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Purpose: This article describes a common methodology and measurement technique, encompass-
ing both conventional �helical and axial� CT scanning using phantom translation and cone beam �or
narrow fan beam� CT scans about a stationary phantom. Cone beam CT systems having beam
widths along the z-axis wide enough to cover a significant anatomical length �50–160 mm� in a
single axial rotation �e.g., in cardiac CT� are rapidly proliferating in the clinic, referred to herein as
stationary cone beam CT �SCBCT�. The integral format of the CTDI paradigm is not appropriate
for a stationary phantom, and is not useful for predicting the dose in SCBCT, nor for perfusion
studies or CT fluoroscopy. Likewise, the pencil chamber has limited utility in this domain �even one
of extended length�.
Methods: By demonstrating, both experimentally and theoretically, the match between the dose

distribution f�z� for a wide cone beam and that due to an axial scan series D̃�z�, it is shown that the
dose on the central ray of the cone beam f�0� is both spatially colocated and numerically equal to
the dose predicted by CTDI for the axial series; and thus f�0� is the logical �and unique� choice for
a SCBCT dose-descriptor consistent with the CTDI-based dose of conventional CT. This dose f�0�
can be readily measured using a conventional �short� ionization chamber. Additionally, Monte Carlo
simulations of Boone �J. M. Boone, “Dose spread functions in computed tomography: A Monte
Carlo study,” Med. Phys. 36, 4547–4554 �2009��, expressed as a scatter LSF �or DSF�, allow the
application of a convolution-based model �R. L. Dixon, M. T. Munley, and E. Bayram, “An
improved analytical model for CT dose simulation with a new look at the theory of CT dose,” Med.
Phys. 32, 3712–3728 �2005�� of the axial dose profile f�z� for any primary beam width a �any
n�T�, fan beam and cone beam alike, from a single LSF kernel; its simple form allows the results
to be expressed as simple analytical equations. The experimental data of Mori et al. �S. Mori, M.
Endo, K. Nishizawa, T. Tsunoo, T. Aoyama, H. Fujiwara, and K. Murase, “Enlarged longitudinal
dose profiles in cone-beam CT and the need for modified dosimetry,” Med. Phys. 32, 1061–1069
�2005�� from a 256 channel cone beam scanner for a variety of beam widths �28–138 mm� are used
to corroborate the theory.
Results: Useful commonalities between SCBCT and conventional CT dose are revealed, including
a common equilibrium dose parameter Aeq, which is independent of z-collimator aperture a �or
n�T�, and a common analytical �exponential growth� function H��� describing the relative ap-
proach to scatter equilibrium at z=0 for both modalities �with �=a or �=scan length L�. This
function exhibits good agreement with the above-mentioned cone beam data of Mori et al. for H�a�
as well as with data H�L� obtained from conventional CT scanning �R. L. Dixon and A. C. Ballard,
“Experimental validation of a versatile system of CT dosimetry using a conventional ion chamber:
Beyond CTDI100,” Med. Phys. 34�8�, 3399–3413 �2007�� for the same directly irradiated, phantom
length L=a.
Conclusions: This methodology and associated mathematical theory provide a physically self-
consistent description of dose between stationary phantom CT and conventional CT, and has pre-
dictive capabilities which can be used to effect a substantial reduction in data collection; provide a
bridge between modalities; and predict the relevant peak doses f�0� for perfusion studies. © 2010

American Association of Physicists in Medicine. �DOI: 10.1118/1.3395578�
I. INTRODUCTION
CT systems having beam widths along the z-axis wide
enough to cover a significant anatomical length in a single

axial rotation are rapidly proliferating in the clinic. Some
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utilize a conventional CT platform and can provide both con-
ventional helical or axial scanning motions involving patient/
table translation, as well as single �or multiple� rotation ac-

quisitions at a fixed z location without table motion �used, for
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example, in acquiring cardiac images using subsecond
scans�, having selectable nominal cone beam widths of 40–
160 mm in one 320 channel system recently introduced. The
methodology introduced herein for stationary phantom cone
beam CT �SCBCT� also applies to any CT scan without table
motion �whether wide cone beam or narrow fan beam� in
applications ranging from CT fluoroscopy, brain perfusion,
and multiphasic liver scans.

A primary objective of this paper is the description of a
self-consistent methodology which can bridge the gap be-
tween the dose accrued in conventional helical or axial scan
modes in which the phantom is translated through a distance
L; and CT operation without table/phantom motion, usually
�but not necessarily� utilizing wider “cone beams” having
variable lengths of 40–180 mm along z.

The experimental data of Mori et al.1 obtained on a 256
channel cone beam CT scanner �the prototype of the above-
mentioned 320 channel scanner� are used to corroborate the
theory and conclusions. This system and data set are also
representative of the commercially available 320 channel
system; the basic principles are unchanged.

For brevity, the two modalities are referred to as

A. “Conventional CT.” Axial or helical scan acquisi-
tions using multiple rotations, regularly spaced along z
due to table/phantom translation over �−L /2,L /2�.

B. “SCBCT.” Image data are acquired using single or
multiple axial rotations about a stationary phantom
�table advance b=0, scan length L=0�. �The results are
also applicable to narrow “fan beam” CT using a station-
ary phantom as used in perfusion studies�.

It will be shown in Sec. II that the dose on the central ray
of the cone beam f�0� is both spatially colocated and numeri-
cally equal to the dose predicted by CTDI for a conventional
scan series; and thus f�0� is the logical �and unique� choice
for a SCBCT dose-descriptor consistent with the CTDI-
based dose used in conventional CT. In addition to a com-
mon mathematical formalism which describes the dose for
both modalities, there is an identical measurement technique
applicable to both cases utilizing a short ionization chamber.2

Both modalities are shown to possess a common equilib-
rium dose parameter Aeq which is independent of
z-collimator aperture a �or n�T�, and a common analytical
function H��� is derived describing the relative approach to
scatter equilibrium at z=0 �with �=a for the stationary phan-
tom or �=scan length L�. This commonality provides a
crossover or bridge between conventional and stationary
phantom CT, such that one can predict the complete data set
for both modalities from a single measurement of the central
�peak� dose f�0� resulting from a single axial rotation at a
given aperture setting a. From this, one can predict the
SCBCT or fan beam peak dose f�0� for any beam width a,
and the conventional CT dose �as predicted by CTDI� for any
scan length L �including the limiting equilibrium dose� for
any collimator aperture setting a and any pitch p. Although

the crossover between modalities is an interesting aspect of
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the theory developed, it is by no means the only application
or goal of the theoretical development to follow.

The glossary of parameters in the Appendix is provided as
a quick reference for the following development and
throughout.

The following development concentrates on the actual in-
phantom dose for both conventional CT involving phantom
translation, and stationary phantom CT such as SCBCT, di-
rected toward creating a consistent approach to CT dose as-
sessment which provides continuity of dose and physical in-
terpretation between these two modalities. To that end, it is
necessary to review the dose-descriptors used in conven-
tional CT �and the CTDI paradigm�.

II. THEORY

II.A. Conventional CT scanning using table/phantom
translation

II.A.1. Accumulated dose equations for helical
or axial scan trajectories utilizing table/phantom
translation along z

The best way to establish the correct and unequivocal
physical interpretation �and limitations� of the CTDI equa-
tion and its related dose equations is to derive it. A simpler
derivation3 �compared to the original4� using convolution
methods is outlined below �the resulting equations are also
necessary and pertinent to this paper�.

II.A.1.a. Axial scanning. One assumes a series of N=2J
+1 rotations, each producing an identical axial dose profile
f�z� centered at z�=kb �where k denotes the kth rotation�;
spaced at equal intervals b; and dispersed over a total phan-
tom length L=Nb along z as a result of translating the table
�and phantom� by a distance b between each rotation �“step
and shoot”�. This results in a quasiperiodic �or oscillatory�
dose distribution3 of fundamental period b, given by the su-
perposition of displaced profiles shown below

D̃N�z� = �
k=−J

J

f�z − kb� = f�z� � �
−J

J

��z − kb� , �1�

also expressed above as the convolution of f�z� with a finite
“comb” of �-functions, which replicate f�z� at each location
z�=kb. This assumes “shift-invariance” along z �identical
dose profiles at each z�=kb spaced at equal intervals b�,
which also requires a shift-invariant phantom having a con-
stant cross-section and composition along z �including, but
not restricted to, uniform cylindrical or elliptical phantoms�.
The pencil chamber measurement method is likewise foiled
by any loss of shift-invariance.

This dose can be smoothed3 by taking the “running mean”
�averaging over z�b /2 at each z�, which is equivalent to
convolving Eq. �1� with the unit-area rect function
b −1��z /b�, which in turn collapses the �-function comb into
the longer rect function ��z /L� of length L=Nb; resulting in
the convolution equation3 for the smoothed dose DL�z� accu-
mulated at each value of z for a scan length L and given by

Eq. �2� below
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DL�z� =
1

b
f�z� � ��z/L� =

1

b
�

−L/2

L/2

f�z − z��dz�, �2�

where f�z� includes both the primary beam and scatter con-
tributions f�z�= fp�z�+ fs�z� and is therefore much broader
than the primary beam width �FWHM� a, where a is equal to
the z-collimator aperture geometrically projected onto the
axis of rotation �AOR�.5 MDCT requires that a�nT in order
to keep the penumbra beyond the active detector length nT.
Evaluation of Eq. �2� at z=0 results in the accumulated dose
DL�0� at the center of the scan length L as given by Eq. �3�
below

DL�0� =
1

b
�

−L/2

L/2

f�z��dz�, �3�

which �for axial scans� represents an average dose over the
small interval �b /2 about z=0, where b is typically small
compared to the total scan length L=Nb.6 Note, however, the
implicit dependence of the integration limits �L /2 and the
divisor b, physically related by L=Nb. We are now done.
These three equations provide the complete physical basis
for conventional CT dosimetry. The derivation of Eq. �3�
outlined above is equivalent to the original derivation,4

which led to the definition of MSAD and CTDI.
Equation �3� for DL�0� represents the basic equation upon

which the CTDI methodology is based, in which the divisor
b of the integral physically represents a table advance per
rotation, with CTDIL itself defined4 as the value of DL�0� in
Eq. �3�, resulting from a specific table increment �scan inter-
val� b=nT, which interval produces “contiguous” axial scans
in the image domain �leaving no gaps in the acquired image
data�. Thus, physically, CTDIL is equal to the accumulated
dose at the center �z=0� of the scan length �−L /2,L /2�, for a
table advance b=nT= “N�T” �a generalized pitch
p=b /nT=1�. Substituting b=nT into Eq. �3� gives the famil-
iar CTDI equation

CTDIL =
1

nT
�

−L/2

L/2

f�z��dz�, �4�

which one can also express in terms of DL�0� from Eq. �3�
and pitch p as CTDIL= �b /nT�DL�0�= pDL�0�.6–8

There is actually no imperative to have a separate equa-
tion for CTDIL, since it simply represents a special case of
Eq. �3�, namely, a particular value of DL�0� corresponding to
a specific table increment b=nT �a pitch of unity�, and thus
nT in the CTDI equation physically represents a table
increment.

Measurement of the integral in Eqs. �3� and �4� using a
pencil chamber of fixed-length � only allows prediction of
the accrued dose at z=0 for a scan length L=� �e.g.,
L=100 mm as for CTDI100�. Additionally, assigning a fixed
integration length L �e.g., 100 mm� to CTDIL breaks the
required coupling L=Nb between the divisor b and the inte-
gration limits �L /2. For conventional CT, as L becomes
large enough to completely span the very long scatter tails of

f�z� at L=Leq, such that no additional scatter can reach z=0
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for L�Leq �symbolically L→��, then DL�0� approaches its
limiting value, the equilibrium dose Deq, written as

Deq�a/b� =
1

b
�

−�

�

f�z��dz� 	 �a/b� . �5�

Since Deq depends �explicitly� on the inverse of table incre-
ment b, and is directly proportional to the collimator aperture
a implicitly through the infinite integral of f�z� �as shown in
Sec. III B�, then Deq is directly proportional to a /b.

II.A.1.b. Helical scanning. Equations �2�–�5� have like-
wise been shown3 to apply to helical scanning at a pitch p
=b /nT if an angular average over 2
 at a fixed z is used to
smooth �average� the peripheral axis dose distribution rather
than the longitudinal running mean used for axial scans �the
dose for helical scans on the phantom central axis is
nonoscillatory, requiring no averaging, and is given by Eq.
�2��. The longitudinal and angular averages have been
shown5 to converge at values of z where dose equilibrium
has been established.

The derivation of Eqs. �2�–�5� for helical scanning3 is
briefly outlined below, since it more clearly illustrates some
important properties of DL�0� and CTDIL. The dose rate on
the central axis is independent of beam �gantry� angle �,

hence the dose rate profile is ḟ�z�=�−1f�z�, where � is gantry
rotation time. Translation of the table and phantom at veloc-
ity v produces a dose rate profile in the phantom reference

frame expressed as a traveling wave ḟ�z , t�=�−1f�z−vt�, thus
the dose accumulated at a given z as the profile travels by is

given by the time integral of ḟ�z , t� over the total “beam-on”
time t0, namely, DL�z�=�−1�−t0/2

t0/2 f�z−vt�dt. Conversion to the
spatial domain using z�=vt, scan length L=vt0, and a table
advance per rotation b=v� �a pitch of p=b /nT�, leads di-
rectly to the same convolution equation for DL�z� �Eq. �2��
previously derived for axial scans, and from which Eqs.
�3�–�5� also follow as before; however, DL�0� and CTDIL in
the helical mode both refer to the dose precisely at z=0 �and
likewise on the peripheral axis where an angular average3 is
used�.

If the table and phantom remain stationary �v=0�,
the time integral of the dose rate ḟ�z�=�−1f�z� is simply
DL�z�= �t0 /��f�z�=Nf�z�; likewise, in the limit v→0,
L=vt0→0, the integration limits �L /2→0; thus the integral
format of Eqs. �2�–�4� collapse, and all converge smoothly to
Nf�z� or Nf�0�. Likewise, for axial scanning, setting the table
increment to b=0 in Eq. �1� reduces the summation to

D̃N�z�=Nf�z�, and the integral format of Eqs. �2�–�4� for
axial scanning �including Eq. �4� for CTDIL� also collapse,
converging to Nf�z� or Nf�0� in the limit b→0, L=Nb→0.
This convergence is readily seen using Eq. �3�. As L be-
comes very small, the integral can be approximated by f�0�L,
thence DL�0���1 /b�f�0�L=Nf�0�, or formally as
lim
L→0

DL�0�=Nf�0�.

The quantities b and L=Nb are dynamic variables of
table/phantom motion �and intimately coupled thereby�;

therefore, artificially constraining one or both in Eqs. �2�–�4�
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�such as fixing L in CTDI100� will foil the convergence to
Nf�0� as b→0, and thus negate its relevance to SCBCT.
Neither Nf�z� nor Nf�0� contain nT, which has no relevance
in SCBCT dosimetry.

The following important points are clear from the forego-
ing:

�1� The integral of f�z� over �−L /2,L /2� for DL�0�� in Eq.
�3� and for CTDIL in Eq. �4� is solely the result of phan-
tom translation over the distance L=vt0=Nb; moreover,
the integration limits �L /2 and the divisor of the inte-
gral �the table increment b=v�� are necessarily coupled
via L=vt0=Nb �coupled by couch velocity v for helical
scans�.

�2� The integral of f�z� over �−L /2,L /2� does not imply any
averaging of the dose over the scan length L, but rather
CTDIL predicts the dose precisely at z=0 �at the center
of the scan length �−L /2, L /2�� for helical scans at a
pitch of unity.

�3� Physically, this integral represents a summation of the
decreasing incremental contribution to the dose at z=0
by the scatter tails of the traveling profile as it gets fur-
ther from the origin. And it is this lateral dispersal of the
dose profiles due to phantom translation which results in
the central dose at z=0 reaching a limiting equilibrium
value Deq for large scan lengths.

�4� CTDI always predicts the dose at �or about� the center of
the scan interval �−L /2,L /2� at z=0.

�5� For a stationary phantom �v→0, and b=v�→0,
L=vt0→0�, and since the integration length L→0, the
integral format of Eqs. �2�–�4� “collapses,” smoothly
converging in this limit to the nonintegral form
DL�z�=Nf�z�, or DL�0�=Nf�0�, which increase without
bound with N, since the individual dose profiles �de-
prived of lateral dispersal due to phantom translation�
simply pile up on top of each other.

The properties �1�–�5� listed above also apply to axial
scanning, which can be understood if one realizes that in this
case, the integral over �−L /2,L /2� in Eqs. �3� and �4� repre-

sents the smoothed version of the discrete summation D̃N�0�
in Eq. �1�.

In summary, for conventional CT scanning, CTDIL �or
any dose DL�0�= p−1CTDIL derived from it� always repre-
sents the accumulated dose at �or about� the center of the
scan length �−L /2,L /2� at z=0. This also applies to MSAD,4

CTDIw �Ref. 9�, and CTDIvol, the latter two are essentially
planar averages over the area of the central scan plane at
z=0, since no averaging over the scan length L has been
performed.

II.B. The case of the stationary phantom

The dose distribution produced by a single axial rotation
of a wide cone beam or a narrow fan beam having a primary
beam width �FWHM�=a �where a is also the projected
z-collimator aperture setting� is denoted by f�z� as before,
and by Nf�z� for N rotations without table translation, with a

central ray peak dose Nf�0�.
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Relating the dose and the dose distribution in SCBCT to
that of conventional CT,

�1� The fact that CTDIL represents the dose at the center
�z=0� of the scan length �−L /2,L /2� in conventional
CT suggests that its direct analog in the case of SCBCT
would likewise be the dose Nf�0� at the center z=0 of
the beam �−a /2,a /2� �on the “central ray” of the cone
beam�; corresponding to the location of the maximum or
“peak” dose for both modalities.

�2� This conclusion is further supported by the physics
which suggests that there should be little difference in
the dose distribution f�z� produced by a wide primary
beam of width a �a cone beam� and the axial dose dis-

tribution D̃N�z� produced by a series of N adjacent, nar-
row primary beams of width â=a /N, spaced at intervals
b= â=a /N, resulting in the same total energy deposition
in the phantom as the cone beam, while “directly irradi-
ating” �with the primary beam� the same length of phan-
tom L=Nb=a.

�3� Using the beam model of Eq. �7� and D̃N�z� in Eq. �1�, it
is straightforward to show that the dose distribution

D̃N�z� for the axial scan series described in �2� above for
b= â=a /N and L=a is equal to that for the cone beam of

width a �f�z�= D̃N�z��; moreover, since D̃N�z� is smooth

�since b= â�, the peak doses at z=0, DL�0�= D̃N�0�
= f�0� are all equal.

�4� This correspondence is directly confirmed using the ex-
perimental data of Mori et al.1 from a 256 channel cone
beam CT system for which dose profiles for all available
cone beam widths �apertures� a ranging from 28 mm
�rounded up from 27.5 mm�, up to a=138 mm were
measured. Figure 1 depicts the comparison described in
�2� and �3� above in which the axial dose distribution

D̃N�z� produced by the superposition �summation� of N
=5 axial profiles of width â=28 mm, spaced at like in-
tervals b= â=28 mm, where L=Nb=140 mm is seen to
be coincident with the a=138 mm cone beam distribu-
tion f�z� having a=L. �L=5�27.5 mm=138 mm ex-
actly�.

�5� This provides a direct physical connection between the
dose DL�0�= p−1CTDIL in conventional CT �described
using CTDIL� and the corresponding dose f�0� in
SCBCT, these doses being not only spatially colocated
at z=0 but also equal in magnitude DL�0�� f�0�, repre-
senting peak doses at z=0 in both cases as illustrated in
Fig. 1.

�6� Therefore, f�0� �or Nf�0� for multiple rotations� is the
obvious choice to represent the dose for stationary phan-
tom CT for wide cone beams �SCBCT� and narrow fan
beams alike. In fact, f�0� is the only choice producing
continuity between the two modalities. Use of any other
“cone beam dose index” which predicted a dose other
than f�0� would amount to the paradoxical assignment
of different “dose values” to the same dose distribution
�i.e., for the same length of anatomy imaged using the

same x-ray technique�.
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�7� It is also satisfying to note that the mathematics auto-
matically forces the same conclusion, with the basic
equations �Eqs. �1�–�4��, derived for conventional CT,
all converging to the proper dose Nf�z� for a stationary
phantom in the limit as table advance b→0 as previ-
ously shown, thereby losing their integral format �in-
cluding CTDIL→Nf�0�, since b=nT is a table advance
and likewise this b→0�.

II.B.1. Measurement of the central ray dose f„0… for
a wide cone beam and a stationary phantom
in SCBCT

• Since f�0� is the dose on the central ray of the cone
beam at depth in the phantom, the obvious �and sim-
plest� method is to directly measure f�0� at that point
using a small ionization chamber �such as a 0.6 cc
Farmer-type chamber�, the same method used for de-
cades to measure depth-dose in a stationary phantom.

• This same measurement method2,3,10–12 has also been
utilized in conventional CT to directly measure the ac-
cumulated dose DL�0� at z=0 during phantom transla-
tion over �−L /2,L /2�; its validity and robustness hav-
ing been thoroughly demonstrated;2 and which method
also offers considerable advantages over the fixed-
length pencil chamber, namely, unrestricted integration

FIG. 1. The axial dose profile f�z� for a wide cone beam of width
a=138 mm generated by a single rotation about a stationary phantom ���
exhibits little difference from the accumulated dose distribution D̃N�z� ���
due to the superposition of N=5 axial profiles f̂�z� having â=28 mm spaced
at intervals �a table increment of� b= â=28 mm, with a resulting a scan
length L=Nâ=140 mm; giving essentially the same directly irradiated
length �L=a� as the cone beam having a=138 mm. The peak doses at

z=0 are essentially equal, D̃N�0�� f�0�=1.0, thereby corroborating the
choice of f�0� to represent the dose for SCBCT.
length �scan length� L, as well as broad applicability to
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shift-variant phantoms and techniques since it repre-
sents a direct dose measurement rather than a dose in-
ferred from an integral acquired by irradiation of a pen-
cil chamber.

• A pencil chamber cannot be used to measure f�0� since
it can only measure the integral of f�z�, and thus cannot
distinguish between dose profiles having the same area
but differing peak �or central ray� doses f�0�.

II.C. The equilibrium dose constant Aeq: A useful
simplification obtained by setting the table advance b
equal to the aperture a „b=a…

Returning to conventional CT scanning with phantom
translation, an interesting and useful shortcut is described.
Setting the scan interval b=a �where a closely approximates
the primary beam FWHM� produces scan contiguity in the
dose domain. Since Deq is proportional to �a /b�, the equilib-
rium dose approached when b=a, denoted by Aeq= �b /a� Deq

will depend on neither b nor a; and �using Eq. �5�� Aeq can be
written as

Aeq =
1

a
�

−�

�

f�z��dz� = constant. �6�

Aeq is a constant, independent of aperture a �and thence nT�,
since the integral is directly proportional to a as previously
noted. For conventional CT, Deq= �a /b�Aeq, thus Aeq is the
equilibrium dose for a table advance b=a �or a pitch
p=a /nT�.

The equilibrium dose constant Aeq= �a /nT�−1CTDI�, al-
though related to CTDI�, is not a proper CTDI, since b=a
represents a detector pitch p=a /nT�1 in MDCT for which
a primary beam width a�nT is required to keep the penum-
bra beyond the active detector length nT �referred to as
“overbeaming”� thus AeqCTDI�.

For conventional CT, overbeaming produces an increase
in CTDI and accumulated dose by the factor a /nT �as com-
pared to a�nT for single slice scanners�; however, over-
beaming has less significance in SCBCT, producing a
smaller dose increase since there are no overlapping, adja-
cent dose profiles.

Note that the aperture a corresponding to a given nT can
be calculated from the dose efficiency, which is essentially
equal to the inverse of the overbeaming factor �a /nT�−1, and
IEC standards13 now require the dose efficiency to be sup-
plied in the scanner technical documents �the dose efficiency
may also be provided on the scanner monitor for some mod-
els�. Typical apertures have also been published2,5 for the GE
Lightspeed family of scanners. However, as noted above,
�a /nT�−1 does not actually represent dose efficiency for sta-
tionary phantom CT �such as SCBCT�. Use of Aeq allows a
considerable reduction in data collection as will be illus-
trated, since its value can be fixed by making a measurement

at single value of the aperture a.
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II.D. Numerical analysis of experimental SCBCT dose
data

The experimental data of Mori et al.1 obtained on a 256
channel cone beam CT scanner includes a direct measure-
ment of both the central ray dose f�0� as well as the infinite
integral of the dose profile f�z� denoted by DPI�; whose data
can be used to illustrate the magnitude by which the actual
dose f�0� is overestimated should one attempt to apply
CTDI� to the problem �or by using CTDI300, measured using
a 300 mm long pencil chamber, to approximate CTDI��. As
previously noted, nT has no relevance to the dose in station-
ary phantom CT �contiguity has no meaning and pitch
p=b /nT=0�.

The analysis is both simplified and made considerably
more interesting if one uses Aeq from Eq. �6� as a “surrogate”
for CTDI�, where Aeq= �a /nT�−1CTDI�CTDI�.

Table I illustrates the relationship between the measured
central ray dose f�0� and Aeq for various beam widths �aper-
ture values� ranging from a=28–138 mm, resulting from a
single axial rotation about the center �z=0� of a 900 mm
long, 32 cm diameter, stationary PMMA body phantom.1

The original raw data1 were reanalyzed to deduce the ef-
fective apertures a using the equivalent width14 of the pri-
mary beam profiles as measured free-in-air1 �a�width at
1 /2f�0��.

Thus the equilibrium dose constant Aeq= �b /a�Deq is in-
deed seen to be independent of aperture a as previously pos-
tulated, remaining constant to better than �0.7% over the
entire range of apertures from a=28–138 mm; whereas
CTDI�= �a /nT�Aeq varies by a factor of 2.5 over the same
range �corresponding nT values are 10, 32, 64, 96, and 128
mm�; however, the important point is that Aeq significantly
overestimates the relevant SCBCT dose f�0� by the factor
shown in the last column of Table I, viz., by a factor of 4 for
a beam width of a=28 mm, by a factor of 2 for
a=80 mm, and by a factor of 1.4 for a=138 mm, with
CTDI� giving an even larger overestimate �since a�nT�.
This result was previously anticipated since neither Aeq nor
CTDI� �described by integral equations� are relevant to the
dose in stationary phantom CT �e.g., SCBCT�.

The data in Table I are also illustrative of the magnitude
of the error obtained in SCBCT when using a pencil chamber

TABLE I. Measured cone beam doses and dose integrals resulting from a sing
scanner �SCBCT� based on the data of Mori et al. �Ref. 1�, where f�z� deno
axis of the PMMA body phantom �32 cm diameter, 900 mm length�, integrate
per 100 mAs �measured data �Ref. 1�–central axis, body phantom�.

Primary beam aperture a or FWHM
�mm�

Dose profile integral
DPI�=�−�

� f�z�dz

138 mm 848 mGy mm
111 686
80 498
49 303
28a 169

aRounded off from 27.5 mm.
of length �=300 mm to measure CTDI300 �as an approxima-
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tion to CTDI�� as illustrated by the following Gedanken ex-
periment. Assume a cone beam width a=115 mm corre-
sponding to nT=100 mm. By definition, CTDI300 is equal to
the dose at the center of three contiguous axial scans, each
with nT=100 mm, stitched together using an interval �a
table advance� of b=nT=100 mm, for a total scan length of
L=Nb=300 mm. In this case CTDI300 overestimates the
SCBCT peak dose f�0� by about 60%, due to scatter from the
two additional contiguous scans which augment the dose
f�0� at z=0 �CTDI300=1.6f�0��.

The notion that the integral equations for CTDI� or Aeq

might predict some useful average dose for SCBCT is
readily dispelled; since it is clear from the data in Table I and
Fig. 1, that Aeq and thus CTDI� �and CTDI300� are both
larger than the peak dose f�0� for every available aperture
setting, i.e., their associated dose values do not exist any-
where in the phantom. Mathematically, in order to obtain
f�0� from �−�

� f�z�dz, one must divide the integral by the
equivalent width14 aw of the function; however, since f�z�
contains a broad scatter component, aw is larger than the
primary beam width a �or nT� used as divisors in computing
Aeq �or CTDI�� �e.g., for the a=28 mm profiles shown in
Fig. 1, aw=112 mm, for which Aeq overestimates f�0� by a
factor of �aw /a�=4.�. Thus Aeq �or CTDI�� will always over-
estimate f�0�. So why do we divide the integral by the pri-
mary beam width? We do not—These divisors represent
table increments b=a for Aeq �or b=nT for CTDI� and not
primary beam widths �actual or nominal�. The CTDI para-
digm was never intended to predict the dose f�0� for a single
axial rotation, but rather the accumulated dose DL�0� at z
=0 for N multiple scans, spaced at intervals b due to table
translation over a length L=Nb.

A small ion chamber can precisely measure the desired
peak dose f�0�=1.0 in Fig. 1, whereas the “dose” values
given by the “CTDI types” are Aeq=1.4, CTDI�=1.5, and
CTDI300=1.4, all lying well above the peak dose f�0�=1.0
�even above the top of Fig. 1�.

Since Aeq is independent of aperture a, a narrow beam can
be used to measure Aeq if the aperture a is known; however,
this is small consolation since the values of both Aeq and
CTDI� overestimate the dose f�0� in SCBCT for clinically
relevant cone beam widths �see Table I�. The SCBCT dose

ial rotation about a stationary phantom �no table advance� for a 256 channel
e axial dose profile corresponding to a primary beam width a on the central
r 900 mm to obtain the dose profile integral DPI�, all data being normalized

ibrium dose constant
PI� /a=1 /a�−�

� f�z�dz
Measured central ray dose

f�0�
Ratio

Aeq / f�0�

6.14 mGy 4.37 mGy 1.43
6.18 3.90 1.58
6.22 3.19 1.95
6.18 2.27 2.72
6.15 1.53 4.02
le ax
tes th
d ove

Equil
Aeq=D
f�0� would exhibit a variation of more than 200% �a factor of
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2.3� over the range of beam widths a=50–180 mm avail-
able for clinical use on the aforementioned 320 channel
SCBCT scanner �corresponding to nT=40–160 mm�; and a
much larger variation in the case of narrow fan beams also
used in stationary phantom CT such as in CT fluoroscopy or
perfusion studies �for which the peak dose f�0� may be sig-
nificantly overestimated15 by attempting to apply the dose
paradigm based on CTDI100 �we note that the IEC
definition13 of CTDIvol utilizes N�CTDI100 compared to the
actual dose Nf�0��.

It is therefore important to determine f�0� over the com-
plete range of apertures used clinically in the SCBCT acqui-
sition mode, e.g., for �40 mm�nT�160 mm�. A useful
theoretical function is derived in Sec. III describing the
variation in f�0� with a, which closely matches the data in
Table I; and which can be used to extrapolate a measurement
of f�0� at a single value of aperture a to any other aperture;
thus allowing the prediction of the peak doses f�0� for nar-
row fan beams which would require an ion chamber length
�nT for the central axis measurement.

II.D.1. The approach to scatter equilibrium

From the data in Table I, it appears that f�0� is increasing
toward Aeq as the cone beam width a increases, and such a
convergence does indeed occur, but only for very wide �and
thus clinically irrelevant� cone beam widths of a�470 mm.
Like the accumulated dose DL�0� in conventional CT, the
SCBCT dose f�0� will also asymptotically approach a maxi-
mum equilibrium value feq�0� when the cone beam width a
becomes wide enough to achieve scatter equilibrium on the
central ray at z=0, such that scatter produced from any fur-
ther increases in primary beam width can no longer reach
z=0, and thus no longer affect f�0�. Attainment of equilib-
rium at z=0 depends only on the distance of the outermost
primary beam photons from the origin. When the probability
becomes negligible that primary photons scattered at the far-
flung primary beam edges �at z�= �a /2 for the cone beam or
at z�= �L /2 in conventional CT� can reach the origin, then
equilibrium is achieved for cone beam widths a�aeq, and
likewise for scan lengths L�Leq for conventional CT, thus it
follows that aeq=Leq. Likewise, the magnitude of the equi-
librium dose constant Aeq is the same for both modalities.
�These results follow from our previous arguments demon-
strating the equality of the dose at z=0 for the two modalities
for the case L=a.�

Since Leq�470 mm in conventional CT,16 scatter equilib-
rium at z=0 will therefore occur for cone beam widths
a�470 mm in the 32 cm PMMA body phantom. However,
since such wide cone beams are not utilized �nor likely to be�
in this modality, the cone beam equilibrium dose
feq�0�=Aeq is not clinically relevant for SCBCT; whereas, for
conventional CT scanning, typical body scan lengths of
L�250 mm produce doses which closely approach Deq;
therefore Deq or CTDI� �and likewise Aeq= �b /a� Deq�� is a
considerably more relevant dose for this modality. However,
the value of Aeq can serve as a convenient, common normal-

ization constant for both modalities.
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II.D.2. The approach to equilibrium function H„�…

The variation in the relative approach to equilibrium func-
tion H�a�= �f�0� / feq�0�� is conceptually quite similar to the
increase in dose at a given depth with increasing field size
observed for a stationary x-ray beam incident on a phantom
�except only one field dimension a is varied in this case�. In
fact, the SCBCT equilibrium dose is the same as Aeq for
conventional CT, viz. feq�0�=Aeq; and the relative approach
to equilibrium curves H�L�=DL�0� /Deq and H�a�= f�0� /Aeq

should be the same using the correspondence a=L, based on
our previous analogy between a cone beam and a juxtaposi-
tion of adjacent narrow fan beams.

III. MODELING THE CONE BEAM

For definiteness and simplicity, all numerical examples
and derivations refer to the dose on the central axis of the 32
cm diameter cylindrical PMMA body phantom at 120 kVp
using a bow-tie filter unless otherwise noted. The peripheral
axis is dealt with in Sec. IV.

III.A. General considerations

As previously seen in Fig. 1, there is nothing particularly
mysterious about the SCBCT axial dose profile f�z� for a
wide cone beam of width a, being quite similar to the cumu-
lative dose distribution DL�z� in conventional CT at a pitch
near unity �p= â /nT� for the same directly irradiated phan-
tom length L=a. Differences in beam divergence between
the narrow beams and wide cone beam are quite small �only
about �7° deg from the central ray at the extreme edges
z= �a /2 of the widest cone beam, a=138 mm�.

III.A.1. The heel effect

The only real difference is that the wider collimator aper-
ture of the cone beam enhances the heel effect; however,
neither its odd nor its even components5 have any significant
effect on the central ray dose f�0� �the SCBCT dose-
descriptor of interest�, with both the primary and the scatter
components at z=0 being essentially unaffected. Thus, a
simple model which ignores anode tilt and the heel effect
should do quite nicely for predicting the relevant SCBCT
dose f�0�, but may do somewhat less well in reproducing the
entire dose distribution f�z�, particularly near the beam edges
for wide cone beams on the peripheral axes. It also produces
the same results as a more complex model5 �including anode
tilt and the heel effect� for the integral theorems involving
Aeq and Deq.

III.B. A simple beam model predicting the observed
dose data

The primary beam LSF is the focal spot emission
intensity5 �as slit-projected by the z-collimators onto
the AOR�, and expressed as a scaled function lsf�z�
=c−1g�−z /c� having unit area, where c represents the slit-
projected focal spot length �c	3 mm�.

The scatter LSF �z−z�� is the much broader scatter re-

sponse function to a unit-strength primary beam impulse
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��z�� �or “knife edge”� applied at z=z�, where � is the scatter
to primary ratio S / P, where � is equal to the ratio of scat-
tered to primary energy deposited along z as expressed
by the ratio �=S / P, where S=�−�

� fs�z��dz� and
P=�−�

� fp�z��dz�. Thus �−�
� LSF�z�dz=�, and it is convenient

to express LSF�z�=�lsf�z� where lsf�z� is a unit-area scaled
function, symbolically represented as lsf�z�=d−1h�z /d�,
where d represents the width of the broad scatter LSF
�d	100 mm� and where d�c.

The model generates the primary beam component fp�z�
and the scatter component fs�z� of the axial dose profile
f�z�= fp�z�+ fs�z� by the convolution shown below

f�z� = 
1

c
g�− z

c
� + �

1

d
h� z

d
� � A0�� z

a
� , �7�

where A0��z /a� represents the core primary beam function
�without penumbra�. The convolution of the focal spot
lsf�c−1g�−z /c�� with A0��z /a� produces the primary beam
function fp�z� by adding a penumbra of width c to ��z /a�,
and the convolution of the scatter LSF�z�=�lsf�z�
=�d−1h�z /d� with the primary beam core A0��z /a� gives the
scatter component fs�z�, where the negligible effect of the
primary beam penumbra on the scatter distribution has been
ignored �its effect is truly nil�.

Since in MDCT the penumbra c is necessarily small com-
pared to the aperture setting a, the width c of the penumbra
added to ��z /a� by its convolution with c−1g�−z /c� is small
compared to a �c�a�, in which case A0= fp�0� which is the
“point dose” on the central ray �z=0� contributed by the
primary beam at isocenter �at a depth of 16 cm in the body
phantom� �as the aperture a is decreased to a value compa-
rable to the penumbra c, the beam FWHM actually increases,
becoming larger than a and its peak intensity fp�0� decreases
below the emitted intensity A0 due to narrow slit effects5.
This effect required postpatient collimation to achieve nar-
row slice widths for single slice scanners�.

III.B.1. The integral theorem

The expression for the infinite integral of f�z�, and thence
the equilibrium dose constant Aeq in Eq. �6� �or CTDI��,
immediately follows from Eq. �7� without requiring any de-
tailed knowledge of the functional form of f�z� �or that of
either lsf�; the infinite integral of the convolution in Eq. �7�
being obtained by inspection as

�
−�

�

f�z��dz� = A0�1 + ��a = fp�0��1 + ��a , �8�

which shows the important proportionality of the infinite in-
tegral of f�z� to the aperture a, and also providing the theo-
retical formula for Aeq shown below

Aeq =
1

a
�

−�

�

f�z��dz� = A0�1 + �� = fp�0��1 + �� , �9�

thereby confirming the constancy of Aeq, namely, its indepen-
dence of aperture setting a �and also of nT�. Equation �9�

shows that Aeq depends only on the primary beam intensity
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fp�0� on the central ray, which is well-known to be indepen-
dent of collimator setting �assuming a�c�, and on the S / P
ratio � �since � is also the impulse-response amplitude, it
cannot depend on a�; and also confirms that Aeq is the same
for conventional CT and SCBCT.

The equilibrium dose for conventional CT can be written
as Deq= �a /b� Aeq, which is directly proportional to �a /b�
since Aeq is a constant �physically, opening the collimator
aperture a deposits more energy per rotation, and reducing b
packs the dose profiles into a smaller length, both leading to
an increase in dose�. Thus Deq for conventional CT can have
different values, depending on both the aperture a �and
thence nT� and the table increment b �or helical pitch
p=b /nT�, and Deq=Aeq only for a table advance of b=a;
however, for SCBCT the scatter equilibrium limit for the
dose f�0� is always Aeq �a constant�.

The constancy of Aeq predicted by this model remains
valid even for wide cone beams, as clearly illustrated by the
experimental data in Table I. This broad general result fol-
lows physically from the conservation of energy, the total
amount of energy escaping the collimator, impinging on the
phantom, and absorbed in the phantom is directly propor-
tional to the aperture a which acts as an energy gate; thus the
constancy of Aeq holds along any phantom axis, central or
peripheral. Note also that the infinite integrals of the primary
beam and scatter components are both �separately� propor-
tional to aperture a, thus a free-in-air measurement2 of
CTDI� �air� is proportional to a and thus can provide the
relative variation of aperture a with nT.

III.B.2. Relation between Aeq and the total energy
deposited in the phantom „integral dose…

For an axial or helical scan series, the total energy E
deposited �absorbed� in the phantom along a given z-axis is

represented by the infinite integral of D̃�z� in Eq. �1�, or of
DL�z� Eq. �2�, either resulting in E=N�−�

� f�z�dz=NAeqa; the
same formula as for the total energy deposited by N rotations
about a stationary phantom �as for SCBCT� for which the
dose distribution is Nf�z�. With good reason, the total energy
deposited by N rotations is independent of their spread or
distribution along z and depends �for a given kVp and bow-
tie filter� only on the product of N� �mAs per rotation�
� �aperture a�, or simply on the product of �total mAs�
� �aperture a�; and the total energy E deposited is the same
whether the table moves or not �which likewise applies to the
DLP9�.

III.B.3. Calculation of the relevant stationary
phantom peak dose f„0… using this model

To obtain the desired dose f�0�, we evaluate f�z� in Eq.
�7� at z=0, which is a simple task for the primary beam
intensity A0 which is given by fp�0�=A0 for the case where
a�c; however, for the scatter component, neither d nor a
dominate sufficiently, and the convolution gives a scatter

component of
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fs�z� = A0��
−�

�

d−1h� z − z�

d
��� z�

a
�dz�

= A0��
−a/2

a/2

d−1h� z − z�

d
�dz�. �10�

Since our goal is to determine the central ray dose f�0� in the
stationary phantom which is used as the dose-descriptor for
SCBCT, setting z=0 in Eq. �10� to obtain fs�0� and adding
the primary beam component fp�0�=A0 to the scatter com-
ponent, f�0�= fp�0�+ fs�0�, the total central ray dose is given
by

f�0� = fp�0�
1 + �
1

d
�

−a/2

a/2

h� z

d
�dz . �11�

If a�d, the above integral is essentially infinite, and f�0�
= fp�0��1+��=Aeq, corresponding to scatter equilibrium be-
ing attained at z=0.

III.B.4. The scatter LSFs exhibit surprising
simplicity

Further results from this model require a more detailed
knowledge of the scatter LSF�z�=�lsf�z� on the phantom
axis. To that end, Boone17 has recently performed Monte
Carlo �MC� dose simulations in a variety of cylindrical phan-
toms �with and without bowtie filters�; and more importantly
has provided the data in their most useful and concise form,
namely, as a scatter LSF which can be used as a “kernel” in
the integral expressions derived above to calculate f�0� �as
well as f�z�� for any beam width a, without requiring any
additional MC simulations. Moreover, these scatter LSFs ex-
hibit a surprising simplicity, asymptotically approaching a
pure, single-exponential of the form exp�−�rz� a few cm
beyond z=0, thus allowing the theoretical results to be ex-

FIG. 2. Scatter LSF, central axis 32 cm diameter PMMA body phantom with
double-exponential fit function �arbitrary units�. Data from a Monte Carlo
simulation �Ref. 17� at 120 kVp with a body bow-tie filter.
pressed as simple analytical functions.
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Figure 2 shows the scatter LSF�z� obtained by Boone17

for the central axis of a 32 cm diameter PMMA phantom of
infinite length at 120 kVp with bow-tie filter, this function
being readily fit by a double-exponential decay as shown.
Only half of the even function LSF�z�=LSF�−z� is shown.

Renormalizing the scatter LSF function fit parameters
shown in Fig. 2 to conform to our notation �using scaled,
unit-area lsf functions�, where LSF=�� lsf�z�, it becomes

lsf�z� = �1 − ��
1

d
exp�− 2�z�/d� + �

1

�d
exp�− 2�z�/�d� , �12�

where d=117 mm, �d=6.74 mm=.0576d, and where
�1−��=0.985 and �=0.015 are the respective areas of the
asymptotic first term, and the transient second term; and
where the S / P ratio17 is �=13 for the central axis of the
body phantom. The transient second term in Eq. �12� be-
comes negligible for z�10 mm, after which the lsf reaches
its single-exponential asymptotic form, which when written
as exp�−�rz�, corresponds to a value of �r=0.17 cm−1.

The transient second term in Eq. �12� produces little effect
for cone beams �or beams having widths a�20 mm�, and
the lsf can be approximated quite well in this case by the first
term of Eq. �12� as a single-exponential �renormalized to unit
area�, namely, as

lsf�z� = d−1h�z/d� � d−1 exp�− 2�z�/d� �13�

in which d=117 mm.

III.B.5. Derivation of the equation for the peak dose
f„0… using the scatter LSF

Substitution of the simplified Eq. �13� into Eq. �11� and
integrating yields

f�0� � fp�0��1 + ��1 − e−a/d�� . �14�

Using the more accurate double-exponential fit to the lsf
given by Eq. �12�, which is more appropriate �more accurate�
for narrow fan beams, gives

f�0� = fp�0��1 + ���1 − ���1 − e−a/d� + ��1 − e−a/�d��� .

�15�

Both Eqs. �14� and �15� approach the same limiting dose
value for a�d, f�0�→ fp�0��1+��=Aeq, and for all practical
purposes �within 2%� when a�aeq=4d=470 mm �from
e−a/d=e−4=0.018 in Eqs. �14� and �15��. Although this ex-
pression for Aeq= fp�0��1+�� was previously obtained in Eq.
�8� using the convolution integral theorem, this model pro-
vides a clear physical insight and a functional form �an ex-
ponential growth function� describing the approach of f�0�
toward its �unattainable� equilibrium value Aeq, clearly illus-
trating that this occurs only in the limit where the cone beam
width a itself becomes large with respect to the width
d=117 mm of the scatter LSF, namely, for a�4d
=470 mm. For a primary beam width a=4d, a primary pho-
ton scattered at the extreme edges of the beam z= �a /2 has
only a negligible chance of getting back to z=0 to contribute
to the center dose f�0� �a survival probability of

−4
exp�−�ra /2�=e �. The same LSF and thus the same argu-
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ment applies to conventional CT; a primary photon scattered
from the extremes of the scan length at z= �L /2 where
L=4d has exactly the same chance �e−4� of making it back to
z=0 to contribute to DL�0�; therefore, the equilibrium lengths
are identical for the two modalities, i.e., Leq=aeq=4d
=470 mm on the central axis.

Although Aeq �like CTDI� does not represent a meaningful
or relevant dose value for SCBCT, it has utility as a conve-
nient normalization constant for the common approach to
equilibrium function H���, which becomes H�L� for conven-
tional CT and H�a� in stationary phantom CT.

III.B.6. The approach to equilibrium function H„a…

The relative “approach-to-equilibrium” function H�a�
= f�0� /Aeq for the stationary phantom using the more general
Eq. �15� is given by

H�a� =
1

1 + �
+

�

1 + �
��1 − ���1 − e−a/d� + ��1 − e−a/�d�� .

�16�

The first term 1 / �1+�� represents the relative primary beam
contribution and the second term the relative scatter contri-
bution; however, since �d=6.74 mm, the transient scatter
term grows very quickly to its small limiting value
�=0.015 for a�25 mm, representing only 1.5% of the total
scatter at equilibrium.

A simplified form of H�a� applicable to the wider beams
of SCBCT is obtained using the single-exponential scatter lsf
in Eq. �13� which produces f�0� in Eq. �14�, and which in
turn gives.

H�a� �
1

1 + �
+

�

1 + �
�1 − e−a/d� . �17�

The second term in both equations represents the scatter con-
tribution which has the form of an exponential growth curve,
increasing with beam width a until reaching its asymptotic
�equilibrium� limit H�a�→1 for a�4d�470 mm, the frac-
tional scatter contribution at equilibrium being � / �1+�� and
the relative primary contribution 1 / �1+��.

III.B.7. The commonality of the approach to
equilibrium function H„a… for both stationary
phantom scanning „e.g., SCBCT… and
conventional CT scanning

Note that the same scatter LSF function applies both to
stationary beam CT and conventional axial or helical CT
�usable in both cases to create an axial dose profile f�z� in
Eq. �7��; however, this profile must additionally be integrated
over �−L /2,L /2� for conventional CT to obtain the accumu-
lated dose DL�0� at z=0 �Eq. �3�� or CTDIL �Eq. �4��, result-
ing in the additional dependence of the equilibrium dose Deq

in conventional CT on the table increment b �or pitch
p=b /nT� and aperture a, i.e., Deq= �a /b�Aeq is proportional
to �a /b� as noted previously. The integral theorem �Eq. �9��

shows that the equilibrium dose constant Aeq= �b /a�Deq
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= fp�0��1+�� has the same value for both SCBCT and con-
ventional CT, being independent of aperture a �and scan
length L�.

The cone beam dose f�0� necessarily approaches the same
equilibrium dose value feq�0�=Aeq with increasing aperture
setting a �although it will never get there for practical cone
beam widths�.

Comparing SCBCT with aperture a to conventional CT
with N rotations of aperture â=a /N and b= â for which
L=Nb=a, it was previously shown �and observed in Fig. 1�
that DL�0�= f�0�. Therefore, since f�0�a=DL�0� for L=a,
then H�L�Aeq=H�a�Aeq, thus H�L�=H�a� for L=a; hence a
common function H��� applies to both modalities with
�=L or �=a.

The function H�L� is essentially independent of
aperture,5,16 since both Deq and DL�0� are proportional to â
�rigorously in the case of Deq and approximately5 for DL�0��
at least over an aperture range corresponding to �2.5 mm
�nT�40 mm�. Boone16 has shown that H�100 mm�
= �CTDI100 /CTDI��= �D100�0� /Deq� varies by less than 1%
over this range of apertures.

III.B.8. Comparison of the theoretical equation for
H„a… with experiment

Does our mathematical model of the dose profile f�z�,
1

FIG. 3. Approach to scatter equilibrium theory vs experiment. Relative ap-
proach to equilibrium function H�a�= f�0� / feq�0�= f�0� /Aeq on the central
axis of a stationary phantom �e.g., SCBCT�. The solid circles ��� are the
experimental data of Mori1 presented in Table I. The solid and dashed lines
representing H�a� are not empirical fits but rather theoretical predictions
obtained from the mathematical model; the solid black line representing the
full double-exponential scatter lsf Eq. �16�, and the essentially congruent
dotted-dashed line using the simpler single-exponential approximation of
the scatter lsf Eq. �17�. Also plotted is the experimental approach to equi-
librium data for conventional CT scans measured2 on GE 16 channel and 64
channel scanners for scan lengths L from 100 to 400 mm, and plotted ���
using the correspondence L=a; thus validating the same functional form for
both modalities, H�L�=H�a� with the correspondence a=L.
correctly predict the measured variation in f�0� with aper-
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ture a given in Table I? Or equivalently, does the derived
analytic function H�a�= f�0� /Aeq given by Eq. �16� �or ap-
proximated by Eq. �17� for cone beams� agree with the ob-
served ratio computed from the experimental data1 in Table
I? Figure 3 answers this affirmatively illustrating the excel-
lent agreement between the theoretical predictions of Eqs.
�16� and �17� �the curves� and the experimental values1 of
the relative, stationary phantom peak doses f�0�a shown by
the solid data points �•�It should be emphasized that this is
not empirical curve fitting, but rather comparing a physical
theory having no adjustable parameters as embodied by Eq.
�16� to the observed experimental data, thereby giving added
confidence in its general applicability.

The single-exponential approximation of the lsf in Eq.
�13� leading to the simple growth curve H�a� of Eq. �17� is
indistinguishable from the double-exponential form of the lsf
which produces H�a� in Eq. �16� also shown in Fig. 3.

The premise that the same function H�a� can also predict
the variation in the accumulated dose DL�0� at z=0 with scan
length L for conventional CT simply by making the substi-
tution L=a in Eq. �17� is also confirmed by plotting experi-
mental values2 of H�L� measured using helical scans on 16
and 64 channel GE scanners �open circles in Fig. 3�, which
data also fall on the theoretical curves, thereby confirming
this premise, at least over the measurement range used
�100 mm�L�400 mm�. It should be noted, however, that
H�L� refers to the variation in dose in a phantom at least 500
mm long, and cannot be used without correction to extrapo-
late CTDI100 measured in a standard 140 mm long body
phantom to predict CTDI�, or Deq= p−1CTDI� �e.g., an in-
crease in body phantom length from 150 to 400 mm was
observed2 to produce an increase in the measured value of
CTDI100 by 7.3% on the central axis and by 1.3% on the
peripheral axis at 120 kVp�.

III.C. Extension to peripheral axes

Due to the potential practical utility of the derived ana-
lytical functions, it behooves us to make a similar �but ab-
breviated� analysis for the peripheral axis of the same body
phantom �a more complex problem�.

That Aeq as defined in Eq. �6� is likewise a constant �in-
dependent of aperture a� on the peripheral axis is confirmed
using the experimental data of Mori1 as shown in Table II.

The normalized �to unit area� lsfs for the central and pe-

TABLE II. Mori �Ref. 1� data for the peripheral axis of the body phantom.

Primary beam aperture a or FWHM
�mm�

Dose profile integral
DPI�=�−�

� f�z�dz

138 mm 1520 mGy mm
111 1220
80 900
49 530
28a 290

aRounded off from 27.5 mm.
ripheral axes are both shown in Fig. 4 for comparison. The
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double-exponential fit proved reasonably successful for the
peripheral axis, resulting in the lsf fit parameters of
�=0.304, �d=14 mm, and d=88 mm which, together with
�=1.5, give a scatter LSF as described by Eq. �12�.

III.C.1. Derivation of the expression for f„z… and f„0…
on the peripheral axis using the LSF

As discussed previously,5 the convolution model �Eq. �7��
strictly holds only for a fixed gantry angle � on a peripheral
axis, since the parameters �, a, c, the lsf, and A0= fp�0� are
all functions of beam angle �; thus Eq. �7� must be written as
f�z ,�� and then averaged �integrated� over 2
 in order to
obtain the axial dose profile f�z� on the peripheral axis,
thereby losing the convolution format for f�z� and possibly
the applicability of the LSF �also mentioned by Boone17�.
However, as shown in Appendix A, if �=0 denotes the gan-
try angle for which the beam is directly incident on the pe-
ripheral axis in question, then most of the dose on that axis is
delivered for a small enough angular range ��� about �
=0, such that a��� is slowly varying over ��� and can be
replaced by its average value �a�, which is the FWHM of the

ibrium dose constant
PI� /a=1 /a�−�

� f�z�dz
Measured central ray dose

f�0�
Ratio

Aeq / f�0�

11.0 mGy 9.60 mGy 1.14
11.0 9.02 1.21
11.1 8.54 1.28
10.6 8.06 1.35
10.6 7.34 1.49

FIG. 4. Scatter lsf for the central and peripheral axes in a 32 cm diameter
PMMA phantom normalized to unit area. The actual LSF=�� lsf, where
�=S / P ratio with �=13 for the central axis and �=1.5 for the peripheral
axis �Ref. 17�; thus the absolute peripheral axis LSF falls below that for the
Equil
Aeq=D
central axis as expected.
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axial dose profile a�= �a� on the peripheral axis �and which is
only about 5% greater5 than the minimum value of a��� at
�=0�. Thus Eq. �15� for f�0� and Eq. �16� for H�a� also
apply, with a replaced by a�, and using the corresponding
peripheral axis �double-exponential� fit parameters �=0.304,
d=88 mm, and �d=14 mm, and a S / P ratio of �=1.5.

H�a�� =
1

1 + �
+

�

1 + �

���1 − ���1 − e−a�/88 mm� + ��1 − e−a�/14 mm�� .

�18�

The parameter a�, the FWHM of the peripheral axis profile
f�z� which automatically appears in the peripheral axis equa-
tions for f�0� and in H�a�, is the physically significant pa-
rameter for comparing modalities on the peripheral axis, i.e.,
an axial scan series using beams of width a� /N at a like scan
interval b=a� /N with L=Nb=a� will produce a relatively
smooth dose distribution �without gaps� on the peripheral
axis which is comparable to a cone beam distribution f�z� of
width a�. Figure 5 shows the relative stationary phantom,
peripheral axis peak dose experimental data1 in Table II plot-
ted vs a�=0.76a compared to the theoretical curve H�a�� in
Eq. �18�. Likewise, the experimental conventional peripheral
axis CT data2 H�L� is plotted using the correspondence
L=a�, with both data sets exhibiting reasonably good agree-
ment between experiment and the theoretical curve H�a�� in
Eq. �18�.

Since a� is proportional to the central axis aperture pro-
jection a, either could be used to evaluate Aeq as noted in
Appendix A �it is independent of aperture�, and it is more
convenient to work with a and H�a� as was done in Table II.

FIG. 5. Approach to equilibrium function H�a�� on the peripheral �edge�
axis of the body phantom plotted vs the FWHM a� of the cone beam dose
profile f�z� on that axis, together with the experimental data of Mori �Ref. 1�
and helical scan data �Ref. 2� plotted using L=a�.
By substituting a=a� /0.76 into H�a�� we obtain
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H�a� =
1

1 + �
+

�

1 + �

���1 − ���1 − e−a/116� + ��1 − e−a/18.4�� , �19�

where now d=88 /0.76=116 mm, �d=14 /0.76=18.4 mm,
with �=0.305 and �=1.5 as before. �It is interesting that
d=116 mm which determines asymptotic equilibrium is es-
sentially the same as on the central axis where d=117 mm.�
Of course, H�a� in Eq. �19� is completely equivalent to H�a��
in Eq. �18� in which d=88 mm and �d=14 mm.

For comparison with conventional CT we must still sub-
stitute L=a� into H�a�� in order to obtain

H�L� =
1

1 + �
+

�

1 + �
��1 − ���1 − e−L/88� + ��1 − e−L/14�� ,

�20�

where H�L�=DL�0� /Deq and Deq= �a /b�Aeq.
The reason Eqs. �18� and �19� differ in form but not sub-

stance is that the scan length L does not diverge �it is the
same for the central and peripheral axes�, whereas the beam
width a does diverge. We have chosen to work with a rather
than a� simply for convenience. Note that dose equilibrium
is approached to within 2% on the peripheral axis �our cen-
tral axis criterion� for aeq� =Leq=300 mm, and aeq=400 mm
�compared to Leq=aeq=470 mm on the central axis�.

III.D. Generating the complete data set for
conventional and stationary phantom CT from a
single measurement of the peak dose f„0… resulting
from a single axial rotation—An example

For added clarity, the peak axial profile dose f�0� is pa-
rametrized in the following with the aperture a �primary
beam width� as f�0�a and the experimental data of Mori1 for
a 32 cm diameter PMMA body phantom are utilized. We will
presume for illustrative purposes that only a single measure-
ment of f�0�a has been made at a single aperture setting a,
using a single axial rotation about a small ion chamber �e.g.,
a Farmer-type chamber� in a stationary phantom. The strat-
egy is then to determine the value of Aeq by inverting the
relation

f�0�a = H�a�Aeq �21�

and applying the analytical functions derived for H�a� in
Eqs. �16� and �19�. Having obtained Aeq, we can then predict
the desired stationary phantom dose f�0�a for any aperture a
from Eq. �21� for the wide cone beams of SCBCT and the
narrow fan beams of perfusion studies �or for any procedures
using a stationary phantom�.

But recall, we also showed that the same equilibrium dose
Aeq applies to conventional axial or helical CT using
phantom/table motion for a scan interval b= â or a pitch p
= â /nT. Thus, we can parlay the peak dose f�0�a value ac-
quired using a single axial rotation about a stationary phan-
tom with a conventional short ion chamber into the conven-
tional CT equilibrium dose Deq attained for any aperture

ˆ
setting a �any nT� for any table increment b �or any pitch
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p=b /nT� using Deq= �â /b� Aeq, and thence the dose for any
scan length L from DL�0�=H�L� Deq using the same function
expressed as H�L�; the complete data set from a single axial
rotation without ever scanning over L.

From an experimental point of view, it would be better to
use several �N� rotations and measure Nf�0�a �particularly on
the peripheral axis� in order to minimize errors due to “end
effects” �beam-on/off ramp-up times and variable start/stop
angles�; the extra acquisition time required is only seconds
and inconsequential.

The following example using the data of Mori1 in Tables
I and II for the central and peripheral axes of the body phan-
tom, respectively, will be used to illustrate the feasibility of
this somewhat ambitious plan. It is assumed that the scanner
can be operated in both a conventional CT mode as well as
the SCBCT mode. The key to success is an accurate deter-
mination of Aeq which suggests using a reasonably wide
beam, such as a=111 mm. We therefore presume that only a
single measurement of the peak axial dose f�0�a= f�0�111 is
made on each phantom axis, these being the values shown in
bold type in Table III for a=111 mm. We will then attempt
to predict the other data from these �and then check our
predictions �shown in italics� against the actual measured
data�. This is best illustrated by displaying the results in
tabular form as in Table III.

The value of the aperture-independent constant Aeq is pre-
dicted using the measured peak dose for a=111 mm using
Aeq= f�0�a /H�a�= f�0�111 /H�111�=3.90 /0.641=6.08 mGy
on the central axis, and Aeq=9.02 /0.84=10.74 mGy on the
peripheral axis, which agree �within 1.5%� with the average
experimental values of 6.17 and 10.86 from Tables I and II.
Thence the value of the stationary phantom peak dose
f�0�a=H�a�Aeq can be predicted for any aperture a, and some
representative values are given in Table III for comparison
with the measured values where available.

It might also be prudent to measure f�0�a for several val-
ues of a, since the additional acquisition time is minimal and
of little consequence, and likewise to measure a CTDIL to
confirm a good crossover. The doses for a narrow aperture of

TABLE III. Stationary phantom doses f�0�a, as predict
setting. In this example, f�0�111 was used as the meas
Aeq shown in the last row were predicted using H�a�
doses �Ref. 1� from Tables I and II are also listed fo

a �mm�

Central axis

Eq. �16�
H�a�

Peak dose f�0�a

Predicted
H�a�Aeq

Measured
Table I

138 0.715 4.35 mGy 4.37 mGy
111 0.641 3.90
49 0.385 2.34 2.27
28a 0.272 1.63 1.53
7.8 0.140 0.85
� 1.000 Aeq=6.08 Aeq=6.17

a28 mm rounded off from 27.5 mm.
a=7.8 mm �nT=5 mm� such as one might use in a station-
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ary phantom perfusion study are also shown in Table III, to
illustrate that CTDI100 overestimates the peak dose f�0� by
factors of 6.9 and 2.7 on the central and peripheral axes,
respectively, and the reported CTDIvol �Ref. 13� overesti-
mates the peripheral axis peak dose �comparable to the skin
dose and pertinent to perfusion studies� by a factor of 4.1
�see Ref. 15�.

This is not surprising since CTDI100 represents the dose at
the center of 20 contiguous 5 mm axial scans spaced at b
=nT=5 mm, and thus includes significant scatter from the
adjacent slices and over-beaming as well.

III.D.1. Crossover to conventional CT dose

We can also extend this single measurement of the
SCBCT peak dose f�0�111 to conventional CT and generate
complete dose tables for that modality. We already have the
predicted value of the quantity of greatest interest �and the
most difficult to measure� in helical or axial scanning,
namely, the equilibrium dose constant Aeq �with predicted
values of 6.08 and 10.7 mGy from Table III�, which have the
same value for conventional CT �assuming the same bow-tie
filter� and from which the conventional CT equilibrium dose
Deq for any table increment b �or any pitch p=b /nT� and for
any aperture â �or nT� can be obtained using Deq= �â /b�
Aeq= �â /nT�p−1Aeq, and thence the dose for any scan length L
can be obtained using DL�0�=H�L� Deq. For example, as-
suming the scanner is operated in a helical mode with
nT=64�0.5 mm=32 mm �corresponding to an aperture
a=49 mm�, pitch p=0.78, �=1 s, total beam-on time
t0=4.0 s, scan length L=vt0=100 mm; then Deq= �a /b�Aeq

= �a /nT�p−1Aeq=1.96Aeq=11.9 and 21.0 mGy on the central
and peripheral axes, respectively, which, when corrected to
L=100 mm using the values of H�L�=0.60 from Eq. �17�
and H�L�=0.86 from Eq. �20�, results in dose values of
DL�0�=H�L�Deq=7.1 and 18.1 mGy on the two axes.

IV. SUMMARY AND CONCLUSIONS

• For SCBCT scanning �without table/phantom motion�,

m a measurement of peak dose for a single aperture
value �shown in bold type� from which the values of
icted doses are given in italics, the actual measured
parison, and the % error is shown.

Peripheral axis

Eq. �19�
H�a�

Peak dose f�0�a

Predicted
H�a�Aeq

Measured
Table II

Error
�%�

0.873 9.38 mGy 9.60 mGy �2.3
0.84 9.02
0.714 7.67 8.06 �5.1
0.630 6.74 7.34 �9.0
0.490 5.26
1.000 Aeq=10.7 Aeq=10.9 �1.5
ed fro
ured
. Pred
r com

Error
�%�

0.5

3.1
8.0

1.5
it was shown that the peak dose f�0� on the central ray
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�z=0� of the cone beam is the logical �and unique�
choice for a SCBCT dose-descriptor consistent with the
CTDI-based dose used in conventional CT.

• This point dose f�0� can be directly measured using a
single axial rotation about a small ion chamber located
in the phantom on the central ray of the primary beam
�z=0�.

• A common measurement method can be utilized for
both the stationary and moving phantom, viz., a con-
ventional, short ionization chamber �such as a 0.6 cc
Farmer-type chamber� located at the center z=0 of the
directly irradiated length to measure the dose Nf�0� for
SCBCT, or the accumulated dose DL�0� at z=0 in con-
ventional CT using a helical �or axial� scan series2 to
translate the phantom �and ion chamber� over
�−L /2,L /2� where L=vt0 �or L=Nb�. This direct mea-
surement method is actually more general than the the-
oretical equations, requiring neither shift-invariance of
the phantom, the x-ray beam, nor the scan interval.

• The equilibrium dose constant Aeq= �b /a�Deq is inde-
pendent of both pitch p=b /nT and aperture a �thence
nT�, and was shown to have a common value for both
SCBCT and conventional CT, and its constancy has
been demonstrated over a wide aperture range
�28 mm�a�138 mm�; therefore it is sufficient to de-
termine Aeq at a single known aperture value a �which
need not be a wide beam�.

• Many common features of the SCBCT dose f�0� as a
function of cone beam width a and the conventional CT
dose DL�0� as a function of scan length L have been
established, including a common equilibrium dose con-
stant Aeq, a common scatter equilibrium length
aeq=Leq, and a common function H��� which describes
the relative approach to dose equilibrium for both mo-
dalities, where �=a, or �=L, such that f�0�a=H�a�Aeq,
and DL�0�=H�L�Deq=H�L��b /a�Aeq.

• Using the scatter LSF derived from the Monte Carlo
simulation of Boone,17 analytic functions describing the
variation in the peak dose of an axial dose profile f�0�a

and H�a�= f�0�a /Aeq as a function of collimator aperture
a �primary beam width� were derived �e.g., see Eqs.
�15� and �16��, which functions provided a good match
to the experimental data,1,2 and which have importance
and utility for predicting the peak dose for the narrow
fan beams used in perfusion studies15 as well as the
relevant cone beam dose f�0� in SCBCT for any beam
width �aperture� a.

• The commonality described above also suggests the
possibility that a single measurement of the peak dose
f�0�a of an axial dose profile resulting from a single
rotation about a stationary phantom for a single �arbi-
trarily chosen� aperture a setting using a small ion
chamber is sufficient to predict the peak dose f�0�a for
any other aperture, for wide cone beams and narrow fan
beams alike, including the scatter equilibrium dose con-
stant Aeq using the function H�a� to obtain

Aeq= f�0�a /H�a�. The value of Aeq can then be used to
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predict the equilibrium dose Deq for conventional axial
or helical CT scans for any table increment b �or any
pitch p=b /nT� at any aperture setting a �any nT� using
Deq= �a /b� Aeq, and thence to predict the dose for any
desired subequilibrium scan length L using
DL�0�=H�L� Deq using the same analytical function
H��� with �=L; obtaining the complete data set without
ever scanning over L. That is, the theory developed al-
lows a “crossover” between stationary phantom and
conventional �helical or axial� scanning modalities �as-
suming shift-invariance exists�. In fact, one obtains the
complete data set for both modalities, namely, f�0�a for
any a, Aeq, Deq= �a /b� Aeq, and DL�0� for any L, all
from a single measurement of the peak dose f�0�a of an
axial dose profile resulting from a single axial rotation
about a stationary phantom.

• Inspection of Fig. 3 illustrates the rather remarkable
confluence of an analytical, theoretical function based
on a scatter LSF obtained from a Monte Carlo simula-
tion, with axial profile peak doses f�0�a measured on a
Toshiba 256 channel cone beam scanner, with helical
scan doses DL�0� measured on conventional GE LS
scanners, which speaks to the generality of these results.

• This work is based on Monte Carlo data17 obtained at
120 kVp in a 32 cm diameter PMMA phantom using a
typical bow-tie filter, and is intended as a proof of con-
cept exposition �which successfully matched the experi-
mental data1,2�; moreover, the theory and equations are
quite general and can now be easily extended17 to any
phantom diameter �for a variety of phantom materials�
at a variety of kVp settings �with or without� bow-tie
filters; and these systematics are to be developed in fu-
ture work. It would also be useful to have further cor-
roborative experimental measurements of peak doses
f�0�a for narrow axial profiles in the range of �5 mm
�nT�40 mm�.
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NOMENCLATURE
MDCT � “Multidetector CT”

Fan beam � A nominal beam width of
�40 mm along z ��40 mm is
typically called a cone beam�

Shift-invariance � Translational invariance �indepen-
dent of location along the z-axis�

AOR � Gantry axis of rotation located at
isocenter; F=source to isocenter
distance

t0 � Total beam-on time for an axial or
helical scan series �tube loading

time�
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� � Time for a single 360° gantry rota-
tion �typically �=1 s or less�

N � �t0 /��=total number of gantry rota-
tions in an axial or helical scan se-
ries �N may not be an integer for
helical scanning�

v � Table velocity for helical scans
b � Generalized table advance per rota-

tion �mm/rot�, or table index
b � v� for helical scans; b=scan inter-

val for axial scans �denoted else-
where as �d or “I”�

L � �t0=definition of total helical scan
length �the total reconstructed
length is L�

L � Nb=generalized definition of total
scan length �axial or helical�

��z /L� � rect function of unit height and
width L spanning an interval
�−L /2,L /2�

nT � Total slice width acquired in a
single rotation �often denoted by
“N�T”�. Also equal to the total ac-
tive detector length projected at
isocenter for MDCT �e.g., nT=16
�1.25 mm=20 mm�

a � Geometric projection of the
z-collimator aperture onto the AOR
�by a “point” focal spot�. For
MDCT a�nT �called “overbeam-
ing”� to keep the penumbra beyond
the active detector length nT

p � b /nT=generalized “pitch”
Accumulated dose � Dose accrued at a given z �e.g., z

=0� due to a complete series of N
axial or helical rotations

f�z� � Single rotation �axial� dose profile
acquired with the phantom held
stationary

Deq � Limiting value of accumulated
dose approached in conventional
CT for scan lengths L�Leq

Leq � Scan length required for the dose to
approach to within 2% of Deq at
z=0 �denoted symbolically as L
→��

Aeq � The equilibrium dose constant,
equal to Deq for a table increment
b=a �and independent of aperture a
and nT�

R � Radius of cylindrical phantom
� � Scatter to primary ratio S / P

APPENDIX A: DERIVATION OF THE LSF
FORMULATION FOR THE PERIPHERAL AXIS
By analogy with Eq. �7�
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f�z,�� = A0���
 1

c���
g� − z

c���
� + ����lsf�z,�� � �� z

a���
� ,

�A1�

where A0���= fp�0,�� is the primary beam intensity �dose
rate� on the peripheral axis, and is thus the appropriate
weighting function to average various parameters over � as
related to the peripheral axis.5 For example, the average of
A0���a��� can be written as A0�a� where A0= fp�0� is the
total primary beam dose on the peripheral axis �the integral
of A0���= fp�0,�� over all angles5�, and �a� is the dose-
weighted average of the projected aperture a��� on the pe-
ripheral axis, which is equal to the width �FWHM� of the
primary beam profile fp�z� on that axis. The presence of a���
in the rect function ��z /a���� in Eq. �A1� breaks the shift-
invariant symmetry required by the convolution once the in-
tegration over � is performed. Expressing the convolution in
Eq. �A1� in its integral form, illustrates the difficulty, namely,

f�z,�� = A0���
1 + �
−a���/2

a���/2

LSF�z − z�,��dz� . �A2�

Fortunately the problem is solvable in closed form on the
peripheral axis, since most of the dose on a given peripheral
axis is contributed while the beam is directly incident on that
axis ��=0�, due to the fact that phantom, bow-tie filter, and
secondarily inverse square attenuation5 serve to rapidly
“pinch off” the primary beam intensity A0��� at angles be-
yond about �50°, over which angular range a��� is slowly
varying. This likewise applies to the peripheral axis of the
head phantom,5 where the roll off of A0��� is slower, but
which is compensated by a smaller variation in a���. In fact,
it was previously shown5 that �a�=1.05 a�0� for the periph-
eral axes in both body and head phantoms, and only 5%
above its minimum value a�0� at �=0. This limited variation
in a��� allows one to replace it in the above equations by its
average value a�= �a� with negligible error, thereby preserv-
ing the convolution format �a� is equal to the FWHM of the
axial dose profile on the peripheral axis�. Indeed, this ap-
proximation is good on a z-axis located at any radius in
either phantom.

Replacing a��� by a�= �a� in Eq. �A2� and setting z=0
gives

f�0,�� = A0���
1 + �
−a�/2

a�/2
LSF�z�,��dz� , �A3�

which, when averaged �integrated� over �, gives

f�0� = A0 + �
−a�/2

a�/2
dz�

1

2

�

−





A0���LSF�z�,��d�

= A0 + A0�
−a�/2

a�/2
�LSF�z���dz�, �A4�

where �LSF�z��� denotes the dose-weighted angular average
of LSF�z ,��=����lsf�z ,�� over a complete rotation.

Equation �A4� is seen to have the same form as Eq. �12�

for the central axis �recognizing the scaled form of the LSF
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previously used LSF�z�=�d−1h�z /d��, thus Eq. �17� for f�0�
and Eq. �18� for H�a� also apply, if one replaces a with the
FWHM of the axial dose profile on the peripheral axis
a�= �a��1.05a�0��0.76a, where a�0�=a�F−15 cm� /F,
and where F is the focal to AOR distance, and uses the
values of the �double-exponential� fit parameters �� ,d ,�d�
appropriate to the peripheral axis and �=1.5.
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