities in England and Wales in the period beginning just after
World War II and continuing to the present, documents case counts and vaccination reports
for measles, providing a wealth of information for time series studies at multiple population
sizes. In this subsection, we report comparisons for both small (∼104) and large (∼105)
simulated populations, demonstrating not only that their dominant epidemic features are in
excellent agreement with real data, but also that our simulations capture more subtle, yet
measurable features of measles epidemics that relate topological dynamics to disease
dynamics. We determined the average number of individuals infected during a given epidemic
<I(t)>, the average interepidemic period <Tinter>, and the average epidemic duration <τ>.
Additionally we calculated the distributions of other epidemiological quantities, including the
time spent in fadeout (when no one is infected) as a function of population size, the force of
infection by age cohort λ (the by-age likelihood of acquiring an infection), the basic
reproductive ratio Ro, (the expected number of secondary cases due to one infectious individual
in a fully-susceptible population) and responses of the epidemic attractor both to changes in
birth rate and to seasonal influences.

Infection profiles, interepidemic periods, and epidemic lengths—The infection
profiles of a sampling of simulated populations of starting size N=107,000 over a time span of
25 years (Figure 2a) agree qualitatively with data from [2] for the city of Blackburn (heavy
line), also with population of 107,000. Similarly, profiles for a simulated population 10 times
smaller (Figure 2b) concur with data from [2] for the city of Teignmouth (heavy line), whose
population is N=10,700. The disease trajectories are more reproducible (i.e. multiple
trajectories overlap) for the larger population, since fadeouts become less and less frequent.
We note that if the trajectories are plotted on a weekly timescale, variation among the
trajectories at all population sizes becomes apparent.

Table 1 compares the average number of infected individuals per unit time <I(t)>, the average
interepidemic period <Tinter>, and the average epidemic duration <τ> for the simulated
populations and the real data from [2], and demonstrates that simulation and data agree
quantitatively, as well as qualitatively.

Time spent in fadeout as a function of population size—It is well documented for
towns and cities in England and Wales that the amount of time a population spends in fadeout
—i.e. without any infected individuals— decreases as the size of the population increases
[2]: as the population size grows from N ∼104, time spent in fadeout quickly decreases from
60% to 0%. We find a similar trend for population sizes between N ∼104 and N ∼105 (Figure
3).

Force of infection by age cohort (λ)—The interplay between population dynamics and
disease dynamics in our simulations produces a force of infection profile—i.e. the by-age
likelihood (λ) of acquiring an infection—that peaks for children in their first year of primary
school, and that is independent of population size (Figure 4). For an individual simulation, a
force of infection profile was generated by recording, for each individual in the population that
contracted the disease during the simulation, the age at which the individual became infected.
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These ages at first infection were then tallied, and a distribution of normalized, by-age
probabilities of infection was generated. In order to better illustrate this distribution's
relationship to contact network topology, Figure 4 depicts the dominant trend of the distribution
—the peak at what would be 6 years of age—not in terms of individuals' raw ages at first
infection, but, instead, in terms of time relative to their entry into primary school. We have
chosen to depict the force of infection profile in this manner for two main reasons: (1) similar
trends have been noted in [4,5], and thus serve as benchmarks for measles simulations, and (2)
we find that the force of infection profiles are not robust to dramatic changes in the contact
network topology (assuming that disease parameters, namely recovery rate and WAIFW
matrix, remain the same); specifically, if we substantially increase or decrease the
interconnectivity among classrooms, the force of infection profile will change. A substantial
increase in connectivity among classrooms tends to broaden the peak in the force of infection
profile across those age groups for which the probability of infection is largest in the WAIFW
matrix (i.e. 5-9 years), while a substantial decrease in connectivity among classrooms tends to
leave peaks in the force of infection profile only in those age groups in which the disease was
sparked. The force of infection profile, derived from measles epidemics in England and Wales
[19], is plotted as a heavy line in Figure 4. The deviation between the simulated force of
infection profiles and the real profile for children in their second year of school (i.e. the fact
that simulations overestimate the real value) can be attributed to an oversimplification in the
simulated population: while it is likely that real first-grade classrooms consist of a mixture of
5 and 6-year olds, for computational ease we have chosen both to segregate classrooms by age,
as well as to consider 6 years to be the minimum age for entry into classrooms. These modeling
simplifications decrease the connectivity among 5-year olds and children between the ages of
6 and 13, and subsequently lower the probability of transmission (and, thus, the force of
infection) between 5-year olds and 6-13 year-olds. The lower probability of infection among
5-year olds creates a larger-than-expected reservoir of children who can still acquire the
infection when they turn 6, and while many of these children will become infected at 6 years
of age, others will not contract the infection until the following year; hence the larger-than-
expected force of infection for children in their second year of school. If children are aggregated
in five-year age groups as is often done for simplification (see, for example, [5]), the maximum
deviation (for 1 to 4 year olds) is less than 3% between the simulations and the real data.

Basic reproductive ratio (Ro) and population size—The basic reproductive ratio, Ro,
is the expected number of secondary cases of a disease following the introduction of one
infectious individual into a fully-susceptible population. The exact value of Ro cannot usually
be determined from incidence data, and various approximate theoretical methods are used to
estimate it. To provide an estimate not directly dependent on the WAIFW matrix, we have used
the approximate relationship R0 = L/<a> [2,20], where L is the life expectancy of the population
and <a> is the mean age at first infection. We used the reported life expectancy of females and
males in England from 1940-1960, i.e. Lf=73.2 years and Lm=66.8 years, respectively [21].
At each update of the disease algorithm, we polled the number of individuals who had become
infected at that time step, and recorded both their genders and their ages. From this information
we calculated the Ro values at that time step as R0 = f Lf/<a>f + (1 − f)Lm/<a>m, where f is the
fraction of females in the newly infected population, <a>f is the average age of newly infected
females and <a>m the average age of newly infected males. At the end of each complete
simulation, an average over all timestep-specific Ro values was obtained, and this was taken
to be the Ro value for the complete simulation. Our simulations demonstrate an Ro value (R0
=17.6 ± .75) that is independent of population size and that falls within the range of generally-
accepted reproductive ratio values for measles, 14< Ro<18 (as was also found in [1]). The data
plotted in Figure 5 are aggregate values from time series data, which, itself, shows little
variation from one year to the next, suggesting that Ro is not affected by the underlying
dynamics of the social network (on an annual timescale).
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Baby booms and epidemic period—As has been well documented in [2], a sudden and
dramatic change in the birth rate of a population, such as that experienced in England and Wales
in the late 1940's, will cause the period attractor for measles epidemics in large populations to
shift from biennial to annual. Over a ten year period (beginning at year 3 and terminating at
year 13 of the simulations) we increased the overall birthrate by 30% and monitored the
epidemic period during this simulated “baby boom”, between years 13 and 20, and between
years 20 and 30. The simulations indicate that the median epidemic period is strongly annual
during the baby boom era, but quickly returns to a biennial attractor once the boom has
terminated. The biennial attractor stabilizes as time progresses (Figure 6).

Seasonal dynamics of recurrent epidemics—Recent work by Stone et al. [3] has shown
that for seasonally-driven diseases, such as measles, seasonal changes—and therefore, the time
of year at which an outbreak begins or ends—can play a crucial role in determining whether
an outbreak will develop into a full-scale epidemic, or whether it will be curtailed and result
in a “skip” [3]. Stone et al. demonstrate that, in general, if an epidemic peaks early in a given
year (during months 0-3), the following year will usually experience a skip; that is, there will
either be no epidemic, or the epidemic will occur late and be curtailed by the changing of
seasons from high transmissibility to low transmissibility. As can be seen in Figure 7, we
observe similar trends in our simulations: for example, we see epidemics that peak early in the
high-transmissibility season of one year, followed by a late outbreak, which is ultimately
curtailed in the following year, due to the decrease in transmissibility with the onset of summer
vacation. Furthermore, we find that in all cases for which a potential epidemic has been
interrupted by a change in seasonal transmissibility, we can clearly differentiate skips from
continued, but decreased epidemics, since for the former, the number of susceptible individuals
continues to increase immediately following the epidemic peak, while for the latter, this is not
the case. Additionally, the mathematical criterion put forth in [3] to differentiate these
seasonally-induced skips from seasonally-weakened epidemics (namely that if a skip occurs,
the fraction of the population that is infected should be less than or equal to the local per capita
replenishment rate), is satisfied for each occurrence in our simulations.

R0 and school subgraph topology—Recall that the cumulative degree distribution of
school-aged children becomes increasingly switch-like around k=50 as population size grows
(see Figure 1). We previously noted that the reason for this effect is a combination of fuller
classrooms and more interclass connections in larger populations. Simply put, a child attending
a school in a large city is more likely to be in a full or overcrowded classroom, and will probably
contact more people in the course of his or her day in the hallways and lunchroom, on the
playground and bus, etc., than will the average student in a small, rural setting. Thus, there is
heterogeneity in connectivity that differentiates urban schools from rural schools. However,
we surprisingly still see an R0 value that is essentially independent of population size.
Compartmental modeling has assumed homogeneity in connectivity between schools in large
populations and schools in small populations as the root cause behind the size-independent
value of R0 [2]. The results of our simulations suggest that this may not be the case, and that,
instead, the mean age at first infection may have more to do with the independence of R0 across
population sizes.

We find that regardless of population size, infection is most likely to gain initial footing in a
classroom of median age six years old, in part because this is where transmission rates are
highest. In smaller populations, where the interclass links are sparse and where the number of
classes within a given age group tends to be small, infection of one class will not necessarily
lead to infection of more classes (Figure 8a) and therefore the mean age at first infection in
smaller populations will generally show a strong bias towards six years of age (as is indicated
by the peak in the force of infection profile at age six). On the other hand, in larger populations,
we observe a “class-hopping” effect in epidemic dynamics, whereby if one classroom in a large
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population becomes infected, the high density of interclass links ensures that other classes of
the same age will also immediately become infected (Figure 8b). Since the transmission rate
among six-year olds dominates other transmission rates, we again see a strong biasing of the
mean age at first infection towards six years of age. Thus a simple explanation for why R0
remains independent of population size lies in the fact that as population size grows, the mean
age at first infection does not deviate—it is (on average) six years old, regardless of population
size.

We also find that transmissibility between children of elementary school age (6-13 years) and
children of high school age (14-18 years) is sufficiently low so as to prevent jumping of the
disease between elementary schools and high schools in both small and large populations, even
though the density of elementary-high school links is higher in larger populations. Thus, unless
an outbreak initiates in a high school, it will almost certainly be restricted to elementary-aged
children, ultimately preventing the R0 value from changing with population size. We can
predict that this behavior would not be observed in a disease with a higher transmissibility
between age groups and instead the disease will have a higher spread in large populations, and
therefore a higher R0 value.

Large-scale epidemic occurrence and school edge distributions—We define
global epidemics to be those epidemics whose size is at least half of the maximum size of all
observed epidemics for a given simulation. We also define nonrecovered intraclass edges as
those edges that connect infected or susceptible schoolchildren within the same class, and we
form the degree distribution for these edges. This distribution changes in time both as the
disease propagates through the school network and as the topology of the school network
changes due to social dynamics. Remarkably, we find that a peak at a high degree in this
nonrecovered intraclass degree distribution during a given year is a strong predictor of a global
epidemic's occurring during that year.

We find that nearly all global epidemics in small and large populations (N=104 and N=105,
respectively) are correlated with high-degree peaks in this type of non-recovered distribution
(Figure 9a). When this condition is met, the majority of susceptible and infected schoolchildren
in large and small populations will have a school degree close to the degree at the peak of the
distributions in Figures 1c,d, respectively. Interestingly, the median fraction of epidemics
correlated with a high-degree intraclass peak is significantly lower for larger populations. For
small populations, the complete infection of a single, full classroom of susceptibles—i.e. a
subgraph for which the nonrecovered intraclass degree is maximal-- is an outbreak that is
oftentimes large enough to be considered a global epidemic. Since infection of only one or two
classrooms is the most common type of outbreak in small populations, if most of these
outbreaks can be classified as global epidemics, most global epidemics will be strongly
correlated with a peak in the nonrecovered intraclass degree distribution. In large populations,
where the pathogen is able to invade multiple classrooms, it is still possible to generate a global
epidemic even if classrooms contain some number of recovered individuals—i.e. if the
nonrecovered intraclass degree is not maximal.

A closer inspection of the relationship between global epidemic occurrence and high-degree
peaks in the nonrecovered intraclass degree distribution reveals that the ratio of the degree at
which the peak occurs (kpeak) to the maximum degree in the distribution (kmax), is always
greater than 0.5 (regardless of the population size) for epidemics that are correlated with peaks
in the nonrecovered intraclass degree distribution. Moreover, the fraction of all global
epidemics that can be correlated with peaks in the nonrecovered intraclass degree distribution
increases from ∼.01 to ∼.18 as the ratio kpeak/kmax increases from 0.5 to 0.8, and then jumps
to ∼0.5 as the degree ratio reaches 0.9 (Figure 9b). The fact that both small and large populations
exhibit this trend suggests that the ratio kpeak/kmax serves as a threshold condition for large-
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scale epidemic occurrence: namely, if kpeak/kmax ≥0.9, populations are likely to experience
global epidemics. Thus a network property of the contact network, more precisely of the contact
network that is still visible to the disease, predicts the future dynamic behavior of the network.

Conclusions
Computer simulation of detailed, evolving social networks and disease dynamics promises to
bring to light many questions, such as the previously-mentioned R0 mystery, that may prove
extremely valuable to epidemiological modeling, because such simulation affords us the
opportunity to explore (on multiple scales) changes in topology concurrently with disease
dynamics. Synthesizing the contact network data and some of the information gleaned from
our disease dynamics simulations provides a layer of insight into the interrelationships between
the dynamics of the social contact network and the dynamics of the disease propagating on that
network that cannot be readily obtained via compartmental modeling. In particular, this
network-based model facilitates a detailed understanding of the causal social-topological
mechanisms behind disease propagation in cases for which fully-mixed models cannot be
employed because of a high degree of heterogeneity in social contacts. Our results for a fairly
simple set of algorithms reproduce the dominant dynamic trends for measles in populations
that span two orders of magnitude, suggesting that the algorithms can be successfully tailored
to less well-studied diseases, or to well-studied diseases in novel social settings. For example,
by changing the disease parameters (the recovery rate and the input matrix of transmission
rates by age cohort), pathogens such as flu or SARS could be studied. On the other hand, input
distributions for the social networks' formative algorithms could be changed to create a
population that resembles a large Third World city; simulations for measles propagation in this
type of social network could shed light on how and why the age strata of Third World
populations affected by measles are markedly younger than their First World counterparts.

A critical next step for network-based epidemiology in general (and, perhaps for this model,
in particular), will be to parameterize network models and update the formative algorithms as
real-world social network interaction data becomes available—i.e. as the real-world edge (who-
is-connected-to-whom) data becomes available—for different social networks. Having real-
world edge data for large social networks will add to our social network models quantitative
precision that is, at present, not achievable. Various groups around the world are beginning to
use detailed census data in tandem with mapping human mobility patterns[22-28] to acquire
this type of edge information for school and work groups, making such advances a distinct
possibility within the next few years.
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Figure 1.
(a) Total cumulative degree distribution (plotted on a log-linear scale) and (b) cumulative
school degree distribution for populations of size ∼105 (▲) and ∼104 (○). The probability P
(k>K) is plotted for each degree in an averaged set of typical simulated networks. The switch-
like behavior of the cumulative distribution for the larger graph is a reflection of a delta
function-like non-cumulative distribution around K=50. (c,d) Non-cumulative school degree
distributions. The probability, P(k), is plotted for each degree in an averaged set of typical
simulated networks of (c) ∼105 (▲) and (d) ∼104 (○) nodes. The larger population exhibits a
delta function-like peak at k=50, while the degree distribution of the smaller population is more
normally-distributed.
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Figure 2.
Infection profiles for a sampling of 3 replicate simulated populations (Replicate 1=*; Replicate
2=□; Replicate 3=▲) of starting size N=107,000 (a) and N=10,700 (b) over 25 years. Counts
are aggregated monthly. Peaks that contain two or more symbols indicate reproducible
epidemics that occur at identical times in two or more replicate simulated populations. In figure
2a, the heavy line indicates pre-vaccine era data obtained for the city of Blackburn, England
for a period of 20 years; in figure 2b, the heavy line indicates pre-vaccine era data for the city
of Teignmouth, England for a period of 20 years.
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Figure 3.
Proportion of time a community is in fadeout, as a function of community size. The data points
are averaged values for five simulations at each population size.
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Figure 4.
Force of infection profile. Data markers differentiate among population sizes; filled diamonds
(◆) denote the real data, open diamonds (◇) indicate N=10,000, open circles (○) denote
N=20,000, open squares (□) indicate N=50,000, and open triangles (Δ) denote N=100,000.
Real data, derived from epidemic counts in England and Wales [19] is indicated by the heavy
line in the plot. The distributions peak during the first year of primary school and are robust to
changes in population size.
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Figure 5.
Basic reproductive ratio as a function of population size. For each population size, the box plot
has been aggregated over 10 simulations, each spanning 30 years. The bars (lowest and highest)
extending from the dashed lines in each plot indicate the 5th and 95th percentiles for Ro values
at a given population size, while the lower and upper bounds of each box indicate the first and
third quartiles, respectively. Datapoints outside the whiskers are considered to be outliers (and
therefore, not of statistical significance). The bar within each box gives the median value for
each data set.
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Figure 6.
Epidemic periods in a population of size N>105 during a simulated baby boom (years 3-13),
following the termination of the boom (years 13-20) and long after the termination of the boom
(years 20-30). During the baby boom the birthrate has been increased by 30%. The bars (lowest
and highest) extending from the dashed lines in each plot indicate the 5th and 95th percentiles
for epidemic periods at the given population size, while the lower and upper bounds of each
box indicate the first and third quartiles, respectively. The bar within each box gives the median
value for each data set.
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Figure 7.
An example of seasonally-driven dynamics. Dashed lines indicate the beginnings of years;
solid line indicates the end of term. The early-peaking outbreak in the first year causes a late-
breaking epidemic in the following year. Although this outbreak begins to gain footing, it is
curtailed by the end of the school term, and the subsequent drop in transmissivity in late June.
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Figure 8.
Box plot of the number of classes, by age, infected over the course of an epidemic in a
population of (a) 10,000 individuals, and (b) 100,000 individuals. Due to the sparse
observations of infected classes of age >7 the data for ages 8-18 was aggregated. The bars
(lowest and highest) extending from the dashed lines in each plot indicate the 5th and 95th

percentile for average number of classes infected in a given epidemic, while the lower and
upper bounds of each box indicate the first and third quartiles, respectively. Datapoints outside
the whiskers are considered to be outliers (and therefore, not of statistical significance). “Class-
hopping” is evident in the larger population, where the median number of classes infected per
epidemic is above one; this trend is not present in the smaller population.
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Figure 9.
Fraction of all global epidemics correlated with a peak in the distribution of nonrecovered
intraclass degrees in small and large populations (given by population in Figure 9a). (b) The
cumulative fraction these epidemics associated with peaks for which the ratio of the peak degree
(kpeak), to the maximum degree in the distribution, (kmax), attains the value indicated on the x-
axis. The relationship is independent of population size and increases abruptly as this ratio
increases from 80% to 90%. Values for a population of 104 individuals (○) and 105 individuals
(■) have been plotted.
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Table 1

Comparison of epidemic features in large and small populations in simulation versus real data. <I(t)> indicates
the average number of infected individuals per unit time, <Tinter> represents the average inter-epidemic period
and <τ> is the average epidemic duration. The simulation results were averaged are over 50 simulations for
N=107,000 and 100 simulations for N=10,700. Each simulation represents a different contact network and
transmission timecourse.

Data Set <I(t)> <Tinter> <τ>

Blackburn ∼500 1-2 years 41 weeks

107,000 ∼413 2.02 ± 1 years 40 ± 2 weeks

Teignmouth ∼81 1-4 years 38 weeks

10,700 ∼88 4 ± 3.31 years 40 ± 2 weeks
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